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Abstract: Motivated by the deployment of wide-area high-speed networks, we propose GENEVA, the streaming
control algorithm using generalized multiplicative-increase/additive-decrease (GMIAD). Because current typical con-
gestion controllers such as a TCP-friendly rate control prevent occurrences of network congestion reacting susceptibly
to packet loss, it causes a significant degradation of streaming quality due to low-achieving throughput (i.e., lower
throughput than the maximum throughput that a streaming flow requires in maximum audio/video quality) and data
packet losses. GENEVA avoids this problem by allowing a streaming flow to maintain moderate network congestion
while trying to recover lost data packets that other competing flows cause during the process of probing for available
bandwidth. Using the GMIAD mechanism, the FEC window size (the degree of FEC redundancy per unit time) is
adjusted to suppress occurrences of bursty packet loss, while trying to effectively utilize network resources that other
competing flows cannot consume due to reductions in the transmission rate in response to packet loss. We describe the
GENEVA algorithm and evaluate its effectiveness using an NS-2 simulator. The results show that GENEVA enables
high-performance streaming flows to retain higher streaming quality under stable conditions while minimizing the
adverse impact on competing TCP performance.
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1. Introduction

The Internet has been growing by increasing in both access
links and backbone networks. According to the State of the Inter-
net published by Akamai Technologies [1], 1) the global average
peak connection speed, which implies Internet connection capac-
ity, has been growing, and 2) the speeds in the top 5 countries ex-
ceed 30 Mbps. In fact, 1 Gbps broadband access (FTTH) services
have been provided with reasonable price in Japan, and 10 Gbps
services will be in widespread use in the near future. Thanks
to the dissemination of wide-area high-speed networks [23], [24],
global IP traffic has increased eightfold over the past 5 years, and
it is expected that global IP traffic will reach zettabytes by the
end of 2015 [2]. This condition encourages people to take ad-
vantage of high-quality and high-performance real-time stream-
ing applications that consume a large amount of network band-
width for data transmission (e.g., a single Digital Video (DV)
stream requires 30 Mbps [9], [22]). Such applications will be in
widespread use, for example, in interactive e-learning, at inter-
national symposiums, and in telemedicine [5]. Real-time stream-
ing applications commonly rely on the unreliable transport ser-
vices provided by UDP (a fast and lightweight protocol). In this
study, we assume that these applications are implemented on top
of UDP.
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On the other hand, although each packet loss ratio measured for
various regions has decreased due to the capacity of broadband
connections, users still observe around 1% packet loss continu-
ously [3]. Such a small amount of packet loss seriously degrades
video quality. For example, as little as 3% MPEG packet loss can
cause 30% of the frames to be undecodable [21]. The exponential
increase in global IP traffic aggravates the adverse condition even
in high-speed networks, because TCP flows (which accounts for
more than 90% of the Internet traffic [31]) induce network con-
gestion by examining maximum available bandwidth, and then
leads to bursty packet loss [30]. Meanwhile, even if network
bandwidth will further grow, such streaming quality degradation
will not be fundamentally addressed. Rather, it is a formidable
challenge to high-performance streaming applications seeking to
optimize their quality without affecting competing traffic flows
(e.g., a large amount of TCP flows) in an environment where both
network connection speed and IP traffic flows have been growing.

As one of the major approaches for real-time streaming to deal
with network congestion, TCP-friendly rate control [12], [14] has
been well studied. In accordance with the definition of TCP
friendliness, TFRC tries to maintain fairness with competing TCP
flows in the same network condition, while providing a mecha-
nism for a smooth data transmission rate [17], [28]. TFRC re-
duces the data transmission rate to prevent occurrences of net-
work congestion reacting to packet loss, and increases the data
transmission rate while probing for available bandwidth in the
absence of packet loss. However, it is well known that in net-
works with high bandwidth-delay products (BDP), TCP is often
found to fail to utilize network resources. BDP denotes the prod-
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uct of a link capacity (bits/sec) and its end-to-end delay (sec).
When applied to the context of the TCP, BDP can be considered
as a measurement of the maximum amount of unacknowledged
data sent to the link (i.e., the maximum amount of data carrying
capacity of the link when there is no competing traffic). In ad-
dition, the possible lack of a buffer on routers and the existence
of concurrent bursting flows prevent TCP flow from effectively
utilizing network bandwidth [26]. TFRC in such conditions may
unnecessarily force a high-performance streaming flow to reduce
the data transmission rate at the expense of video quality. In
networks where the physical bandwidth is relatively larger than
the total consumption bandwidth of high-performance stream-
ing flows, senders maintaining the highest data transmission rate
would not make a severe impact on the congestion [27]. Thus,
high-performance streaming flows using TFRC suffer from a sig-
nificant degradation of streaming quality due to low-achieving
throughput (i.e., lower throughput than the maximum throughput
that a streaming flow requires in maximum audio/video quality)
and bursty packet loss.

In this paper, we focus on the scenario of multiple coexisting
flows along a high-speed network path (more than 1 Gbps), where
both high-performance real-time streaming flows transmitting at
a rate of several tens of Mbps and TCP flows are competing. We
assume that round trip times (RTTs) the competing flows have in
such an advanced broadband network environments are between
about 10 and 200 ms [3]. The key assumption in our research is
that network congestion as indicated by packet loss occurs mainly
due to TCP flows, where the bottleneck link bandwidth is notably
larger than the total consumption bandwidth of high-performance
streaming flows sending data packets at the maximum rate (i.e.,
at the maximum audio/video quality). To tackle the problem
that an existing congestion controller fails to maintain higher
streaming quality for high-performance real-time applications in
high BDP networks, we propose GENEVA, the streaming control
algorithm using the generalized multiplicative-increase/additive-
decrease (GMIAD). GENEVA also addresses the problem of an
adverse effect on competing TCP performance and a degrada-
tion of streaming quality in DP-FEC of our previous work [29].
Although DP-FEC increases the degree of FEC redundancy for
probing available bandwidth regardless of RTT conditions and
data transmission rate, GENEVA using GMIAD mechanism con-
siders them to adjust the degree of FEC redundancy. GENEVA
provides a promising method for achieving higher streaming
quality by adding redundant data packets while both effectively
utilizing network resources and combating bursty packet losses
through adjustment of the transmission rate using the GMIAD
mechanism. GENEVA avoids low-achieving throughput by al-
lowing the streaming flows to maintain moderate network con-
gestion, and also considers the effect on the performance of other
competing flows. The GMIAD mechanism adjusts the consump-
tion bandwidth by changing the degree of redundant data packets
to suppress bursty packet loss, which contributes to reliability and
stability of the streaming playback quality. In addition, it tries to
effectively utilize expected available bandwidth that competing
TCP flows cannot consume due to reductions in the transmission
rate in response to packet loss. We describe the GENEVA algo-

rithm and evaluate its effectiveness using an NS-2 simulator. The
results show that GENEVA enables high-performance streaming
flows to retain higher streaming quality under stable conditions
while minimizing the adverse impact on competing TCP perfor-
mance.

