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Abstract: A picturesque maze is a kind of maze in which the solution path reveals a hidden black-and-white raster im-
age. We propose here an algorithm to generate a picturesque maze of a given black-and-white raster image. Okamoto
and Uehara proposed an algorithm to generate a picturesque maze by turning each original pixel into a 2-by-2 set
of pixels. One drawback of the method is that the entrance and the exit are always adjacent. We propose a simple
algorithm to generate a picturesque maze with any given endpoints for a 2-edge-connected input image.
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1. Introduction

A picturesque maze is a kind of a maze in which the solution
path reveals a hidden black-and-white input image. Okamoto and
Uehara formalized the problem as follows [5].
Input A black-and-white raster image with m rows and n

columns.
Output A maze in which the solution path fills up the input

black pixels.
An example is shown in Fig. 1. Okamoto and Uehara also pro-
posed an algorithm to solve the above problem [5]. One of the
drawbacks of their method, however, is that the entrance and the

Fig. 1 Example of picturesque maze. (Top) Input black-and-white raster
image. (Middle) An output, where the two triangles represent the
entrance and the exit. (Bottom) Solution path for the output.

1 NTT Secure Platform Laboratories, Musashino, Tokyo 180–8585, Japan
a) hamada.koki@lab.ntt.co.jp

exit are always adjacent. This paper proposes a simple algorithm
to generate a picturesque maze with any given entrance and exit
when the input image is 2-edge-connected.

2. Existing Methods

2.1 General Maze Generation
We begin by introducing a maze generation algorithm that fills

a given rectangle with m rows and n columns. The algorithm is
as follows.
( 1 ) We construct an undirected graph that corresponds to the

given m × n rectangle. That is, each vertex corresponds to
the cell of the rectangle, and an edge {u, v} exists when the
cells corresponding to u and v are adjacent.

( 2 ) We construct a random spanning tree on the graph.
( 3 ) Then, we remove the sides of cells that correspond to the

edges of the spanning tree. By arbitrarily choosing the en-
trance and the exit cells, we have a random maze.

We note that the solution path is always unique by the properties
of a tree.

2.2 Picturesque Maze Generation
Now, we consider the problem to generate picturesque mazes.

For a given m × n black-and-white raster image, we construct a
graph that corresponds to the given rectangle as we have done
in the above case. This time we have to construct a spanning
tree whose solution path is a Hamiltonian path of a subgraph in-
duced by vertices that correspond to black cells (we call this sub-
graph the foreground graph). Unfortunately, some images have
no Hamiltonian path even when the foreground graph is con-
nected. In addition, Itai et al. showed that the problem of decid-
ing whether there exists a Hamiltonian path is NP-complete [3].
Umans and Lenhart proposed a polynomial-time algorithm for
finding a Hamiltonian path when the image has no holes [7].
However, the condition is too restricted since most of the images
used for picturesque mazes have holes.
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2.3 Method of Okamoto and Uehara
To overcome the hardness of finding a Hamiltonian path on the

foreground graph, Okamoto and Uehara proposed a simple and
powerful method to generate picturesque mazes. Their idea is to
turn each pixel into a 2-by-2 set of pixels. This yields an image
with 2m × 2n, and we call this new image a (2-by-2-)extended

image. As we will see in the following, when this replacement is
executed, the foreground graph of the extended image always has
at least one Hamiltonian path. In addition, one of the Hamiltonian
paths is easily found by applying the following simple algorithm
proposed by Okamoto and Uehara [5].
( 1 ) We are given a black-and-white raster image (Fig. 2 (a)).
( 2 ) We construct a foreground graph of the image (Fig. 2 (b))

and a spanning tree on the foreground graph (Fig. 2 (c)).
( 3 ) We traverse the spanning tree by applying the right-hand rule

(Fig. 2 (d)).
( 4 ) Along with the traversal we construct a Hamiltonian path on

the extended image (Fig. 2 (e)).
( 5 ) We construct a spanning tree on the foreground graph of the

extended image by adding edges to the Hamiltonian path
(Fig. 2 (f)). We let the endpoints of the Hamiltonian path be
the entrance and the exit of the maze. Now, we have a pic-
turesque maze whose solution path forms the input image.

