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Abstract: This paper proposes a notable mobile phone based context-aware traffic state estimation (MC-TES) frame-
work whereby the essential issues of low and uncertain penetration rate are thoroughly resolved. A novel intelligent
context-aware velocity-density inference circuit (ICIC) and a practical artificial neural network (ANN) based predic-
tion approach are proposed. The ICIC model not only improves the traffic state estimation effectiveness but also
minimizes the critical penetration rate required in the mobile phone based traffic state estimation (M-TES). The ANN-
based prediction approach is considered as a complement of the ICIC in cases of an unacceptably low or unknown
penetration rate. In addition, the difficulty in selecting the “right” traffic state estimation model, namely among the
ICIC and the ANN, under the condition of an uncertain penetration rate is resolved. The experimental evaluations
confirm the effectiveness, the feasibility as well as the robustness of the proposed approaches. As a result, this research
contributes to accelerating the realization of mobile phone-based intelligent transportation systems (M-ITSs) or of the
M-TES systems in specific.
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1. Introduction

Transportation and road traffic are important parts of any econ-
omy all over the world. Therefore, research in ITS has attracted a
numerous number of researchers in various fields including trans-
portations, civil engineering, statistical study, computational sci-
ence, communication engineering, and so forth. However, be-
sides advanced achievements in ITS, traffic congestion still re-
mains as a serious issue in modern cities. Traffic jam is not only
the cause of economic loss but also the source of pollution (air,
noise pollution, etc.), violence and other social issues. The Ur-
ban Mobility Report [1] reported in 2007 that traffic congestion
causes 4.2 billion hours of extra travel time requiring 2.9 billion
extra gallons of fuel, which cost the US tax-payers an additional
$78 billion [2]. The Ministry of Land Infrastructure and Trans-
port of Japan reported in 2006 that the economic loss caused by
traffic jams is around $100 billion annually [3]. In addition, the
situations where ambulances are hopelessly stuck on the way to
hospitals; shops along the road sides have to be closed; students,
teachers, workers, officers cannot go to school/work in time be-
cause of traffic jams, are not unusual in big cities. Such uncom-
fortable and even dangerous traffic environments lower the citi-
zen’s quality of life (QoL).

The advances of mobile phone technologies catalyze re-
searches on M-ITS by which mobile phones are utilized as traffic
probes [4], [5], [6], [8], [9]. Since mobile phones are available
everywhere and the mobile phone network has already been de-
ployed, this approach is advantageous in coverage, real-time ef-
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fect, investment and maintenance cost. These advantages help to
accelerate the realization of M-TES systems, thus realize a safe
and green (no traffic jam) traffic environment.

However, in mobile phone based traffic state estimation sys-
tems such as the MC-TES, the traffic state is estimated based
on individual data reported by mobile phones. Obviously, the
more data are collected, the higher accuracy the estimation is,
and vice versa [2], [10]. In the road-side fixed sensor traffic state
estimation systems, the presence, velocity, image, etc., of any
vehicle is almost successfully obtained when it passes over a
road-side fixed sensor such as a loop detector [11], [12], a RFID
reader [13], [14], [15], a video camera [16], [17], [18], and so
forth. In contrast, there is no way to compel every mobile phone
user to report the data to the estimation server. That is to say,
the penetration rate, namely the number of vehicles that report
data to the estimation server out of the total number of vehicles
traveling in the considered road segment, is commonly low, es-
pecially when the system has just been launched, which affects
the traffic state estimation accuracy significantly. In addition, the
“actual” penetration rate is uncertain at the estimation time imply-
ing difficulties in employing optimization models for traffic state
estimation. Therefore, low and uncertain penetration rate issues
are the most difficulties impeding the realization of mobile phone
based traffic state estimation systems. Unfortunately, to the best
of our knowledge, there is no relevant research investigating these
issues thoroughly. Instead, existing researches assumed that the
penetration rate is always relevant [5], [6], [8]. This article aims at
investigating and solving these issues with primary contributions
as follows:

- Investigating the effect of a low and uncertain penetration rate
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on traffic state estimation.
- Proposing a notable intelligent context-aware velocity-

density inference circuit (ICIC) whereby useful contexts ex-
tracted from the data reported by mobile devices are utilized to
accurately estimate traffic state even in cases of low penetration
rates.

- Proposing a practical artificial neural network (ANN) based
prediction approach to ensure the effectiveness of the MC-TES
model when the penetration rate becomes unacceptably low,
namely just a few percent or even 0%.

- Proposing a simple yet effective traffic state estimation model
selection method under the condition of an uncertain penetration
rate.

This paper is organized as follows: Section 2 reviews the re-
lated work. The system model and the problem formulation are
presented in Section 3. Sections 4 and 5 propose the ICIC and
the ANN-based prediction approaches, respectively. An effective
traffic state estimation model selection method under the condi-
tion of an uncertain penetration rate is proposed in Section 6.
Section 7 thoroughly evaluates the effectiveness, the feasibility
as well as the robustness of the proposed solutions. Section 8
concludes this work and draws out future research directions.

2. Related Work

Existing TES systems such as VICS [19], NAVITIME [20]
in Japan, the ITS project at Kansas, USA [21] primarily rely
on road-side fixed sensors for traffic data collection. How-
ever, the road-side fixed sensor technologies such as loop detec-
tor [11], [12], RFID [13], [14], video camera [16], and so forth,
disclosed their essential weakness in terms of coverage limita-
tion as well as investment cost. The ad-hoc network technol-
ogy [3], [22] theoretically helps to improve the coverage but it
has not matured enough for real-world applications.

The Mobile Millennium Project (MMP) [4] is closely related to
this work which employs GPS-enabled mobile phones as traffic
probes. However, the MMP estimates the traffic state by analyz-
ing vehicle flows on road networks using a dynamical theory. The
dynamical theory may work effectively in an environment of nar-
row and short flows but it may reveal serious errors when being
applied to a complex environment such as wide road networks.
Moreover, the issue of a low penetration rate was not discussed
thoroughly.

Another fundamental requirement for a TES system is to ac-
curately estimate the traffic state level at each considered road
segment. J. Yoon et al. [5], proposed to divide the road net-
work into separate road segments and the traffic state was esti-
mated based on complete traces of participating vehicles. This
approach, however, could not be applied in the cases of serious
congestions where no complete traffic trace can be obtained. Our
previous works in Refs. [6], [8] where the traffic state could be
granularly quantified using the data reported from mobile phones
constitute the foundations for this research. However, these works
still assumed that every mobile phone sends data to the estimation
server, thus the issue of a low penetration rate was still left as an
open research question.