The remainder of this paper is organized as follows: Section 2
examines the requirements for high-performance real-time video
streaming. Section 3 describes the GENEVA design overview and
the algorithm. Section 4 evaluates the effectiveness of GENEVA
using an NS-2 simulation. Section 5 describes related work, and
in Section 6, we present our conclusions.

2. Congestion Control for Video Streaming
over IP

2.1 Background
Real-time streaming for high-quality video contents generally

tries to keep pace with changes in network conditions. To es-
cape from interruptions and stalling, streaming applications com-
pensate for packet loss by various approaches whose suitability
could be dependent on encoding techniques and communication
environments. High-quality real-time video streaming has strict
requirements on interactivity (i.e., low perceived latency) and
packet loss (i.e., high perceived playback quality). To keep both
interactivity and video quality as high as possible, high-quality
real-time streaming prefers to use low video compression and
high data transmission rate. However, for high-quality real-time
streaming applications, an expected lower transmission rate by
a traditional rate or congestion control algorithm often results in
buffer underrun at the receiver side, which results in a degradation
of playback quality. This is because the rate reduction by chang-
ing the encoding parameters at the sender side needs more time to
encode/decode. It is therefore important to maintain the highest
data transmission rate when there is fully available bandwidth.

2.2 Problem Statement
Most of the proposed congestion control mechanisms for real-

time streaming applications [4], [12], [13], [17], [25], [28] try to
achieve TCP-friendliness according to its definition; TFRC or
Datagram Congestion Control Protocol (DCCP) [25] thus enables
a streaming flow to maintain the desired smoothness of data trans-
mission rate and fairness with coexisting TCP flows in the same
network condition (i.e., the packet loss event rate and RTT). To
maintain fairness with coexisting TCP flows, TFRC calculates
the expected throughput of a competing TCP flow by using an
equation as a function of loss event rate and RTT [14], and then
adjusts the data transmission rate so as not to exceed the ex-
pected TCP throughput. The expected TCP throughput based on
the equation becomes small as packet loss rate or RTT increases.
However, because high-performance streaming flow keeping the
maximum video quality continuously requires a relatively large
amount of bandwidth that cannot be utilized by TCP in congested
networks, the throughput regulation based on TCP-friendliness
forces the streaming flow to reduce the data transmission rate at
the expense of video quality (i.e., the transmission rate is adjusted
by changing the parameters for encoding the video), which may
cause low network utilization by giving excessive weight to TCP-
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Fig. 1 The simulation topology (single bottleneck link).

friendliness. Video quality is increasingly reduced as the band-
width delay product (BDP) increases, because TCP is inefficient
under high BDP environments (i.e., the expected throughput of
a TCP flow by TFRC tends to become small under high BDP
environments). A high-performance TCP protocol (such as scal-
able TCP [36] and high-speed TCP [37]) could be used in real-
time streaming, but it typically results in some quality degrada-
tion (such as a longer startup delay and lack of smoothness). As
another critical problem, since the window controls – competing
TCP flows adopt – send data packets in bursts (and may have
sent a large number of packets by the time the sender learns of an
occurrence of network congestion), streaming flows suffer from
bursty data packet losses (i.e., consecutively lost data packets).
In addition, since a TFRC flow transmitting at a lower data rate
than a maximum data rate increases the data transmission rate
during the process of probing for available bandwidth and exam-
ines packet loss conditions as an indicator of network congestion,
it often delays the action for rate control, where it leads to a situ-
ation of continuous or further data packet loss.

To clarify the specific problem of competition between a TFRC
streaming flow and TCP flows, we used NS-2 to simulate a single
bottleneck with a 100 Mbps link capacity. The network topol-
ogy is shown in Fig. 1. Each sender and receiver were connected
to the bottleneck link through the 1 Gbps access link with prop-
agation delay of 0.1 ms. The two-way propagation delay was
set to between 1 and 200 ms (1/10/20/50/100/200 ms). From
here onwards, we call this delay minimum RTT (RTTmin). Ac-
cording to RTTmin settings, the propagation delay in the bot-
tleneck link varies, and BDP is calculated using the RTTmin.
The packet size was set to 1,500 bytes for all connections. A
drop-tail queuing is used at the router in the bottleneck link,
the queue size is set to max{100 (packets), BDP}. The queue
size in packets in RTTmin = 1 ms is calculated as follows:
BDP = 100 (Mbps) ∗ 106 ∗ 0.001 (sec)/(1500 ∗ 8) = 8.33 (pack-
ets). Since the queue size set to the BDP in RTTmin = 1 and
10 ms is less than 100 packets, the queue size was set to 100 pack-
ets, where RTT becomes between RTTmin and the RTTmin plus
maximum queuing delay (about 12 ms). On the other hand, the
queue size in RTTmin = 20, 50, 100, and 200 ms is set to the
BDP of setting RTTmin, where RTT becomes between RTTmin
and twice the RTTmin. To create network congestion, a TCP
sender generates short-lived TCP flows (TCP-Sack) using a Pois-
son process with an average rate of 30 flows per second, and the
size of a TCP flow follows a Pareto distribution with an average
of 40 packets and a shape parameter of 1.5. We used a single
TFRC streaming flow with a maximum data rate of 30 Mbps, or
a single normal UDP streaming flow transmitting at a maximum

(a) Average TFRC throughput

(b) Average data loss rate of TFRC flow

(c) Average TCP throughput

Fig. 2 The average throughput of TFRC flow, the average data loss rate of
TFRC flow, and the average throughput of TCP flows competing a
TFRC or normal UDP flow under varied minimum RTTs.

data rate of 30 Mbps. Each simulation ran for about 120 sec.
Figure 2 (a) shows that because the expected throughput of

a competing TCP flow that the TFRC flow calculates becomes
small by occurrences of packet loss caused by TCP flows, a TFRC
flow cannot maintain the maximum data transmission rate under
all minimum RTTs. Also, since the expected TCP throughput
becomes small as RTT increases, the average throughput of the
TFRC flow decreases with an increase in RTTmin (i.e., BDP).
As shown in Fig. 2 (b), since an increasing congestion window
size during TCP slow-start or congestion avoidance phase causes
bursty packet losses, the average data loss rate of a TFRC flow
– even with minimum RTTs more than 50 ms – becomes more
than 0.1% in addition to the reduction in the transmission rate.
Figure 2 (c) shows the average throughput of TCP flows compet-
ing with a normal UDP or TFRC flow. Since TCP is inefficient
in high BDP links, with minimum RTTs of more than 50 ms, a
normal UDP flow does not have a negative impact on the aver-
age throughput of TCP flows. This means that a TFRC flow did
not effectively consume network resources by unnecessary reduc-
tions in the data transmission rate (as shown in Fig. 2 (a)). In this
context, a TFRC flow, which competes for bandwidth with TCP
flows in higher BDP environments, tends to suffer from a degra-
dation of streaming quality caused by packet losses that TCP
flows induce.