Thus, this algorithm always finds a Hamiltonian path on the fore-
ground graph of the extended image if the foreground graph of
the original input image is connected. One of the properties of
this algorithm is that the entrance and the exit of the solution path
are always adjacent. This property is useful when the algorithm
is used as part of other algorithms (in fact we use this in the fol-
lowing subsection and in Section 3). However, when the entrance
and the exit are adjacent, the corresponding maze can be solved
without facing any deadends by applying the so-called right-hand
rule (Fig. 3 (a)). This makes the generated mazes too easy, and it
is desired that both the right-hand rule and the left-hand rule lead
the player to some deadends (Fig. 3 (b) and Fig. 3 (c)).

2.4 Tiling Based Methods
To resolve the restriction of the adjacency of the entrance and

the exit, Nakai and Okamoto proposed an algorithm that also
takes an arbitrarily chosen entrance and exit as inputs [4]. The
algorithm is as follows.

(a) (b) (c)

(d) (e) (f)

Fig. 2 Execution example of Okamoto and Uehara’s method [5].

( 1 ) We are given a black-and-white raster image, the entrance
and exit pixels, and the positions of the entrance and the
exit (Fig. 4 (a)). The positions are elements of the set
{upper right, upper left, lower right, lower left}, and are used
to specify the exact pixel from the corresponding 2-by-2 set
of pixels on the extended image. The positions of the en-
trance and the exit are required to have different parity. That
is, one is in the set {upper right, lower left} and the other is
in the set {upper left, lower right}.

( 2 ) We construct the foreground graph of the image (Fig. 4 (b))
and find a simple path from the entrance vertex to the exit
vertex on the foreground graph (Fig. 4 (c)).

( 3 ) Along with the simple path on the foreground graph we
construct a simple path on the 2-by-2-extended image
(Fig. 4 (d)). The construction is done by tiling a 2-by-2 set of
pixels (Fig. 5) for each vertex on the path. The tiling is done
one by one for every vertex on the path from the entrance to
the exit, as shown in Fig. 6.

( 4 ) We extend the path on the extended image to a Hamiltonian
path of the extended foreground graph by detouring. That is,

(a) (b) (c)

Fig. 3 Comparison of generated mazes.

(a) (b) (c)

(d) (e) (f)

Fig. 4 Execution example of Nakai and Okamoto’s method [4].

(a) (b) (c) (d)

Fig. 5 Tiling patterns for 2-by-2-extended image.

Fig. 6 Step-by-step example of tiling. Small white and black squares repre-
sent the entrance and exit vertices and their positions. A black circle
and a triangle represent the current vertex and its starting position,
respectively.
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we apply the method of Okamoto and Uehara [5] to extend
the path (Fig. 4 (e)).

The main problem of this algorithm is that the detouring in Step 4
does not always work since detouring is not possible when a dent

in the solution path is facing another foreground area (Fig. 4 (f)).
In addition, some images have no solution path when certain end-
points are given. To avoid this problem, Nakai and Okamoto turns
each pixel on the 2-by-2-extended image into a 2-by-2 set of pix-
els again (i.e., an original pixel is now turned into a 4-by-4 set of
pixels).

Ikeda also proposed an algorithm that takes an arbitrarily cho-
sen entrance and exit as input [1]. Ikeda resolved the problem by
replacing each pixel with a 3-by-3 set of pixels while allowing
some modification of the image.

2.5 Another Method
Ikeda and Hashimoto proposed an algorithm based on another

approach [2]. In contrast to the above algorithms [1], [4], [5], the
algorithm of Ikeda and Hashimoto does not change the resolution
of the image. Instead of changing the resolution, they allow the
image to be modified. To minimize the modification, they defined
a utility function and minimized it by using simulated annealing.