In addition, in the M-TES, controlling the data transmission

load while keeping the completeness of data collection (no miss-
ing of useful data) is crucial in assuring the performance of the
whole estimation model. The work in Ref. [7] proposed to pre-
set Virtual Trip Lines (VTLs) on the road network by which the
traffic data is collected and reported only when a vehicle passes
a VTL. Obviously, this approach reduces the number of data
collections, thus alleviates the data transmission load. However,
the useful data may be missed since there is no relation between
VTLs and the places where a traffic congestion actually occurs.
Moreover, the VTL setting criteria such as where on the road a
VTL should be set, how far should be the two consecutive VTLs,
and so forth, are matters of argument. The work in Ref. [8] pro-
posed the so-called “3R” approach by which only the Right data
is collected at the Right time by the Right mobile devices. For ex-
ample, the mobile phones carried by walkers are refrained from
reporting their data since walkers do not affect the traffic state.
While this approach alleviates both the data transmission load and
the data redundancy, it might be affected significantly by the low

and uncertain penetration rate issues.
The work in Ref. [2] focused on ensuring the traffic estimation

effectiveness even if the penetration rate becomes unacceptably
low. A statistical learning model based on historical data was
proposed to estimate/forecast the traffic state in terms of travel

time and congestion state. The work stated that the logistic re-
gression model works effectively even if the penetration rate is
quite low (the estimation accuracy was higher than 70% even if
the penetration rate is definitely low as 5%). However, several
issues were left which need to be clarified. First, the work uti-
lized the VTL concept proposed in Ref. [7] while, as mentioned
before, the effectiveness of the VTL itself is still a matter of argu-
ment. Second, the work did not consider the density in estimating
the traffic state. Third, the congestion state was defined as a “bi-
nary” indicator accepting only two states, namely “congested ”
and “not-congested ”. This setting may bias the estimation accu-
racy since any “blind” guessing approach can also reach 50% of
accuracy. Fourth, the Paramics simulator [23] was employed to
generate synthetic data for evaluations. This simulator gave in-
formation about every vehicle. To imitate a low penetration rate
dataset, namely 5% for example, a large portion of data (95%)
was removed. In fact, this process could not generate the appro-
priate low penetration rate dataset as it was defined in the work.
Therefore, the estimation error with regards to the penetration rate
should be clarified.

Our previous works in Refs. [10], [24] developed a foundation
on solving the issues of low and uncertain penetration rate. These
works investigated the effect of a low penetration rate on the esti-
mation effectiveness. In addition, two “velocity-density inference
circuits” (VDICs), namely the adaptive and the adaptive feedback
VDICs were proposed to improve the M-TES’s effectiveness even
in cases of a low penetration rate. In the VDICs, both the average
velocity and the density which are calculated directly from the
sensed data (i.e., the GPS data obtained by mobile phones) and
inferred directly using the Greenshields model [25] were utilized.
However, the impact coefficients of the corresponding parameters
in the whole estimation model were not optimized. This article
proposed a sophisticated ICIC model, whereby useful contexts
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extracted from the data reported by mobile devices are utilized to
optimize the impact coefficients, thus optimize the whole estima-
tion model. The details of this framework will be presented in the
remainder of this paper.

3. System Modeling and Problem Formulation

3.1 System Modeling: the M-TES
Considering a road network with a total of N road segments,

the set of all road segments is denoted as V = {i | i = 1 . . .N}.
For any road segment i ∈ V , traffic data is available at any time t.
However, the obtained GPS data is the event-based data which
cannot be directly transformed into a traffic state. Therefore,
the traffic state should be aggregated in predefined time intervals,
namely in t-second windows. Concretely, the traffic state is esti-
mated at times k = 0, t, 2t, . . . , etc. The task here is to effectively
estimate the traffic state of the considered road segment i at time
interval k based on the data reported by mobile devices.

Obviously, the velocity and the density directly reflect the traf-
fic state of a road segment. In this work, a notable traffic state
quantification (TSQ) model is proposed by which the velocity
and the density are independently and directly estimated using the
sensed data reported by mobile phones before being integrated to
quantify the traffic state.

Definition 1: The average velocity of a traffic flow in the road
segment i during time k, denoted as Vk,i

Avg, is the average velocity
of all vehicles traveling in the considered road segment during
time k.

The average velocity defined above can be formally expressed
in Eq. (1). Here, Vk,i

tm , j
is the velocity of any individual vehicle

j ( j = 1 . . . q) detected at time tm (m = 1, 2, 3 . . . , r) during time
interval k ([k − 1]t ≤ tm ≺ kt), q is the total number of vehicles,
and r is the total number of detection times during time interval
k.

Vk,i
Avg =

∑q
j=1

∑r
m=1 Vk,i

tm , j

qr
, (k − 1)t ≤ tm ≺ kt (1)

Since the limited speed varies from road segments to road seg-
ments, the absolute average velocity defined above may not ap-
propriately represent the traffic state in terms of travel time. In
order to solve this issue, a new term, namely the mean speed ca-

pacity, is proposed.
Definition 2: The mean speed capacity of the road segment i

during time k, denoted as Mk,i
V , is defined in Eq. (2), where Vi

max

is the limited speed of the road segment i.

Mk,i
V =

Vk,i
Avg

Vi
max

(2)

Observation 1: The higher the MV is, the better the traffic state
is, and vice versa. In this work, the threshold of MV is set to 0.6

for a good traffic condition in term of travel times [8].
Definition 3: The density at the road segment i during time

k, denoted as Dk,i, is the fraction of the number of the vehicles
traveling through the considered road segment during time k out
of the capacity of the considered road segment. The density is
defined in Eq. (3)

Dk,i =
qk,i

Ck,i
(3)

Fig. 1 Capacity, Ck,i = Qi
0 + Qk,i, of a road segment i with 2 lanes.

Here, qk,i is the total number of vehicles traveling through the
road segment i during time k which is estimated based on the
sensed data reported by mobile phones, and Ck,i is the flow ca-

pacity of the road segment i.
Definition 4: The flow capacity, denoted as Ck,i, is the max-

imum number of vehicles which can pass through the road seg-
ment i during time k under the best traffic condition. The flow

capacity can be calculated in Eq. (4).

Ck,i = Qi
0 + Qk,i (4)

In this equation, Qi
0 is the maximum number of vehicles that

can be arranged (without moving) in the road segment i, and Qk,i

is the volume of the traffic flow passing the down-stream bound-
ary of the road segment i during time k in the best traffic condi-
tion. These parameters are calculated in Eqs. (5) and (6), respec-
tively.

Qi
0 = m

l
1.5lc

(5)

Qk,i = m
k
t̄
= mk

Vi
max

1.5lc
(6)

Here, m is the number of lanes, l is the length of the road seg-
ment i, and lc is the average length of a car [8], [26]. The value of
1.5 is the coefficient describing the space which must be yielded
between two cars in the worst congested area. In Eq. (6), t̄ is the
average elapse time between two consecutive vehicles, namely
vehicles ith and (i+ 1)th, passing the down-stream boundary. Fig-
ure 1 illustrates these parameters.

For convenience in estimating the traffic state in the manner of
density, a new term called the free space ratio is proposed.

Definition 5: The free space ratio of the road segment i during
time k, denoted as σk,i

s , is calculated in Eq. (7), where Dk,i and Ck,i

were defined in Eqs. (3) and (4), respectively.

σk,i
s =

Ck,i − Dk,i

Ck,i
= 1 − Dk,i

Ck,i
(7)

Observation 2: The higher the free space ratio is, the better
the traffic state is, and vice versa. In this work, the threshold of
σs is set to 0.4 for a good traffic condition [8].

After being obtained, Mk,i
V and σk,i

s should be integrated in an
appropriate way to quantify the traffic state. Here, a term called
the goodness value which can be used to quantify the traffic state
is defined.

Definition 6: The goodness value of the road segment i dur-
ing the estimation time k, denoted as Gk,i(Mk,i

V , σ
k,i
s ), is calculated

in Eq. (8), where MV0 and σs0 are the thresholds of mean speed

capacity and free space ratio.