2.3 Requirement
As described in Section 2.1, high-performance real-time

streaming using TFRC suffers from bursty packet losses that com-
peting TCP flows induce, and unnecessary reductions in the data
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transmission rate (i.e., video quality) due to improper conges-
tion control. Existing congestion control protocols thus overem-
phasize the maintenance of TCP-friendliness too much, which
leads to low network utilization especially in high BDP links. In-
stead of using TFRC, an alternative protocol is needed for high-
performance real-time streaming to avoid a degradation of play-
back quality caused by packet losses and to preserve the highest
data transmission rate in congested high speed networks where
the bottleneck link bandwidth is much larger than the total con-
sumption bandwidth of high-performance streaming flows. From
this viewpoint, it is important to protect playback quality from
packet loss while executing effective congestion control to better
utilize network resources without interacting badly with existing
TCP traffic.

Forward Error Correction (FEC) is the well-known algorithm
that has been notably used in streaming applications to improve
playback quality in the presence of data packet losses. An ap-
plication level forward error correction (AL-FEC) approach pre-
vents retransmission delays by preventively adding redundant
packets to the streaming data flow. Thanks to the redundancy,
a certain number of missing data packets can be recovered. How-
ever, ascertaining and/or controlling optimal FEC redundancy in
congested networks is a real challenge, because 1) it is difficult
for a sender to determine the packet loss pattern at each moment
(as there is a feedback delay) and to predict the future packet loss
pattern, 2) if all streaming flows constantly add a large amount of
redundant packets to recover busty packet losses, bandwidth over-
head becomes large and has an adverse effect on competing flows,
and 3) increasing FEC redundancy may disturb competing flows
when the conditions of competing flows are sensitively oscillated
in the network. Block interleaving techniques are frequently used
to improve FEC performance by reducing the burstiness of packet
losses. However, since interleaving method involves buffering
and computation delays, in this study we do not use it to keep de-
lays to a minimum. The following points thus must be considered
when enhancing FEC redundancy in congested networks:
• TCP flows tend to transmit their packets in bursts especially

in high BDP links, and therefore may cause bursty packet
losses [30]. Because this situation often makes it difficult to
appropriately adjust FEC redundancy (such that FEC cannot
recover lost data packets), an occurrence of bursty packet
loss should be suppressed as much as possible to optimize
the recovery of lost data packets.

• Controlling FEC redundancy is not inconsequential to the
behavior of other flows. It is important, therefore, to adjust
the degree of FEC redundancy in order to minimize the ad-
verse effect on performance of competing flows as much as
possible.

3. Streaming Control Algorithm Using
GMIAD

In this section, we describe GENEVA, the streaming con-
trol algorithm using generalized multiplicative-increase/additive-
decrease (GMIAD) that satisfies the aforementioned require-
ments, and analyze the parameter settings.

3.1 Design Overview
GENEVA is designed as an end-to-end model using the follow-

ing criteria:
( 1 ) To achieve high network utilization, GENEVA allows a

high-performance streaming flow to maintain moderate net-
work congestion, in which packet loss rate is less than pmax

(a predefined constant value).
( 2 ) A sender with GENEVA needs to transmit data packets at

an almost constant interval time, and control the degree of
FEC redundancy to its data stream in congested networks.
This situation may adversely increase traffic congestion. An
GENEVA flow thus should converge at an appropriate equi-
librium point to recover data packet losses under stable con-
ditions during transmission. To achieve such a condition,
supporting window control is needed to specify an accept-
able degree of FEC redundancy.

( 3 ) To suppress an occurrence of bursty packet loss that TCP
flows cause and improve FEC recover capabilities, the de-
gree of FEC redundancy is increased to prevent their con-
gestion window sizes from increasing considerably. At the
same time, the increase in FEC redundancy should not inter-
act badly with competing TCP flows.

In accordance with the aforementioned design overview (3),
to improve high-performance streaming quality by FEC recovery
of lost data packets, GENEVA should try to keep or increase the
degree of FEC redundancy even in the presence of packet loss
while utilizing expected available network resources which TCP
flows cannot consume by their nature, and prevent TCP flows
from achieving larger window size so as not to pose bursty packet
loss. From this point of view, GENEVA does not adopt the well-
deployed Additive-Increase/Multiplicative-Decrease (AIMD) al-
gorithm [34] that decreases the transmission rate reacting to
packet loss, but adopts GMIAD that increases the transmission
rate reacting to packet loss (i.e., GMIAD increases the degree
of FEC redundancy in GENEVA). Meanwhile, GENEVA using
GMIAD decreases the degree of FEC redundancy during the pe-
riod of no packet loss, where unnecessary FEC redundancy is
suppressed so as not to trigger further network congestion in ac-
cordance with the design overview (2).

Figure 3 illustrates the FEC overview. GENEVA operates

Fig. 3 GENEVA overview.
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mainly at the sender end. A sender transmits data and FEC re-
pair packets over a real-time transport protocol (RTP) [6] carried
on top of the Internet Protocol (IP) and UDP. The GENEVA
sender collects the feedback information transmitted over a real-
time transport control protocol (RTCP) delivered by a receiver,
then adjusts the degree of FEC redundancy based on packet loss
conditions and estimated RTT. The data transmission rate, which
depends on the video format preliminarily assigned, is maintained
during transmission.

GENEVA leverages an AL-FEC, in which n − k FEC repair
packets are added to a block of k data packets (FEC source pack-
ets). We consider maximum distance separable (MDS) codes
such as Reed-Solomon codes [7] which can recover all of the
missing packets from any set of exactly k packets. Here, we de-
fine the number of FEC repair packets as the “FEC window size
Fwnd (packets),” indicated by “n − k.” If the code parameters,
the FEC window size and n, are appropriately set in the event of
packet losses, a receiver may recover all of the missing data pack-
ets within a block. To calculate and create FEC repair packets in
each block, all of the generated data packets (FEC source packets)
are stored once in the FEC encoding block buffer. Depending on
the FEC window size, the number of FEC repair packets stored
in the FEC encoding block buffer varies.

3.2 Algorithm and Analysis
We now describe the GENEVA algorithm and its parameter

settings based on the aforementioned design criteria.
3.2.1 Acknowledging

To control network congestion by adjusting the Fwnd, an
GENEVA sender needs negative acknowledgements of packet re-
ception from a corresponding receiver. Since GENEVA toler-
ates moderate network congestion without reductions in the data
transmission rate (unlike TCP), generating negative acknowl-
edgements may consume large bandwidth. To reduce the ratio
of bandwidth consumed by control traffic, an GENEVA receiver
sends feedback information at constant time interval (SYN),
which denotes the number of lost packets during SYN time.
The SYN is related to responsiveness or stability of GENEVA
flow (i.e., conditions of FEC recovery capabilities)*1. GENEVA
thus maintains the FEC window size greater than or equal to the
minimum FEC window size (Fwndmin) to allow the flow to re-
cover lost source packets in moderate network congestion*2. In
GENEVA, SYN time is currently set to 0.01 sec based on our
comprehensive simulation results.
3.2.2 FEC Source and Repair Transmission

Figure 4 shows the transmission of FEC source and repair
packets. GENEVA adjusts the Fwnd in an arbitrarily fixed FEC
source block length (k) during transmission. The value of k is
chosen to be the number of FEC source packets needed for a

*1 Note that since GENEVA stores the k source packets in each block to
generate the Fwnd repair packets, it takes a certain time for a sender to
adjust and send Fwnd repair packets after the last adjustment.