3. Proposed Method

We propose an algorithm to generate a picturesque maze with
given entrance and exit on the 2-by-2-extended image of a given
raster image. Our method is also based on the tiling approach,
like the method of Nakai and Okamoto [4]. That is, the gener-
ation of a solution path consists of the four steps described in
Section 2.4. As explained in Section 2.4, the main problem of
the tiling approach is that the detouring in Step 4 does not always
succeed. To resolve this problem, we based our method on the
following two ideas.
• To ensure the existence of Hamiltonian paths for any pair

of endpoints, we restrict the input image to be 2-edge-

connected.
• In Step 2, we carefully choose a path from s to t on the fore-

ground graph so that we can always extend the path by de-
touring in Step 4.

3.1 2-edge-connectivity
We assume that the foreground graph of the input raster im-

age is 2-edge-connected. A graph is 2-edge-connected if it is
connected and contains at least two vertices but no bridge. A
bridge of a connected graph is an edge such that if the edge is re-
moved from the graph, the graph becomes disconnected. Tarjan
proposed an algorithm that finds all bridges in O(n) time where
n denotes the number of vertices [6]. Thus, we can efficiently
test whether the foreground graph of a given image is 2-edge-
connected or not.

3.2 Details of Our Method
As previously mentioned, our method is based on the tiling

method. That is, we accept an image and endpoints as in-
puts (Fig. 7 (a)), construct the foreground graph of the image
(Fig. 7 (b)), find a path on the foreground graph by constructing a

depth-first-search tree (Fig. 7 (c)), construct a path on the 2-by-2-
extended image by tiling (Fig. 7 (d)), extend the path to a Hamil-
tonian path by detouring (Fig. 7 (e)), and then, extend the Hamil-
tonian path to a spanning tree by adding edges (Fig. 7 (f)). The
difference is the step of finding a simple path from the entrance
vertex to the exit vertex on the foreground graph (Fig. 7 (c)).
Therefore, we only describe here how to find that simple path.

We begin by defining the input and output of our method as
follows.
Input A foreground graph G = (VG, EG) of a black-and-white

raster image, vertices s, t ∈ VG, which represent the entrance
and the exit, and the positions of s, t where G is 2-edge-
connected and the positions have different parity.

Output A Hamiltonian path on the foreground graph of the 2-
by-2-extended image where the endpoints are pixels on the
extended image and are specified by s, t, and their positions.

Now, we describe our algorithm to find a path on the fore-
ground graph. Intuitively, to find a path on the foreground graph,
we conduct a depth-first search to find a path from s to t result-
ing in as few dents as possible. The details of our method are as
follows.
( 1 ) We are given a foreground graph G = (VG, EG) of the input

raster image, the entrance and exit vertices s, t ∈ VG, and
their positions ps, pt.

( 2 ) We color all vertices VG white.
( 3 ) We start a depth-first search by visiting the entrance vertex

s that has position ps. When a vertex u ∈ VG that has po-
sition pu is visited, the following procedure is recursively
conducted.
( a ) We color the vertex u gray.
( b ) We recursively visit every adjacent unvisited vertex of

u in order. The order is determined from the position pu

of u according to Table 1. For example, if the position
pu is at the upper right, we first try to visit the adjacent
vertex on the right, then the upper, left, and lower ver-
tices. An illustration is shown in Fig. 8.

( c ) If u = t, we leave this depth-first search.
( d ) We color the vertex u black.

( 4 ) We output the path P from s to t on the depth-first-search
tree.

Since the algorithm is a kind of depth-first search, a depth-first-

(a) (b) (c)

(d) (e) (f)

Fig. 7 Execution example of our method.
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Table 1 Ordered list of directions of the next vertex to be visited when
the current vertex’s position is upper right. If the position is not
upper right, each element is rotated. The abbreviations “LL”
and “UR” in the table represent “lower left” and “upper right,”
respectively.