Gk,i(Mk,i
V , σ

k,i
s ) = (Mk,i

V − MV0) + (σk,i
s − σs0) (8)

Observation 3: The goodness value is a continuous value,
ranging from −1 to 1, representing from the worst to the best
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Fig. 2 The goodness value used to quantify traffic state.

traffic states. It is quite adequate for granularly comparing traffic
state levels.

Here, Mk,i
V , σk,i

s and their thresholds, namely MV0 and σs0 form
the so-called “traffic state quadrant space” as shown in Fig. 2. The
original coordination is formed by 2 axes represented by Mk,i

V and
σk,i

s . The values in each axis range from 0 to 1 representing from
the worst to the best traffic conditions in corresponding manners,
namely in travel time and in density, respectively. The traffic state
quadrant space is created by two new axes that are orthogonal to
the original axes at the threshold values MV0 and σs0 (i.e., 0.6 and
0.4). The 1st quadrant represents good traffic states while the bad
traffic states fell in the 3rd one. The 2nd and 4th quadrants repre-
sent the threat traffic conditions. More concretely, the 2nd quad-
rant expresses situations where few vehicles travel slowly due to
some special physical conditions such as road construction, bad
weather, etc. The 4th quadrant represents the opposite situations,
that is to say, at a good speed but high density.

Obviously, the goodness value (as defined above) of each traf-
fic state can be concretely calculated. This value can be used to
granularly compare the traffic state levels of different road seg-
ments. For example, the goodness values of the worst traffic state
(presented by the original origin, namely at the point (0,0)) and
of the best traffic state (presented by the rightmost upward point
on the quadrant space, namely at the point (1,1)) are calculated in
Eqs. (9) and (10), respectively.

Gworst = G(0, 0) = (0 − 0.6) + (0 − 0.4) = −1 (9)

Gbest = G(1, 1) = (1 − 0.6) + (1 − 0.4) = 1 (10)

3.2 Problem Formulation with a Low and Uncertain Pene-
tration Rate Consideration

In the M-TES, the traffic state is estimated based on the traffic
data reported by mobile phones. However, in practice it is not
necessary that every mobile phone reports data to the estimation
server. In addition, there is no way to know exactly the actual por-
tion of vehicles (out of the total number of participating vehicles)
that report the data. Therefore, the M-TES faces the essential
issues of a low and uncertain penetration rate.

Definition 7: The penetration rate at the road segment i during
time k, denoted as ρk,i in Eq. (11), is the fraction of vehicles that

Fig. 3 Effect of the penetration rate on velocity and density estimations.

report data to the estimation server (p) out of the total number of
vehicles traveling through the considered road segment (q).

ρk,i =
p
q

(11)

For example, as shown in Fig. 1, 4 vehicles (denoted as cir-
cles) among 18 ones do not report data to the server revealing the
penetration rate of 14/18 (≈ 77.7%).

Given a penetration rate ρk,i, the average velocity estimation
model described in Eq. (1) must be replaced by Eq. (12). Here,
Vk,i

tm , j
, q and r were defined in Eq. (1).

Vk,i,ρk,i

Avg =

∑ρk,iq
j=1

∑r
m=1 Vk,i

tm , j

ρk,iqr
, (k − 1)t ≤ tm ≺ kt (12)

Consequently, the average velocity estimation error, Ek,i
V , can

be expressed in Eq. (13), where Vk,i
Avg is the “actual” average ve-

locity estimated when every vehicle reports data (Eq. (1)), and
Vk,i,ρk,i

Avg is the average velocity estimated under the given penetra-
tion rate ρk,i (Eq. (12)).

Ek,i
V =

∣∣∣∣∣∣∣∣
1 −

Vk,i,ρk,i

Avg

Vk,i
Avg

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
1 − 1
ρk,i
.

∑ρk,iq
j=1

∑r
m=1 Vk,i

tm , j∑q
j=1

∑r
m=1 Vk,i

tm , j

∣∣∣∣∣∣∣∣
(13)

Similar to the average velocity, the density estimation is also
affected by the penetration rate. According to the density defini-
tion in Eq. (3), the density estimation error, denoted as Ek,i

D , is di-
rectly affected by the penetration rate ρk,i as expressed in Eq. (14).

Ek,i
D = (1 − ρk,i)100% (14)

Figure 3 shows the effect of the penetration rate on velocity
and density estimations. Both the Ek,i

V and Ek,i
D are affected sig-

nificantly by the low penetration rate. While the Ek,i
V is depicted

as a curve along the change of ρ, Ek,i
D is linearly affected by the

change of ρ. This figure also reveals that if an optimal traffic
state estimation model is proposed, the estimation effectiveness
can be validated based on the given penetration rate. For exam-
ple, if the penetration rate is around 50%, Ek,i

V is around 10% and
Ek,i

D is around 50%. However, in practice the “actual” penetra-
tion rate cannot be measured at the estimation time. It means the
uncertain penetration rate issue impedes the design of an optimal
traffic state estimation model. This dilemma will be solved in the
remainder of this paper.

4. Intelligent Context-Aware Velocity-Density
Inference Circuit

In order to alleviate errors rooted from a low penetration rate, a
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Fig. 4 The intelligent context-aware velocity-density inference circuit
(ICIC).

novel intelligent context-aware velocity-density inference circuit
(ICIC) is proposed as follows.

4.1 General Circuit
The proposed ICIC model is illustrated in Fig. 4 which con-

sists of 2 parts. Part 1 is the velocity-density inference circuit
(VDIC) [10] and part 2 is the mechanism that identifies the opti-
mal parameters for the VDIC in part 1.

In part 1, the velocity and the density calculated directly from
the sensed data reported by mobile phones, namely Vk,i

sensed and
Dk,i

sensed, serve as primary inputs. The circuit provides the final
estimated velocity and density, namely Vk,i

est and Dk,i
est. The inter-

mediate inferred velocity and density, namely Vk,i
Gr, Dk,i

Gr, obtained
by applying the Greenshields model [25] are also taken into ac-
count. In addition, moving average values of estimated velocity
and density at time k, namely MVk,i and MDk,i, are fed back to
the estimation model.

The philosophies behind this VDIC are as follows: 1) The
velocity and the density calculated independently from sensed

data help to avoid any error propagation. 2) The Greenshields
model [25] used to infer density from estimated velocity and vice
versa, can help to avoid the over-error of the density estimation
when the penetration rate becomes unacceptably low. 3) The cur-
rent traffic state contains inherent relations with previous traffic
states at the same road segment. 4) All of the estimation ap-
proaches (direct estimation using sensed data, inference using the
Greenshields model, inference using the previous estimated data)
may uphold their advantages while diminishing their inherent dis-
advantages if being appropriately integrated.

The overall VDIC is formally presented in Eqs. (15) and (16),
where α, β, and γ are the impact coefficients of the corresponding
parameters. It should be noted that α, β, and γ are encapsulated
in a simplified parameter g (g = {α, β, γ}) in Fig. 4. These coeffi-
cients are real-value numbers in the range of [0, 1] and the sum
of them is 1 as described in Eq. (17).

Vk,i
est = αVk,i

sensed + βMVk,i + γVk,i
Gr (15)

Dk,i
est = γD

k,i
sensed + βMDk,i + αDk,i

Gr (16)

α + β + γ = 1 (17)

The moving average velocity and density at time k, MVk,i,
MDk,i are calculated in Eqs. (18) and (19), where ξ is the sliding
window which can be set by domain experts or by using simula-
tion data.