*2 In a situation in which feedback information is lost, GENEVA perfor-
mance (i.e., FEC recovery capabilities) is not sensitively affected due to
the preliminarily operated Fwnd. In addition, GENEVA maintains the
current Fwnd without increasing the Fwnd, and therefore does not in-
duce an adverse impact on performance of other competing flows.

Fig. 4 FEC source and repair transmission.

sender to transmit during SYN time (0.01 sec), which depends on
the video format and its encoding parameters. For instance, on
the assumption that a sender transmits RTP/HDV (MPEG2-TS)
packets of 1,500 bytes at a rate of 25 Mbps [10], the value of k is
calculated as follows: k = 25 (Mbps)∗106∗0.01 (sec)/(1500∗8) =
20.83. Thus, in the case of transmission RTP/HDV, the value
of k becomes 20 or 21. The generated FEC repair packets for
each source block are sent together with the corresponding source
packets within SYN time. Thus, each time a sender receives feed-
back information, Fwnd is adjusted using the increase/decrease
algorithm (described below). It is well understood from queu-
ing theory that burst transmission of packets poses bursty packet
loss that limits FEC recovery performance [39], [40]. To avoid
a generation of bursty traffic, the transmission controller evenly
spaces FEC source and repair packets sent into the network over
SYN time by controlling the inter-packet gap (IPG). The IPG
time during an arbitrary SYN time becomes as follows: IPG =

SYN/(Fwnd + k).
Using feedback information, a sender calculates the sample

RTT (S RTT ) to derive the number of unacknowledged packets
sent to the network, which is denoted by the “current total win-
dow size (Wtot).” The Wtot is used to adjust the Fwnd with the
increase/decrease algorithm. Keeping pairs of the sequence num-
ber and its transmitted time, a sender calculates S RTT . Using an
exponential weighted moving average with the smoothing factor
of α (0 < α < 1), the estimated RTT (ERTT ) is calculated as
follows: ERTT = α ∗ERTT + (1−α) ∗S RTT . Since the Wtot de-
notes the number of unacknowledged packets sent to the network
(i.e., the number of packets sent to the network during ERTT

plus SYN time), the Wtot is dynamically derived using ERTT ,
SYN time and the current IPG, as follows:

Wtot = (ERTT + SYN)/IPG

= (Fwnd + k) ∗ (ERTT + SYN)/SYN (1)

3.2.3 FEC Window Size Adjustment
We define a controller that forces the total window size to

achieve an equilibrium point (W∗
tot) where the Fwnd stably con-

verges at a packet loss probability p < pmax:

W∗
tot = a/(pmax − p) (2)

where a is a constant with a > 0, and is the scaling property of
Wtot. This equation shows that, as the network becomes more
congested (i.e., p increases), W∗tot also becomes larger, which
results in an increase in the Fwnd. Since we consider a high-
performance real-time application that consumes at least 25 Mbps
(Wtot becomes about 42 under 10 ms RTT), we set a to 2 to scale
up the Fwnd. Using Eq. (2), the Fwnd in the steady state is shown
as follows:
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Fwnd =
⌊
(W∗

tot ∗ SYN/(ERTT + SYN) − k
⌋

(3)

When the Fwnd < Fwndmin, GENEVA maintains the Fwnd at
Fwndmin. Note that although a larger Wtot that a flow has from
the first (e.g., with high throughput and/or longer RTT) cannot
approach the W∗

tot, the Fwnd converges at small sizes, which con-
tributes to stability of other competing GENEVA flows.

GENEVA adopts the Generalized Multiplicative Increase and
Additive Decrease (GMIAD) algorithm to achieve an equilibrium
point in Eq. (3). When a sender receives feedback information
indicating the number of both lost and delivered packets during
SYN time, the following calculation is repeated for a number of
times equal to the number of lost packets, to first update the Wtot:

Wtot ← Wtot + i(Wtot) (4)

where i(Wtot) is an incremental function of Wtot. Then, the Wtot

is derived by repeating the following calculation for a number of
times equal to successfully delivered packets:

Wtot ← Wtot − b (5)

where b is a constant with b > 0.
The behavior of the aforementioned GMIAD algorithm is de-

scribed with a differential equation:

dWtot

dt
= i(Wtot)

Wtot

(RTT + SYN)
p − b

Wtot

(RTT + SYN)
(6)

At an equilibrium point, the following equation is derived by
Eq. (6):

i(W∗
tot) =

b
p

(7)

Using Eqs. (2) and (7), i(Wtot) is given with the constant value
pmax and b:

i(Wtot) = bWtot/(pmaxWtot − 2) (8)

3.2.4 Parameter Settings
The value of α for the estimated RTT (ERTT ) calculation de-

termines how rapidly ERTT adapts to the sample RTT (S RTT )
changes. ERTT using a lower value of α adapts to S RTT changes
more rapidly. In a situation in which S RTT fluctuates signif-
icantly, ERTT using a lower value of α also fluctuates signifi-
cantly. This situation produces large fluctuations in Wtot, and the
fluctuated Wtot determines the Fwnd irrespective of packet loss
conditions. Since as shown in Eq. (2), the equilibrium point of
Wtot is defined by using packet loss probability (p), such a situa-
tion may cause improper adjustments of the Fwnd. To avoid it, α
is set to relatively high value, 0.9.

The setting of pmax defines the upper limit of packet loss prob-
ability that an GENEVA flow can tolerate. Because GENEVA
with a high value of pmax increases the Fwnd up to a maximum
extent under high loss rate regimes (i.e., packet loss probability is
around the pmax), the value of pmax relates to friendliness for com-
peting TCP flows and GENEVA aggressiveness. Since packet
loss plays a key role in achievable TCP performance [32], [38],
GENEVA with high value of pmax thus may cause an adverse

impact on competing TCP performance or congestion collapse.
Conventional wisdom holds that a loss rate of more than 5%
has a significant adverse effect on TCP performance, because it
will greatly limit the size of the congestion window and hence
the transfer rate, while 3% is often substantially less serious [3].
Thus, pmax of upper limit of packet loss probability that GENEVA
flow can tolerate is set to 0.03 in this work.