Order 1 2 3 4
Direction of the next vertex Right Upper Left Lower
Tiling pattern Fig. 5 (b) Fig. 5 (a) Fig. 5 (a) Fig. 5 (b)
Position of the next vertex LL LL UR UR
Direction of the dent Right Upper Upper Right

(a) (b) (c) (d)

Fig. 8 Illustration of the ordered list of directions when the current vertex’s
position is upper right. The small triangle represents the current ver-
tex’s position, the arrow represents the direction of the next vertex,
and the corresponding tiling pattern is shown.

search tree is constructed during the execution of the algorithm.
Initially, the depth-first-search tree contains its root vertex s only.
Whenever an unvisited vertex v is visited from another vertex u,
the vertex v and the edge {v, u} are added to the tree. We say that u

is the predecessor of v in the depth-first-search tree and describe
the predecessor of v as π(v).

We note that the running time of the algorithm is linear in the
number of pixels in the image since every vertex in VG is visited
at most once.

3.3 Correctness of Our Method
Now, we prove the correctness of our method.

Theorem 1. When a foreground graph G = (VG, EG) and its ver-

tices s, t are given, the proposed algorithm outputs a simple path

P from s to t on G.

Proof. When a vertex u ∈ VG is visited, the algorithm recur-
sively visits the adjacent vertices of u and never returns until the
vertex t has been visited or all the adjacent vertices of u have been
visited. Since the foreground graph G is connected, this recursive
search continues until the vertex t has been visited. Since the
depth-first-search tree is a tree and includes s and t, the output is
a simple path from s to t. �

Next, we prove that the detouring always succeeds when a sim-
ple path P from a vertex s to a vertex t on the foreground graph
G is computed. Let VP be the set of vertices included in path P.
As Fig. 6 shows, when path P and the positions of vertices s, t are
given, the tiling is uniquely determined.

The detouring is conducted for each connected component C

on the subgraph of G induced by the vertices VG \ VP. As
Fig. 4 implies, the detouring succeeds when there exists an edge
{g, v} ∈ EG such that g ∈ VP, v ∈ VC and Dent(g) � v. We write
Dent(g) = x if x is a vertex adjacent to g and is facing the dent
when g is tiled. If such a vertex does not exist, Dent(g) = nil. We
prove that the above condition holds for every connected compo-
nent, that is, our method always outputs a Hamiltonian path on
the extended image.
Theorem 2. Let C = (VC , EC) be a connected component on the

subgraph of G induced by the vertices VG \VP. Then, ∃{g, v} ∈ EG

s.t. g ∈ VP, v ∈ VC and Dent(g) � v.

Proof of Theorem 2. We use Color(x) to denote the color of the
vertex x ∈ VG. From the property of the depth-first-search tree,
we can easily confirm that Color(u) = gray if and only if u ∈ VP.

When the color of a vertex u ∈ VG is set to black, Color(v) �
white for every vertex v adjacent to u.

Since C is connected and VC ∩ VP = ∅, Color(u) = Color(v) �
gray for every u, v ∈ VC . That is, one of the following conditions
∀c ∈ VC , Color(c) = white or ∀c ∈ VC , Color(c) = black holds.
Let B be the set of connected component B = (VB, EB) on the
subgraph of G s.t. ∀c ∈ VB, Color(c) = black, andW be the set
of connected component W = (VW , EW ) on the subgraph of G s.t.
∀c ∈ VW , Color(c) = white. Then, C ∈ B or C ∈ W holds. Now
we consider the following Lemma 1 and Lemma 2.

Lemma 1. ∀W = (VW , EW ) ∈ W, ∃{w, g} s.t. w ∈ VW, g ∈ VP,

{w, g} ∈ EG and Dent(g) � w.