MVk,i =

∑k−1
j=k−ξ V j,i

est

ξ
(18)

MDk,i =

∑k−1
j=k−ξ Dj,i

est

ξ
(19)

The intermediate inferred velocity and density using the Green-
shields model, Vk,i

Gr and Dk,i
Gr, are calculated in Eqs. (20) and (21),

where Di
max and Vi

max are the maximum density and the limited
velocity of the road segment i.

Vk,i
Gr = Vi

max

⎛⎜⎜⎜⎜⎜⎝1 −
Dk,i

sensed

Di
max

⎞⎟⎟⎟⎟⎟⎠ (20)

Dk,i
Gr = Di

max

⎛⎜⎜⎜⎜⎜⎝1 −
Vk,i

sensed

Vi
max

⎞⎟⎟⎟⎟⎟⎠ (21)

As discussed, one of the most important keys constituting the
optimization of the estimation models described in Eqs. (15) and
(16) is the optimization of coefficients α, β, γ. Obviously, these
parameters have some relations with the penetration rate. For
example, when the penetration rate is relevant, the accuracy of
Vk,i

sensed is high revealing that Vk,i
sensed is almost equal to Vk,i

est. It
means that α is prominent as around 1, and β, γ are minor as
around 0. However, the difficulty here is that, the actual penetra-
tion rate cannot be known at the estimation time. The work in
Ref. [10] proposed a simple estimation model by which a single
coefficient, namely α, was utilized. A statistical model based on
historical data to approximately identify this coefficient was pro-
posed. The weakness of this approach, however, is that α was
empirically approximated as only two values, namely 0.6 or 0.8,
whereby some sophisticated details were overlooked. It could be
more effective if α was granularly determined at any value in the
range of [0, 1]. In solving this difficulty, more contextual data
about the considered road segment as well as the current traffic
flow could be useful. In this article, an intelligent context-aware
inference approach is proposed to optimize impact coefficients α,
β, γ, thus optimizes the whole ICIC model. Details of this ap-
proach are presented in the remainder of this section.

4.2 Intelligent Context-Aware Inference Approach
Obviously, the current state of a traffic flow might have some

relations with its surrounding contexts. Some of these contexts
can be obtained directly from the road segment while other con-
texts can be extracted from the data reported by mobile phones.
Useful contexts which are relevant for inferring the optimal set of
coefficients α, β, γ will be discussed in this subsection.

The notion of context has been observed in numerous areas
including linguistics, knowledge discovery and presentation, arti-
ficial intelligence, information retrieval, reasoning, robotics, the-
ory of communication [27], [28], [29], and so forth. At a high
level of abstraction, a context is defined as “that which surrounds,

and gives meaning to, something else” [27]. In this definition,
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Table 1 Coefficients α, β, γ inferred from current contextual data.

Vsensed/Vmax Vsensed/VGr Dsensed/Dmax MVt α β γ

0.2349 0.2779 0.1545 66.4811 0.6660 0.0395 0.2945
0.1682 0.2104 0.2004 41.4499 0.6621 0.2881 0.0497
0.1115 0.1454 0.2331 26.7230 0.5543 0.3969 0.0488
0.1172 0.1536 0.2369 14.5153 0.5752 0.3973 0.0275
0.1444 0.1977 0.2697 13.0120 0.8554 0.1446 0.0000
0.5807 0.6252 0.0712 74.7853 0.6468 0.1996 0.1536
0.2935 0.3378 0.1311 60.6069 0.6293 0.2867 0.0840
0.0938 0.1258 0.2547 15.3041 0.7937 0.1498 0.0565
0.4878 0.6231 0.1086 74.3697 0.4981 0.2393 0.2625
0.2031 0.4155 0.2556 56.6439 0.3786 0.1972 0.4242

“something” can be an artifact, a building, a person, a computer
system or even an assertion in logic. Dey [29] gives a more prac-
tical definition of context as “Context is any information that can

be used to characterize the situation of an entity. An entity is a

person, place, or object that is considered relevant to the inter-

action between a user and an application, including the user and

applications themselves.” The “situation” or the “status” of an
entity may be clearly represented by the entity itself. However,
in practice, an entity’s status may be a variable that needs to be
“inferred.” In this work, the “status” to be inferred is the opti-
mal combination of α, β, γ which leads to the optimal traffic state
estimation.

As shown on part 2, Fig. 4, an ANN model is employed to pre-
dict the coefficients, g = {α, β, γ}, based on the current context
of the considered traffic flow and the knowledge learned from the
historical context data. In this model, there are two historical
datasets. The “raw context dataset”, denoted as {context}, con-
tains the “raw” contextual data such as the velocity and density
calculated directly from data reported by mobile phones, the ac-
tual traffic state, namely the actual velocity and density, and so
forth. This data is fed to a genetic algorithm based (GA) model
to identify the optimal set of g forming a new form of context,
namely the combination of {context, g}. This data is stored in
the second dataset, namely the “historical context dataset,” which
is used to train the ANN model. Finally, at the estimation time,
based on the current context, the ANN can infer the set of coef-
ficient g which is forwarded to the VDIC in part 1. In addition,
any new pair of {context, g} generated by the ANN is restored
back in the “historical context dataset” to enrich this knowledge-
based database so that the ANN model can work better in latter
iterations.

Obviously, it is not necessary that every context is useful. In
addition, the possibility of sensing (obtaining) useful contexts
must be considered under the given infrastructural conditions of
the proposed application. In the MC-TES’s circumstance, only
GPS data is given, thus useful contexts must be carefully selected
from this limited data. The selected contexts and the reasons be-
hind these selections are presented as follows:

- Vsensed/Vmax represents information related to both the real-
time data, Vsensed, and the physical features of the considered road
segment, namely the limited speed, Vmax.

- Vsensed/VGr reflects the “quality” of the sensed data under the
effect of the penetration rate.

- Dsensed/Dmax represents the current recognition of the den-

sity based on the real-time data. This factor is identical to the
Vsensed/Vmax but in terms of density.

- MVt (the moving average of velocity at the estimation time t)
serves as a factor that transits previous traffic states to the current
traffic state.

Table 1 presents a portion of data extracted from evaluated data
showing that coefficients α, β, γ were successfully inferred from
the contextual data mentioned above.

In addition to the ANN component, the GA component (please
refer to part 2, Fig. 4) also plays an important role in providing
the ANN component a qualified set of {contexts, g}. Therefore,
an appropriate GA [30] mechanism which can effectively work
with the set of raw contextual data mentioned above is proposed.

GA is a technique that mimics the natural selection (Darwin’s
theory of survival) which is effectively applied to the optimiza-
tion and global search [30], [31], [32]. The process of a GA can
be illustrated as a flowchart in Fig. 5. An initial population, P
(a set of chromosome) in a suitable size is randomly generated.
Each chromosome consists of one or several genes. A gene is a
string of bits or a string of real-value numbers. Each chromosome
represents a solution of the problem solved by the GA. In each
population, candidates (chromosomes) are selected based on their
fitness values so that those individuals that are more competitive
have a larger chance to survive and to keep the genetic informa-
tion to their offspring. High competitive chromosomes (the sur-
vived ones) are duplicated with a corresponding probability based
on their fitness to replace the low competitive candidates and to
keep the size of population unchanged. After that, any two se-
lected candidates are mated randomly producing two alternative
children under the crossover procedure. The mutation helps to
prevent GA from falling into local extreme, so that the global so-
lution may be found earlier. The GA would not stop until the
fitness of the best chromosome in the current population satisfies
a present threshold or when the iterations pass the preset time.
The design of the proposed GA is presented as follows.