When Fwndmin is set to �k ∗ pmax� in association with pmax,
GENEVA with the k of about 20 keeps the Fwnd of 1 in the
absence of packet loss and cannot recover lost data packets by
sudden bursty packet loss. Therefore, Fwndmin is set to a con-
stant value of 8 in this work. Also, it is important to decide
the maximum acceptable Fwnd, because the additional delay by
FEC encoding/decoding becomes large with the increase in 1)
k and the Fwnd (i.e., encoding time) and 2) packet loss rate
(i.e., the decoding time becomes large with the increase in the
number of recovered packets within a block). According to the
work using a real implementation with Reed-Solomon codes for
a high-performance real-time application transmitting at a rate
of 30 Mbps [10], the additional video frame delay compared to
the case without FEC becomes lower about 150 ms within less
than 15% of packet loss rate, where the value of k and the num-
ber of repair packets within a block were set to 170 and 85 re-
spectively. On the assumption that the value of k that GENEVA
holds becomes smaller than 170, the maximum acceptable Fwnd

of GENEVA is set to 60 so as to suppress the additional delay
to below 150 ms. GENEVA thus requires the equivalent buffer
length of about 150 ms at the cost of the real-time performance.
If the packet loss probability continues to be more than or equal
to pmax, GENEVA keeps the maximum acceptable Fwnd in the
presence of the high packet loss rate, which results in the signifi-
cant degradation of competing TCP performance and congestion
collapse. GENEVA thus needs to reduce the data transmission
rate at the cost of video quality to avoid congestion collapse. In
this study, we do not assume such a situation where the physical
bandwidth is notably less than the averaged consumption band-
width of TCP and high-performance streaming flows.

Figure 5 shows the GENEVA scaling properties of Wtot when
the packet loss probability p = p1, p2 (0 < p1 < p2 < pmax).
Whereas Wtot increases by i(Wtot) in response to packet loss, Wtot

decreases based on Eq. (5) during periods of no packet loss. Al-
though the Wtot in p2 (Wtot 2) becomes larger than the Wtot in p1
(Wtot 1), both the increase ratio i(Wtot 2) and decrease speed up

Fig. 5 GENEVA scaling properties.
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Fig. 6 The increment of Wtot (i(Wtot)) and decrement of TCP window size
(Wtcp) as a function of Wtot . From the aspect of design that i(Wtot)
should not exceeds the corresponding decrement of Wtcp, the con-
stant b (decrement function in GMIAD algorithm) is set to 0.04.

to Wtot 2 become smaller compared those in p1.
The increase in Fwnd based on i(Wtot) should be adjusted prop-

erly to minimize the adverse effect on competing TCP perfor-
mance by utilizing network resources that TCP fails to copy. In
TCP, the window size (Wtcp) is halved on detecting a packet loss
during a round trip time, and becomes Wtcp/2. The constant value
b, which relates to i(Wtot) as shown in Eq. (8), should be set to
prevent i(Wtot) from exceeding the decrease in TCP window size
(namely, Wtcp/2), in order to achieve stable conditions. Figure 6
shows both i(Wtot) and Wtcp/2 as a function of Wtot, by using
the TCP performance model [32]. The range of Wtot is set to be-
tween 70 and 1,700. The Wtot value of 1,700 represents about
the size of Wtot that GENEVA at a rate of 25 Mbps achieves with
the maximum acceptable Fwnd (i.e., Fwnd = 60) under RTT
200 ms: Wtot = (60+ 21) ∗ (0.2+ 0.01)/0.01 = 1701, as shown in
Eq. (1). When Wtot of larger value than 2/pmax approaches 2/pmax

(i.e., about 66.6), i(Wtot) approaches positive infinity (as shown in
Eq. (8)). The range of Wtot thus starts from 70. When b becomes
large, GENEVA becomes aggressive to increase the Fwnd with
an increase in the Wtot. As you can see in Fig. 6, each i(Wtot) with
b = 0.06 and 0.04 does not exceed Wtcp/2 at an almost full range
of Wtot. However, each i(Wtot) with b = 0.06 and 0.04 exceeds
the Wtcp/2 in below about 80 and 73 of Wtot, respectively. In this
work, we set b to 0.04. In below 73 of Wtot, i(Wtot) is constantly
set to 10 so as not to exceed Wtcp/2. Note that although i(Wtot) in
large Wtot becomes small, GENEVA tends to gradually increase
the Fwnd in conditions of bursty packet loss by reacting to every
packet loss event.

4. Evaluation

4.1 Simulation Setup and Performance Metrics
Using an NS-2 extended with GENEVA module, we performed

experiments using the dumbbell topology shown in Fig. 7. The
bandwidth of the bottleneck link was set to 1 Gbps. Each sender
and receiver were connected to the bottleneck link through the
10 Gbps access link with propagation delay of about 1 ms. The
two-way propagation delay (i.e., minimum RTT, RTTmin) was
set to 10 or 100 ms. According to RTTmin settings, the propa-
gation delay in the bottleneck link varies, and BDP is calculated
using the RTTmin. The packet size was set to 1,500 bytes for all

Fig. 7 The simulation topology (single bottleneck link).

connections. A drop-tail queuing was used at the router in the
bottleneck link, the queue length size was set to min{BDP, 2048
(packets)}. The queue length size in RTTmin of 10 ms was set to
BDP of setting RTTmin 10 ms, where RTT becomes the RTTmin
and twice the RTTmin. In RTTmin of 100 ms, BDP in packets is
calculate as follows: BDP = 1 (Gbps)∗109∗0.1 (sec)/(1500∗8) =
8333.33. Since the value of the queue size in packets exceeds
2,048, the queue size in RTTmin of 100 ms was set to 2,048,
where RTT becomes between the RTTmin and the RTTmin plus
maximum queuing delay (about 25 ms). About 25% of the BDP
is available as buffers on the bottleneck link when the RTTmin
is 100 ms; A decrease in available queuing delay is favorable in
terms of the cost of implementing high-speed memory systems
in network devices, and also for end system applications. Each
simulation ran for about 3 minutes.

As the GENEVA performance metrics, we observed 1) the av-
erage residual data loss rate of GENEVA flows which denotes the
ratio of the total number of non-recovered data packets to the to-
tal number of sent data packets, 2) the average number of “bursty
packet loss events,” and 3) the average throughput of compet-
ing TCP flows. We here define the bursty packet loss event as
the situation in which more than three packets are consecutively
lost in an GENEVA flow, and expect that GENEVA suppresses
the number of occurrence of bursty packet loss event to improve
FEC recovery capabilities.

The metrics of the average residual data loss rate and the av-
erage number of bursty packet loss events were compared with
those observed when we used small/large Static-FEC flows (i.e.,
the Fwnd is constant) and DP-FEC flows [29] under the same
network condition. We set the Fwnd of small and large Static-
FEC flow to Fwndmin and 1.5 times the Fwndmin, respectively.
As TCP Performance index (T Pindex), we use the result of the
average throughput of TCP flows observed when they compete
with TFRC flows, and define T Pindex as follows:.