Proof of Lemma 1. Since the foreground graph G is connected,
there exists an edge {w, g} ∈ EG s.t. w ∈ VW and g ∈ VP. By the
order of adjacent vertices to be visited in Table 1, Dent(g) = nil
or Color(Dent(g)) � white holds. Therefore, Color(w) = white
implies that Dent(g) � w. �

Lemma 2. ∀B = (VB, EB) ∈ B, ∃{b, g} s.t. b ∈ VB, g ∈ VP,

{b, g} ∈ EG and Dent(g) � b.

Proof of Lemma 2. We begin by considering the following
lemma.

Lemma 3. Let B = (VB, EB) ∈ B. The subgraph of the depth-

first-search tree induced by VB is a tree and there exists exactly

one vertex br ∈ VB such that Color(π(br)) = gray.

Proof of Lemma 3. Let Bπ be the subgraph of the depth-first-
search tree induced by VB. Suppose that Bπ consists of at least
two connected components B1, B2, . . . , B� (� ≥ 2). Then, each
connected component Bi is a tree since Bi is a subgraph of a tree.
Since B is connected, there exists a pair of vertices (bi, b j) such
that bi ∈ VBi , b j ∈ VBj , {bi, b j} ∈ EB for two connected com-
ponents Bi = (VBi , EBi ) and Bj = (VBj , EBj ). Without loss of
generality, we assume that Time(bi) < Time(b j) where Time(x)
represents the time when the vertex x ∈ VG is visited. At the time
Time(bi), Color(b j) = white and this implies b j ∈ VBi . This con-
tradicts VBi ∩ VBj = ∅. Therefore, Bπ consists of exactly one tree.
Since Bπ is part of the depth-first-search tree, there exists exactly
one vertex br ∈ VB that satisfies Color(π(br)) = gray. �

Since Lemma 3 holds, let br be a vertex in VB s.t.
Color(π(br)) = gray. Then, π(br) ∈ VP holds. Let r be π(br).
Since G is 2-edge-connected, there exists at least one edge be-
tween the vertices VB and VG \ VB other than {br, r}. We call this
edge {b, g} where b ∈ VB and g ∈ VG \ VB.

(i) In the case r = g, {br, r} � {b, g} implies br � b. Since
r = g, we have that Dent(r) = Dent(g). Therefore, at least one of
Dent(r) � br or Dent(g) � b holds.

(ii) In the case r � g, since g � VB, Color(g) � white at the
time Time(br). In addition, Color(g) = gray now. Therefore
Color(g) = gray also holds at the time Time(br). On the other
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(a) (b)

(c) (d)

Fig. 9 Example of maze generated by our method.

hand, every v ∈ VG s.t. Color(v) = gray at the time Time(br) sat-
isfies Time(v) ≤ Time(r). Since r � g, Time(g) < Time(r). At the
time Time(r), Color(b) = white, and this implies Dent(g) � b.
Dent(g) � b holds until the execution of the algorithm is finished.

Thus, the statement holds in both cases. �

Since Lemma 1 and Lemma 2 hold, the statement of the theo-
rem also holds. �

3.4 Example of Generated Maze
To see the property of mazes generated by our method, we

show a maze generated by our method (Fig. 9 (a)) and its solu-
tion (Fig. 9 (b)). The cells visited by applying the right-hand rule
and the left-hand rule are shown in Fig. 9 (c) and Fig. 9 (d), re-
spectively. Thus, depending on the input image and endpoints,
our method may generate a maze such that both the right-hand
rule and the left-hand rule lead the player to some deadends.

4. Conclusion

We proposed a simple algorithm to generate a picturesque
maze with any given endpoints for a given 2-edge-connected
black-and-white raster image. The proposed algorithm only
changes the resolution of the image by turning each pixel into
a 2-by-2 set of pixels, as in the method proposed by Okamoto
and Uehara [5]. The running time of the proposed algorithm is
linear in the number of pixels of the input image.
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