As mentioned before, the {context} in the “raw context dataset”
contains actual traffic state data which includes the actual veloc-
ity, Vact. The proposed GA optimizes the set of g = {α, β, γ}
by which the variation between Vest (estimated by applying the
proposed estimation model described in Eq. (13) with the coeffi-
cient set g) and Vact is minimal. The schema of a chromosome
in the proposed GA is coded as g = {α, β, γ} (the chromosome
of 3 genes). Candidates are evaluated using the fitness function
proposed in Eq. (22).
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Fig. 5 The flowchart of a GA’s process.

f (gi) =
e(gi)

ē(g j,∀g j ∈ population)
(22)

Here, e(gi) is the evaluation of candidate gi (gi = {αi, βi, γi})
and ē(g j) is the average evaluation of all individuals g j in the cur-
rent population. It is the estimation error, namely the velocity
estimation error in Eq. (15) caused by selecting gi as the set of
coefficients. The evaluation e(gi) is defined as in Eq. (23), where
Vest gi is the estimated velocity by applying gi (gi = {αi, βi, γi}) as
coefficients, and Vact is the “actual” velocity.

e(gi) =

∣∣∣Vest gi − Vact

∣∣∣
Vact

(23)

Regarding the crossover and mutation procedures, since the
chromosome schema is built on real-value numbers, the arith-
metic crossover [31], [32] and the non-uniform mutation ap-
proach [33], [34] are applied. The arithmetic crossover procedure
is described in Eq. (24), where g1, g2 are the two parent chromo-
somes and g′1, g′2 are their children; and λ is a random coefficient
in the range of [0, 1].
⎧⎪⎪⎨⎪⎪⎩
g′1 = λg1 + (1 − λ)g2

g′2 = (1 − λ)g1 + λg2
(24)

The non-uniform mutation approach is described as follow.
Assuming that a gene, namely αi, of the chromosome gt

i =

{αi, βi, γi} is mutated, the mutation is described as in Eq. (25).

α′′i =

⎧⎪⎪⎨⎪⎪⎩
αi + Δ(t,UB − αi), if a random ζ is 0
αi − Δ(t, αi − LB), if a random ζ is 1

(25)

Here, UB and LB are the upper and lower bounds, namely 1
and 0, respectively, of the variable αi. The function Δ(t, x), where
t describes the current generation, returns a value in the range of
(0, x) which is defined as in Eq. (26) [33].

Δ(t, x) = x(1 − r(1− t
T )b

) (26)

In Eq. (26), r is a uniform random number ranging in [0, 1], T

is the maximal generation number, and b is a system parameter
determining the degree of dependency on the iteration number.

Reaching this stage, the proposed ICIC model can be summa-
rized as follows: The GA component provides an optimal set of
{contexts, g} to train the ANN model. At the estimation time, the
current contextual data is fed to the ANN model so that it can
identify the optimal coefficients, g = {α, β, γ}. These coefficients
are forwarded to the VDIC in the part 1 to effectively estimate
the traffic state of a certain road segment. The effectiveness of the
ICIC model will be evaluated in Section 7.

Fig. 6 The ANN-based prediction model dealing with an unacceptably low
penetration rate.

5. Traffic State Prediction Under an Unaccept-
ably Low Penetration Rate

In general, the ICIC model proposed in Section 4 improves
the effectiveness of the MC-TES framework significantly, even in
cases of a low penetration rate. However, when the penetration
rate becomes unacceptably low, namely just a few percent or even
zero, the ICIC cannot work properly. It is due to the fact that when
the penetration rate is unacceptably low the deviation between the
“real” data and the obtained data is large. Consequently, the ANN
component in the ICIC model cannot infer the appropriate set of
coefficients α, β, γ based on the current low qualified contexts.
To address this issue, a prediction model is proposed. In this ap-
proach, when the penetration rate of the considered road segment
is unacceptably low, the contexts mentioned in Section 4 are not
applied. Instead, other contexts such as previous traffic states of
the considered road segment, the current traffic state of related
road segments, and so forth, are utilized to predict the traffic state
of the considered road segment.

Obviously, the traffic state of a road segment is affected by the
traffic state of nearby road segments as well as by its previous
states. If these spatial-temporal relations (rules) are known in
advance, the traffic state of the considered road segment can be
predicted. These rules can be learned by any machine learning
technique using historical traffic state data. In this article, a prac-
tical ANN with a multilayer perceptron (MLP) [34], [35] is pro-
posed. This approach is illustrated in Fig. 6. Here, j ( j ∈ V) is
any related road segment (i.e., the segments which are directly
connected to or are close to/nearby the considered road segment)
of the considered road segment i ( j � i). The velocity and den-
sity of the related road segment j at time k, denoted as Vk, j, Dk, j,
are the input data of the ANN model. The other inputs are the
previous velocity and density of the considered road segment i,
namely Vt,i, Dt,i, respectively, where t ≺ k.

One of the essential issues here is how to effectively identify
the related road segments in a wide road network. In fact, not
only the directly connected road segments but also the ones that
indirectly connect to the considered road segment may affect the
considered road segment’s traffic state. However, it is impracti-
cal to consider all road segments in the whole road network. In
order to trade off the prediction effectiveness and the computa-
tional cost, only the first three orders related road segments are
employed. The related road segments at different orders are de-
fined as follows:
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Fig. 7 Related road segments of a considered road segment i.

Let j be a road segment that directly connects to the considered
road segment i, and E is the set of directly connected link i j. The
road network can be defined as a directed graph G = V , E, where
V is the set of all road segments on the road network. The order
(level) of related road segments to the considered road segment i

is defined in Eq. (27). Here, the 1st order related road segments,
denoted as N1(i), are all the road segments that directly connect
to the considered road segment i (i.e., i j ∈ E or ji ∈ E). The
nth order related road segments, denoted as Nn(i), are recursively
defined as the union of all the j’s 1st order related road segments,
where j is any road segment which belongs to Nn−1(i). For exam-
ple, in Fig. 7, {c, d, e, k, l} are the 1st order and {a, b, h, j,m, g, f , o}
are the 2nd order related road segments of the given road seg-
ment i.
⎧⎪⎪⎨⎪⎪⎩

N1(i) = { j : j � i, j ∈ V ∧ (i j ∈ E ∨ ji ∈ E)}
Nn(i) =

⋃
N1( j) : ∀ j ∈ Nn−1(i)

(27)

Finally, the proposed ANN-based prediction model can be for-
mulated in Eq. (28).

{Vk,i
pre,D

k,i
pre} = predict(Vk, j,Dk, j,Vt,i,Dt,i),

t ≺ k, j � i, j � i, j ∈
w−1⋃

s=1

Ns(i) (28)

In this model, the velocity and density of the considered road
segment i at time k, denoted as Vk,i

pre, Dk,i
pre, are predicted by the so-

called predict() function, where the current traffic state of related
road segments (Vk, j, Dk, j) and the previous traffic state of the con-
sidered road segment (Vt,i, Dt,i) are served as input parameters.