T Pindex =
TCPthuput Target
TCPthuput TCPstr

(9)

where TCPthuput Target is the result of the average throughput
of TCP flows competing with small/large Static-FEC or DP-FEC
or GENEVA flows; TCPthuput TCPstr is the result of the aver-
age throughput of TCP flows competing with TFRC flows under
the same network condition.

We used two types of TCP flows using TCP-SACK, 1) short-
lived TCP flows and 2) long-lived TCP flows. Short-lived TCP
flows arrive at the bottleneck link, as a Poisson process with an
average rate of r tcp flows per second. The size of each TCP
flow follows Pareto distribution with an average of s tcp pack-
ets and shape parameter 1.5. We define the load of TCP flows as
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(a) Residual Data Loss Rate
(RTTmin 10 ms)

(b) The number of bursty packet loss
event (RTTmin 10 ms)

(c) Average FEC window size
(RTTmin 10 ms)

(d) TCP performance index
(RTTmin 10 ms)

Fig. 8 The results of the performance of 10 GENEVA flows under RTTmin 10 ms in competition with
long-lived TCP flows. Three metrics (residual data loss rate, the number of bursty packet loss
events and TCP performance index) were compared to those of 10 small/large Static-FEC flows
and 10 DP-FEC flows under the same network condition.

(a) Residual Data Loss Rate
(RTTmin 100 ms)

(b) The number of bursty packet loss
event (RTTmin 100 ms)

(c) TCP performance index
(RTTmin 100 ms)

(d) TCP performance index
(RTTmin 100 ms)]

Fig. 9 The results of the performance of 10 GENEVA flows under RTTmin 100 ms in competition with
long-lived TCP flows. Three metrics (residual data loss rate, the number of bursty packet loss
events and TCP performance index) were compared to those of 10 small/large Static-FEC flows
and 10 DP-FEC flows under the same network condition.

ρ tcp = r tcp ∗ s tcp. Long-lived TCP flows are persistent in
the network.

4.2 Homogeneous GENEVA Flows VS. TCP Flows
In this experiment, all GENEVA or small/large Static-FEC or

DP-FEC flows transmit data packets at a rate of 30 Mbps. We set
the number of streaming flows to 10, and evaluated the GENEVA
performance in competition with long-lived TCP flows or short-
lived TCP flows in network conditions where the total packet loss
rate on the bottleneck link varies from about 1% to 4%. This
range of the packet loss ratio is based on the 2012 yearly reports
of the ICFA-SCIC Monitoring WG [3] indicating that the packet
loss rate on the Internet is around 1% on average.
4.2.1 Competition with Long-lived TCP Flows

Figures 8 and 9 shows the results of the experiments where
10 GENEVA flows or 10 small/large Static-FEC flows or 10 DP-
FEC flows compete with long-lived TCP flows under the RTTmin
10 ms and 100 ms, respectively. Under both of the RTTmin (10
and 100 ms), as the number of competing TCP flows increases,
the number of bursty packet loss events of the GENEVA flows be-
comes lower than that of the small Static-FEC flows. Because of
this, the corresponding residual data loss rate also decreases. The
T Pindex of both small Static-FEC and GENEVA flows becomes
about 0.65, because they preserve the highest data transmission
rate (i.e., 30 Mbps) unlike TFRC. Although the GENEVA flows
increase their Fwnd in response to packet losses, the T Pindex

is almost the same as that of the small Static-FEC flows (about
0.65). This means that the GENEVA flows effectively utilized
network resources that TCP flows fail to copy, by properly ad-
justing the Fwnd.

As shown in Fig. 8 (b), the large Static-FEC flows under the
RTTmin 10 ms cause more bursty packet loss events than that of
small Static FEC flows or GENEVA flows, which results in higher

residual data loss rate of the large Static-FEC flows. In addition,
as seen from Fig. 8 (d), the corresponding T Pindex of the large
static-FEC flows becomes lower than that of GENEVA flows due
to the constantly added large FEC redundancy. In the case of the
RTTmin 100 ms, since TCP flows become less aggressive com-
pared to the case of the RTTmin 10 ms, the number of bursty
packet loss events of the large Static-FEC flows becomes lower
than that of the small Static FEC flows, and the corresponding
residual data loss rate also becomes lower (as seen from Fig. 9 (b)
and 9 (a)). Although the residual data loss rate of the large Static-
FEC flows competing with 500 or 600 TCP flows becomes lower
than that of the GENEVA flows, the T Pindex of the large Static-
FEC flows becomes lower than that of GENEVA flows (as seen
from Fig. 9 (d)).

Since DP-FEC probes the available bandwidth by increas-
ing the Fwnd, the DP-FEC flows under the RTTmin 10 ms and
100 ms maintain a much larger Fwnd, compared to that of the
GENEVA flows (as seen from Figs. 8 (c) and 9 (c)). However,
since their increased Fwnd induces residual data packet loss as
a side effect between the competing DP-FEC flows, the residual
data loss rate becomes higher than that of the GENEVA flows,
except in the case where the DP-FEC flows under the RTTmin
10 ms compete with 100 TCP flows (as seen from Figs. 8 (a) and
9 (a)). Moreover, due to the large average Fwnd, the T Pindex of
the DP-FEC flows becomes lower than that of large Static-FEC
flows.

Whereas the average Fwnd of the GENEVA flows under the
RTTmin 10 ms increases up to about 9.2 (in competition with
250 TCP flows), the Fwnd under the RTTmin 100 ms maintains
almost the same value (between 8.2 and 8.4). This is because
GENEVA flows under the longer RTT have larger total window
size. This behavior contributes to the stability. Figure 10 shows
the trace of the Fwnd of the selected 3 GENEVA flows, and the
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(a) FEC window size (RTTmin 10 ms) (b) Packet loss rate on the bottleneck link (RTTmin 10 ms).

(c) FEC window size (RTTmin 100 ms) (d) Packet loss rate on the bottleneck link (RTTmin 100 ms)

Fig. 10 Trace of FEC window size of three selected GENEVA flows and packet loss rate on the bottleneck
link. 10 GENEVA flows under RTTmin 10 and 100 ms compete with 200 and 700 long-lived TCP
flows, respectively.

Table 1 The results of 10 GENEVA flows, 10 small/large Static-FEC flows and 10 DP-FEC flows under
RTTmin 10 and 100 ms in competition with short-lived TCP flows.

TCP load(ρ tcp): 500 Mbps Data Rate
(Mbps)

Data
Loss
Rate

Packet Loss
Rate

FEC
Window
Size

Total
Window
Size

# Bursty Packet
Loss Event

TCP perfor-
mance index

Link
Loss
Rate

RTTmin: 10 ms, r tcp = 12.5 avg. avg. avg. avg. avg. avg. avg. avg.