6. Appropriate Traffic State Estimation Model
Selection

Two novel traffic state estimation models considering the is-
sues of a low penetration rate, namely the ICIC and the ANN
approaches, have been proposed in Sections 4 and 5. An emerg-
ing question here is that which model should be selected in the
real application at a particular estimation.

As discussed in Sections 4, and 5 and illustrated in Fig. 8, the
estimation error of the ICIC decreases significantly when the pen-
etration rate increases, while the estimation error of the ANN
model is not affected by the penetration rate of the considered
road segment. Consequently, there is a point where these two es-
timation errors are identical. This point is called the critical point
and the penetration rate at that point is called the critical pene-

tration rate. According to this analysis, it seems simple to select
the appropriate traffic state estimation model. That is to say, if

Fig. 8 Relationship between the ICIC and the ANN effectiveness under the
condition of the penetration rate.

the current penetration rate is larger than the critical one the ICIC
model should be selected, and vice versa.

However, the crucial issue here is that there is no way to esti-
mate the “actual” penetration rate accurately. Moreover, under
the condition of an uncertain penetration rate the ICIC model
cannot be applied since its accuracy cannot be evaluated. Con-
sequently, only the ANN model is useful while its prediction ac-
curacy is restricted to a constant value and cannot be improved
even if the actual penetration rate is high. This section proposes
a simple yet effective traffic state estimation model selection ap-
proach whereby the “right” traffic state estimation model can be
chosen without any information about the actual penetration rate.

Even though there is no way to select the appropriate traffic
state estimation model directly due to the uncertain penetration
rate, there are clear relations between estimation errors of the two
estimation approaches. As shown in Fig. 8, the gap between the
two curves, namely the ICIC and the ANN, changes along with
the change of penetration rate. For instance, this gap is narrow
and seems to be stable in cases of a relevant penetration rate (i.e.,
larger than the critical one). On the other hand, this gap is large
in cases of a low penetration rate. Therefore, instead of using the
current penetration rate, which is uncertain at the estimation time,
the relation between the evaluated values provided by the two es-
timation models should be used to select the “right” estimation
model. However, the estimation errors of the two estimation ap-
proaches are still variables since the two estimation models just
provide the estimated values, while the actual value is unknown.
For example, let denote Vact, Vann, and Vicic the “actual” velocity,
and the estimated velocities provided by the ANN and the ICIC
models, respectively. Since Vact is unknown, the estimation er-
rors of the two estimation models cannot be known either. This
section proposes an approximate selection (AS) method to effec-
tively select the appropriate estimation model. The detail of this
method is described as follows:

Although the actual velocity (Vact) is a variable, the relations
between Vact and the estimated velocities, Vann and Vicic, can
be figured out which are shown in Fig. 9. Here, Vact is virtu-
ally represented as a straight line representing a constant value
(e.g., 50 km/h) regardless of the penetration rate. As shown in
Fig. 8, the estimation error in the ANN approach is stable re-
gardless of the penetration rate. Therefore, in Fig. 9, Vann is
represented by 2 straight dotted lines, namely VannUB and VannLB

(VannLB ≺ Vact ≺ VannUB) paralleling with Vact. Different from
the ANN approach, the ICIC’s estimation error changes along
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Fig. 9 The relation between the “actual” and estimated velocities considering different penetration rates.

with the change of penetration rate. Therefore, Vicic lies on one
of the 2 curves representing VicicUB and VicicLB depicted in Fig. 9
(VicicLB ≺ Vact ≺ VicicUB). As shown, the gap between Vann

(namely VannUB or VannLB) and Vact is kept constant regardless of
the penetration rate. In contrast, the gap between Vann and Vicic

drastically increases when the penetration rate becomes lower
than the critical one. On the other hand, this gap is narrow and
almost stable when the penetration rate is relevant (larger than
the critical one). It means that the gap between Vann and Vicic re-
flects the current penetration rate. Therefore, it can be utilized
to approximately identify the appropriate estimation model. This
approximation method can be described in Eq. (29), where V̄ is
defined in Eq. (30).

Vact =

⎧⎪⎪⎨⎪⎪⎩
Vann, if |Vicic−Vann |

V̄
≥ θ%

Vicic, other cases
(29)

V̄ =
|Vann + Vicic|

2
(30)

Equation (29) represents that if the gap between Vann and Vicic

is larger than a threshold value, namely θ%, the ANN approach
is selected since the penetration rate is low, while the ICIC model
is selected in the other cases (relevant penetration rates). The
threshold θ can be determined by experimental data as shown in
the evaluation section.

7. Effectiveness Evaluation and Analysis

This section analyzes and evaluates the effectiveness of the pro-
posed solutions, namely the ICIC model, the ANN-based pre-
diction approach, and the traffic state estimation model selection
method.

7.1 Experimental Environment and the Data structures
To evaluate the effectiveness of the proposed approaches, a

large amount of data is required. The TSF simulator [36] was
utilized to generate synthetic data for evaluations. Different road
segments were selected randomly as shown in Fig. 10. For each
selected road segment, two types of data were created concur-
rently as shown in Table 2.

It should be noted that different penetration rates, namely 10%,
20%, 25%, 30%, and so forth, were configured by the TSF for
each selected road segment. For a preset penetration rate, only
such a percentage, namely 20% for example, of random vehi-

Fig. 10 Road segmentation in the TSF.

cles reported data to the server. This data is called the detailed
GPS data (type a) as described in Table 2. The frequency of the
data report timing, which can be configured using the TSF flexi-
bly, was set to every 3 s in this work to mimic the common GPS
signal frequency. The summarized data (type b) consists of the
actual traffic state information, namely the average velocity and
the density of the considered road segment presented by the road

segment Id. These data were used to evaluate the accuracy of the
proposed traffic state estimation approaches, namely the ICIC and
the ANN models when these methods process the detailed GPS
data. The time interval for recording summarized traffic state data
was set to every minute.

7.2 Effectiveness and Feasibility of the ICIC Model
This section evaluates the effectiveness and the feasibility of

the proposed ICIC model. To prepare evaluation data, 10 random
road segments were selected and associated with different pene-
tration rates. For each pair of {road segment i, penetration rate

ρ}, 10 one-hour simulations were conducted. These data were
applied to the ICIC model to estimate the average velocity and
density of the 10 selected road segments. After that, the aver-
age differences between the estimated values (i.e., the estimated
velocities and densities) and the “actual” values (provided by the
TSF simulator - type b data in Table 2) were drawn out and shown
in Fig. 11 and Fig. 12.

Figures 11 and 12 show the effectiveness of the ICIC model
compared to that of its counterparts, namely, the conventional es-
timation model and the VDIC approach proposed in Ref. [10],
respectively. The ICIC’s velocity and density estimation accura-
cies are denoted as ICIC V and ICIC D, respectively. The cor-
responding accuracies in the conventional model (i.e., the sensed

data is applied directly to the conventional estimation models de-
scribed in Eqs. (1) and (3), in Section 3) are denoted as Normal V
and Normal D. Similarly, VDIC V and VDIC D represent veloc-
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Table 2 Data structure of the data generated by TSF.