10 GENEVA flows 30.0 0.0011 0.0068 10.19 105.26 164.90 0.57 0.039
10 Small Static-FEC flows 30.0 0.0029 0.0078 8.0 — 305.70 0.61 0.040
10 Large Static-FEC flows 30.0 0.0026 0.0083 12.0 — 281 0.49 0.039

10 DP-FEC flows 30.0 0.0024 0.32 48.12 — 169.7 0.10 0.024

RTTmin: 10 ms, r tcp = 25

10 GENEVA flows 30.0 0.0013 0.0070 9.88 110.56 283.60 0.61 0.033
10 Small Static-FEC flows 30.0 0.0029 0.0089 8.0 — 509.40 0.65 0.035
10 Large Static-FEC flows 30.0 0.0032 0.0093 12.0 — 938.5 0.46 0.037

10 DP-FEC flows 30.0 0.0061 0.23 35.69 — 610 0.18 0.025

RTTmin: 100 ms, r tcp = 12.5

10 GENEVA flows 30.0 0.0039 0.0074 8.19 424.34 393.50 0.77 0.030
10 Small Static-FEC flows 30.0 0.0044 0.0077 8.0 — 452.0 0.78 0.030
10 Large Static-FEC flows 30.0 0.0050 0.0093 12.0 — 549.5 0.63 0.031

10 DP-FEC flows 30.0 0.0016 0.35 58.11 — 878.6 0.22 0.025

RTTmin: 100 ms, r tcp = 25

10 GENEVA flows 30.0 0.0036 0.0069 8.14 425.41 459.60 0.82 0.023
10 Small Static-FEC flows 30.0 0.0037 0.0070 8.0 — 473.20 0.82 0.024
10 Large Static-FEC flows 30.0 0.0036 0.0079 12.0 — 688.6 0.70 0.027

10 DP-FEC flows 30.0 0.0021 0.25 40.41 — 1186.0 0.33 0.030

packet loss rate in the bottleneck link averaged over RTTmin in-
terval and also its total packet loss rate. Because each of packet
loss rates that the GENEVA flows observed is different, the varia-
tion of the corresponding Fwnd is also different. However, under
both of the RTTmin, the GENEVA flows keep both of the Fwnd

of each flow and the link loss rate stable.
4.2.2 Competition with Short-lived TCP Flows

To investigate the effect of TCP slow-start on the GENEVA
performance, we set the experiments where 10 streaming flows
compete with short-lived TCP flows. The load of short-lived TCP
flows (ρ tcp) was set to 50% of the bottleneck link capacity, and
the rate of an occurrence of TCP flow per second (r tcp) was set
to 12.5 or 25. Table 1 shows the results of the experiments. Under
the RTTmin 10 ms, the GENEVA flows suppress the number of
bursty packet loss events, compared to that of small/large Static-
FEC flows. The suppression contributes to the reduction in the

residual data loss rate. The T Pindex of the GENEVA flows be-
comes slightly lower than that of the small Static-FEC flows and
becomes higher than that of the large Static-FEC flows, because
the added FEC redundancy effectively prevents the congestion
window size of TCP flows from increasing aggressively. Since
the DP-FEC flows under the RTTmin 10 ms has the large average
Fwnd, the T Pindex decreases by more than 0.4 compared to that
of the GENEVA flows in both of r tcp = 12.5 and 25. In ad-
dition, the residual data loss rate of the DP-FEC flows becomes
higher than that of the GENEVA flows.

On the other hand, under the RTTmin 100 ms, the data loss
rate of the GENEVA flows was not significantly improved espe-
cially in r tcp = 25, due to the large total window size caused by
the longer RTTmin 100 ms. However, the GENEVA flows reduce
the number of bursty packet loss events, and maintain almost the
same T Pindex as the small Static-FEC flows and higher T Pindex
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Table 2 The results of 7 GENEVA flows, 7 small/large Static-FEC flows and 7 DP-FEC flows with dif-
ferent data transmission rates under RTTmin 10 ms, in competition with 200 long-lived TCP
flows.

Data Rate
(Mbps)

Data
Loss
Rate

Packet Loss
Rate

FEC
Window
Size

Total
Window
Size

# Bursty Packet
Loss Event

TCP perfor-
mance index

Link
Loss
Rate

RTTmin: 10 ms # TCP flows:200 avg. avg. avg. avg. avg. avg. avg. avg.

5 GENEVA flows 30.0 0.0014 0.012 9.28 143.75 110.6 — —
1 GENEVA flow 60.0 0 0.0095 9.87 273.35 29 — —
1 GENEVA flow 90.0 0 0.011 9.21 413.25 4 — —

Total (avg.) 30.0 0.0010 0.011 9.35 200.77 83.71 0.62 0.026

5 Small Static-FEC flows 30.0 0.0027 0.020 8.0 — 416.4 — —
1 Small Static-FEC flow 60.0 0 0.0089 8.0 — 13 — —
1 Small Static-FEC flow 90.0 0 0.011 8.0 — 0 — —

Total (avg.) 42.9 0.0039 0.016 8.0 — 299.29 0.63 0.027

5 Large Static-FEC flows 30.0 0.0072 0.023 12.0 — 873 — —
1 Large Static-FEC flow 60.0 0 0.0080 12.0 — 2 — —
1 Large Static-FEC flow 90.0 0 0.0096 12.0 — 2 — —

Total (avg.) 42.9 0.0051 0.019 12.0 — 624.14 0.60 0.027

5 DP-FEC flows 30.0 0 0.00013 52.1 — 11 — —
1 DP-FEC flow 60.0 1.1e-06 0.00084 40.9 — 22 — —
1 DP-FEC flow 90.0 0.032 0.037 7.2 — 23 — —

Total (avg.) 42.9 0.0046 0.0055 44.09 — 14.29 0.49 0.030

(a) FEC window size

(b) Packet loss rate on the bottleneck link

Fig. 11 Trace of FEC window size of three selected GENEVA flows com-
peting with short-lived TCP flows under RTTmin 10 ms, and packet
loss rate on the bottleneck link. In this experiment, the load of TCP
flows (ρ tcp) was set to 50% of the bottleneck link capacity, and
the rate of an occurrence of TCP flow per second (r tcp) was set to
25.

than that of the large Static-FEC flows. Although the residual data
loss rate of the DP-FEC flows in both of r tcp = 12.5 and 25 un-
der the RTTmin 100 ms becomes lower than that of the GENEVA
flows, the T Pindex of the DP-FEC flows decreases considerably
by more than 0.49. Thus, the DP-FEC flows fail to prevent ad-
verses effect on TCP performance. However, the residual data
loss rate of the GENEVA flows becomes less than or equal to
small/large Static FEC flows, and the GENEVA flows maintain
almost the same T Pindex as the small Static-FEC flows by hav-
ing the function of the total window size control to adjust the
Fwnd.