Data type Data structure
a) Detailed GPS data (reported by an individ-
ual vehicle)

{time stamp (in second), road segment Id, po-
sition (longitude, latitude), current velocity,
vehicle Id}

b) Summarized traffic state data {time interval Id (in minute), road segment Id,
average velocity, density}

Fig. 11 Effectiveness of the ICIC model - Average velocity estimation.

Fig. 12 Effectiveness of the ICIC model - Density estimation.

ity and density estimation accuracies in the VDIC model. Both
the two figures show that among these approaches, the ICIC is
prominent. In all of the cases when the penetration rate is low but
still relevant, namely higher than 25%, the ICIC is completely
optimized so that its accuracies are almost higher than 95%. In
addition, the ICIC model also minimizes the acceptable penetra-
tion rate required for a particularly expected accuracy. For exam-
ple, if the expected accuracy is set to 70%, the ICIC reduces the
acceptable penetration rate from 35% (in the normal approach),
or from 22% (in the VDIC) to lower than 18% (please refer to
Fig. 11). This improvement is practically worth since it improves
the scalability of the estimation system in terms of low penetra-
tion rates.

In addition to the overall effectiveness evaluated above, the fea-
sibility of the ICIC model was also evaluated. As depicted in
Fig. 4, Section 4, the GA component plays an important role in
processing a large amount of historical data to provide the ANN
component an optimal set of {contexts, g}. For example, in this
work, a dataset which consists of 500,000 raw contextual data
(please refer to Fig. 4) records was applied to the GA compo-
nent to generate the optimal set of {contexts, g} to train the ANN
model. Therefore, the feasibility (represented by the convergence

rate) as well as the computation time of the GA component should
be evaluated.

The GA component was implemented with the error threshold
of 0.1% (i.e., the maximum accepted distance between Vest and
Vact is 0.1% of Vact), and the maximum number of iterations was
set to 500,000. The GA is convergent if the distance between Vest

and Vact reaches the preset error threshold before the maximum
iteration number is hit. The convergence and computation time of
the proposed GA are affected by the quality and the volume of the
evaluated dataset. These qualifiers are affected by the penetration
rate and depicted in Fig. 13.

Figure 13 shows that when the penetration rate is low, lower
than 20% for instance, the convergence rate is definitely low
(lower than 50%) and the computation time is small, namely less
than a second. This effect is due to the missing data caused by
a low penetration rate. When a lot of useful data are missed,
the GA cannot find out the optimal solution (cannot converge).
Moreover, the dataset in this case is small thus less computation
time is required. On the other hand, when the penetration rate
is relevant, larger than 30% for instance, the convergence rate
reaches 100% while a longer computation time is required. Nev-
ertheless, as shown, the maximum computation time is limited
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Fig. 13 The GA convergence and computation time.

Fig. 14 Effectiveness of the ANN-based prediction model compared to that of the ICIC model.

to 7 s (when the penetration rate is 100%), which is fast enough.
This evaluation result also implies that to prepare an optimal set
of {contexts, g} for training the ANN in the ICIC model, the “raw
context dataset” (please refer to Fig. 4) should be well validated
by which the penetration rate must be larger than 30%. Obvi-
ously, this condition can be satisfied in real-world applications
since the “raw context dataset” is prepared prior to the launch of
the ICIC model.

7.3 Effectiveness of the ANN-based Prediction Model
This section evaluates the effectiveness of the ANN-based pre-

diction model. Five road segments were randomly selected as the
desired ones whose average velocity and density are required to
be predicted. In addition, three different, namely the 1st, 2nd,
and 3rd, order related road segments of each desired road seg-
ment were also identified so that their corresponding traffic state
data (average velocity and density) were recorded. For each pair
of {road segment i, penetration rate ρ}, ten 1-hour simulations
were performed by which the average velocity and density of not
only the road segment i but also of any related road segment j

( j ∈ ⋃3
s=1 Ns(i)) were recorded. Concretely, at each time inter-

val k, the velocity and density of the considered road segment i

and its related road segment j, denoted as Vk,i, Dk,i, Vk, j, Dk, j,
respectively, were obtained. Finally, each record in the evalu-
ation dataset consists of: 1) Vk,i, Dk,i serving as the target ele-
ments (the outputs of the ANN model); and 2) Vk, j, Dk, j, Vt,i, Dt,i

t ≺ k, j ∈ ⋃3
s=1 Ns(i) serving as the inputs for the ANN model as

described in Eq. (28). The summarized traffic state information
mentioned above was recorded in each minute revealing that 60

data patterns were generated in each simulation (1 hour). As a
result, for each pair of {road segment i, penetration rate ρ}, 600
data patterns (in 10 1-hour simulations) were created. The gener-
ated dataset (3,000 records) was then divided into two parts as the
portion of 75% and 25% for the training and the testing datasets,
respectively. An ANN with 6 hidden nodes was trained and evalu-
ated by these training and testing datasets. The average predicted
accuracies for both velocity and density estimations of the 5 de-
sired road segments mentioned above were calculated to evaluate
the effectiveness of the ANN-based prediction model. The results
of these evaluations are shown in Fig. 14.

Figure 14 shows that in the ANN-based prediction method,
accuracies for both velocity and density estimations, denoted as
ANN V and ANN D, respectively, are around 73% regardless of
the penetration rate. This figure also reveals that even though the
ANN model is not affected by the penetration rate, its accuracy is
limited (i.e., around 73%). Therefore, this model is suited in the
cases of an unacceptably low penetration rate, namely lower than
the critical one which is around 18%. When the penetration rate
is relevant which is larger than the critical one, the ICIC approach
(denoted as ICIC V and ICIC D for the velocity and density esti-
mation accuracies, respectively) is dominant.

7.4 Effectiveness of the Traffic State Estimation Model Se-
lection Method

To evaluate the traffic state estimation model selection method
(the AS method) proposed in Section 6, another large dataset was
generated by the TSF. For each preset penetration rate, 10 road
segments were randomly selected. For example, 10 different road
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Table 3 Summary of the dataset used for evaluating the AS method.

Measured parameter Value

Number of different penetration rates (ρ)
14 (from 5% to 100%)
- For ρ ≤ 25%, the interval was set to 5%.
- For ρ � 25%, the interval was set to 10%.

Number of road segments 10
Number of {ρ, θ} pairs 140
Decision threshold (θ%) 30%, 40%, 5%
Number of records for each pair of {ρ, θ} 3,000 (10 road segments x 5 simulations x 60

record per each 1-hour simulation)

Fig. 15 Effectiveness of the proposed method for selecting the “Right” traffic state estimation model.

segments were selected randomly for a penetration rate of 30%,
while other 10 different road segments were randomly selected
for a penetration rate of 40%, and so forth. For each pair of
road segment i, penetration rate ρ, five 1-hour simulations were
conducted by which for both type a and type b data mentioned
in Section 7.1, Table 2 was recorded. The proposed ANN and
ICIC models were applied to estimate Vann and Vicic, respectively.
These two values were then utilized to evaluate the AS method. It
should be noted that the selection is performed based on a given
decision threshold θ (please refer to Eq. (29)). In this evaluation
two questions should be clarified as follows: 1) what value is
most suited for the decision threshold θ?; and 2) at the optimal
threshold how effective is the AS method?