Figure 11 shows the trace of one of the results in the experi-
ments. We can see that, although the packet loss rate fluctuates
and bursty packet losses occur, both of the Fwnd of the GENEVA
flows and the total packet loss rate on the bottleneck link become

stable.
Note that since 1) the number of bursty packet loss events and

residual data loss rate of the GENEVA flows became less than that
of the small Static-FEC flows and 2) the T Pindex of GENEVA
flows became almost the same as that of the small Static-FEC
flows, the increased Fwnd did not induce more residual data
packet loss and degradation of T Pindex as a side effect for the
competing flows. However, when there is not fully available
bandwidth in a congested link (e.g., in case that the bottleneck
link bandwidth is much less than 1 Gbps), the increased Fwnd in-
duces packet loss up to more than pmax, where the residual data
loss rate increases and the T Pindex degrades. In such condition,
it would be necessary to reduce the data transmission rate and de-
grade the video quality, which we have not assumed as described
in Section 1.

4.3 Heterogeneous GENEVA Flows VS. TCP Flows
To confirm the stability of heterogeneous GENEVA flows, we

performed the experiments where 7 GENEVA flows or small/
large Static-FEC flows or DP-FEC flows with different data trans-
mission rates compete with long-lived TCP flows. We set the
number of GENEVA flows transmitting data packets at a rate of
30 Mbps to 5, and the other two flows have a rate of 60 Mbps
and 90 Mbps respectively. The reason why we set 5 flows with
a data rate of 30 Mbps is that GENEVA with a lower data rate
tends to aggressively increase the Fwnd and fluctuate network
conditions. As shown in Table 2, the average number of bursty
packet loss events of the GENEVA flows was suppressed to about
83.7, and the average data loss rate decreases to 0.1%. Whereas
the T Pindex of GENEVA flows becomes almost the same as that
of small/large Static-FEC flows, both the total average number
of bursty packet loss events and the total residual data loss rate
of the GENEVA flows become lower than that of the small/large
Static-FEC flows. In the case of DP-FEC flows, the total aver-
age residual data loss rate was not fully suppressed and become
0.46% by their aggressively increased Fwnd (the total average
Fwnd of 44.0). In addition, the T Pindex of the DP-FEC flows
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(a) Increased FEC window size

(b) Packet loss rate on the bottleneck link

Fig. 12 Trace of FEC window size of three selected GENEVA flows with
different data transmission rates under RTT 10 ms, and packet loss
rate on the bottleneck link.

decreases by more than 0.1, compared to that of the GENEVA
flows. Figure 12 shows the trace of the increased Fwnd of the
three selected GENEVA flows and the link loss rates. Although
the GENEVA flow with a data rate of 30 Mbps increases the Fwnd

more aggressively, the link loss rates remain stable.

5. Related Work

A number of mechanisms for adjusting the degree of FEC
while cooperating with TFRC have been proposed. To improve
the video and playback quality of MPEG video while maintain-
ing fairness with competing TCP flows, Wu, et al. [21] devel-
oped an optimization mechanism that adjusts FEC redundancy
and the data transmission rate under bandwidth constraints of
the TFRC equation. Because the proposed mechanism depends
largely on the TFRC throughput equation, it tends to suffer from
a degradation of streaming quality without effectively utilizing
network resources in higher BDP environments. On the other
hand, GENEVA is not subject to TFRC rate to avoid a degra-
dation of video quality while effectively utilizing available net-
work resources by adjusting the FEC window size. Seferoglu,
et al. [17], [18] focused on packet losses caused by TCP-induced
congestion, and proposed the TFRC that decides the best alloca-
tion of the available TFRC rate between source and FEC pack-
ets, based on the congestion prediction derived by the correlation
between packet losses and the estimated RTT fluctuation. How-
ever, such predictions of loss events by using delay information
result in a severe quality degradation, especially in high band-
width paths [15], [16].

On the other hand, using packet loss characteristic modeled
with two-state Gilbert model, Bolot, et al. [35] proposed the
mechanism that determines the degree of FEC together with
TFRC. In the presence of packet losses due to channel er-
rors rather than network congestion, FEC techniques and its
effectiveness for end-to-end protocols were examined, and the
adaptive FEC schemes were proposed to combat such packet
losses [19], [20]. For video applications using TCP, Tsugawa,

et al. [8] applied an adaptive FEC scheme to TCP in order to
avoid throughput fluctuations which result in video quality degra-
dation. The scheme utilizes the algorithm proposed in Ref. [11]
and derives the congestion window size needed for achieving the
required data transmission rate. It then determines the appropri-
ate degree of FEC to maintain the required rate according to the
packet loss conditions, which achieves higher performance than
static FEC approach.

The adaptive rate control with Dynamic FEC mechanism was
proposed [33]. This mechanism tries to estimate network condi-
tions while recovering lost data packets by fully added FEC re-
dundancy. Since it focuses on the quality improvement for its own
flow by aggressively increasing FEC, it holds the potential for
adversely increasing traffic congestion and disturbing other com-
munication qualities. To cooperate with other competing flows,
the dynamic probing FEC (DP-FEC) [29] attempts to minimize
the impact of FEC on other competing flows while utilizing the
network resource effectively to optimize the recovery of lost data.
Using variations in the intervals between packet loss events as a
network indicator, it estimates the degree of FEC impact on com-
peting TCP performance while gradually increasing the degree of
added FEC redundancy. When the estimated FEC impact exceeds
the defined threshold, it immediately reduces the degree of FEC
by half. Since DP-FEC increases the degree of FEC redundancy
regardless of RTT lengths and consumption bandwidth, there is
a possibility that competing DP-FEC flows increase further traf-
fic congestion and become unstable. As shown in Section 4, the
largely increased FEC redundancy degrades both the communica-
tion quality of competing TCP flows and recovery conditions for
DP-FEC flows. Since GENEVA algorithm adopts the supporting
window control, which adjusts the number of unacknowledged
packets sent to the network, to converge at an appropriate equi-
librium point under stable conditions, it considers observed RTT
lengths and consumption bandwidth.

6. Conclusion and Future Work

In this paper, we proposed the GENEVA mechanism that
achieves higher streaming quality for high-performance real-time
streaming applications. To achieve high network utilization,
the GENEVA mechanism allows the flow to maintain the mod-
erate network congestion in which bursty packet loss event is
suppressed to improve FEC recover capabilities through adjust-
ment of the FEC window size. The rates of increase/decrease
in the FEC window size using GMIAD algorithm is designed
to minimize the adverse impact on competing TCP performance
by effectively utilizing available bandwidth that TCP fails to
copy, and to achieve stable conditions. We verified the effi-
ciency of GENEVA using an NS-2 simulator, and recognized that
GENEVA retains higher streaming quality while minimizing ad-
verse effects on TCP performance.

In our future work, we will make deeper analysis of the
GENEVA algorithm to optimally adjust the parameters (e.g., the
scaling properties of the total window size and SYN time) for
ever-changing network conditions. Then, we will implement
an actual high-performance application equipped with GENEVA
and evaluate the GENEVA mechanism competing with many
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high-performance streaming and TCP flows in complex and high
bandwidth networks. Such evaluation will further improve the
GENEVA algorithm, and then accelerate the deployment of high-
quality streaming applications over heterogeneous future net-
works.
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