To identify the suited decision threshold, the right selection
rate of each pair of {penetration rate ρ, selection threshold θ} was
measured. This rate is defined as the portion of the correct selec-
tions (i.e., the right traffic state estimation model was selected)
out of the total number of selections. There were 3,000 instances
(5 simulation * 60 data patterns extracted from 1-hour simulation
* 10 road segments) of data instance for each pair of {ρ, θ}. More
concretely, the right selection rate in each pair of {ρ, θ} is the num-
ber of correct selections per 3,000 selections. This process was
repeated for every pair of {ρ, θ}, namely {ρ = 20%, θ% = 30%}
for example. In this evaluation, the penetration rate ranged from
5% to 100% and the selection threshold was set to 30%, 40% and
50%. The evaluated dataset mentioned above is summarized in
Table 3. An interesting point that is worth to be noted here is
that the interval of penetration rates for preparing evaluated data
is set at 25% (ρ = 25%), but not at the critical penetration rate
(ρ = 18%). Obviously, around the critical point the accuracy is
still fluctuant (please refer to Fig. 11). Meanwhile, from ρ = 25%
the accuracy becomes more stable. Therefore, ρ = 25% was con-
sidered as an anchor point. More concretely, when ρ ≺ 25% the

Table 4 The average accuracy of the AS method.

Penetration rate
Selection thresholds and accuracy (%)

30 40 50
All the cases 41.36% 71.79% 63.50%
≤ 25% 67.80% 60.60% 33.00%
� 25% 26.67% 78.00% 80.44%

accuracy is still fluctuant and as a result more granular data is
needed.

The effectiveness of the AS model is shown in Fig. 15 and sum-
marized in Table 4.

In Fig. 15, the right selection rates with regard to different pairs
of {ρ, θ} are shown. For example, at ρ = 35%, the right se-
lection rates are 20%, 80%, 75% for thresholds of 30%, 40%,
and 50%, respectively. In addition, this figure also reveals that
the low threshold supports the selection method in the cases of a
low penetration rate, and vice versa. More concretely, with the
threshold of 30% (θ = 30%) for example, the right selection rate
is almost higher than 80% if the penetration rate is low (≤ 20%),
while this rate decreases drastically (≤ 40%) when the penetra-
tion rate is relevant (≥ 25%). If a completely high threshold,
namely θ = 50%, is chosen, the right selection rate is high when
the penetration rate is relevant while this rate is drastically de-
creased when the penetration rate is low. This figure also shows
that the AS method works well (with a high right selection rate) in
both the high and low penetration rates when the threshold is set
to 40%. In this case, the right selection rate is quite high (around
80% or 90%) in cases of a relevant penetration rate, while this
rate in the cases of a low penetration rate is a little bit lower but
still high enough (around 60%).

Table 4 summarizes the effectiveness of the AS method with
regards to different thresholds. This table shows the right selec-
tion rate in a high penetration rate (� 25%), low penetration rate
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(≤ 25%), and in all the cases (consolidation of both the former
cases). As shown, with a low threshold (θ = 30%), the right
selection rate is high (67.8%) in cases of a low penetration rate,
but it declines drastically to 26.67% in cases of a high penetra-
tion rate. The overall right selection rate in this case is 41.36%
which is considered unacceptably low. In contrast, with a high
penetration rate (θ = 50%), the relation between the penetration
rate and the right selection rate is in the converse way. That is
to say, the right selection rate is high (80.44%) in cases of a high
penetration rate, while it is low in cases of a low penetration rate
(33%) leading to an overall right selection rate of about 63.5%.
The AS method is optimal with the threshold of 40% where it
works well for both the low and high penetration rates. More
concretely, the right selection rates are 60.6% and 78% with re-
gard to low and high penetration rates, respectively, resulting in
a high overall right selection rate of about 71.79%. Therefore, if
the AS method is applied in real-world applications, the selection
threshold should be 40% which provides high enough selection
accuracy of around 71.79%.

It would be worth to recall the purpose of the proposed AS
method which aims at determining the appropriate traffic state es-
timation method, namely between the ANN and the ICIC method
in accordance with a particular situation. As mentioned above,
on average, the right selection rate is 71.79% when the threshold
is 40%. This rate is high enough which satisfies the purpose of
this research. The traffic state estimation accuracy of the “right”
and the “wrong” selected estimation methods can be found in
Fig. 14. For example, when the penetration rate is 35%, if the
ICIC model was selected then this selection was “right” reveal-
ing that the traffic state estimation accuracy is larger than 90%
(please refer to Fig. 14). In contrast, if the ANN method was se-
lected then this selection was “wrong” revealing that the traffic
state estimation accuracy is limited to 73%. The interesting thing
here is that, even the selection was wrong the estimation accuracy
was ensured to be around 73%.

8. Conclusions and Future Work

This article proposed a notable mobile phone based context-
aware traffic state estimation (MC-TES) framework by which in-
herent issues of low and uncertain penetration rate were thor-
oughly resolved. More concretely, a novel intelligent context-
aware velocity-density inference circuit (ICIC) was proposed
whereby useful contexts extracted from the data reported by mo-
bile devices were utilized to improve traffic state estimation accu-
racy even in cases of a low penetration rate. This model also mini-
mizes the critical penetration rate, thus enhances the reliability as
well as the scalability of the traffic state estimation system. This
work also proposed a notable ANN-based prediction approach to
deal with the issues of an unacceptably low and unknown pene-
tration rate. This approach is considered as a complement of the
ICIC model.

The difficulties on what traffic state estimation model, namely
the ICIC or the ANN approach, should be employed to estimate
the traffic sate in a practical situation was also resolved in this
research. A simple yet effective traffic state estimation model
selection approach, namely the Approximate Selection method

(AS) was proposed whereby the “right” traffic state estimation
model can be selected accurately without any information about
the actual penetration rate.

The experimental results reveal the effectiveness of both the
ICIC and the ANN models, as well as of the AS method. More
concretely, the ICIC model is effective when the penetration rate
is low but still relevant. Especially, when the penetration rate is
higher than 25%, the ICIC is completely optimized so that the
estimation errors are almost lower than 5%. In addition, the ICIC
model also minimizes the acceptable penetration rate required for
a particularly expected accuracy. This improvement is practically
meaningful since it improves the scalability of the estimation sys-
tem in terms of low penetration rates. The ANN approach can
ensure the estimation accuracy at around 73% regardless of the
penetration rate. The AS method provides a high enough traffic
state estimation selection accuracy at around 71.79% without any
information about the actual penetration rate. The proposed ap-
proaches, namely the ICIC model, the ANN approach, and the
AS method constitute a complete context-aware traffic state esti-
mation (MC-TES) framework.

This paper primarily proposes solutions for low and uncertain
penetration rate issues in mobile phone based traffic state esti-
mation systems. It is due to the fact that penetration rate related
issues are inherent issues in mobile phone based applications. In
addition, the proposed approaches can be effectively applied in
in-vehicle communications systems, vehicle ad-hoc network sys-
tems or even in static traffic state estimation systems.

One of the remaining issues in the traffic state estimation se-
lection method, however, is that it still requires estimated val-
ues, namely Vann and Vicic provided by the candidates (i.e., ICIC
and ANN models). It may lower the computational performance.
Finding suitable estimation methods where no prior estimation
value is required is an interesting research direction. In addition,
the effectiveness as well as the robustness of the proposed solu-
tions should be confirmed by more real-field experiments before
being applied to real-world applications.
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