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Abstract: This paper presents two different model-based approaches that use multiple architecture description lan-
guages (ADLs) for automotive system development. One approach is based on AADL (Architecture Analysis &
Design Language), and the other is a collaborative approach using multiple languages: SysML (Systems Modeling
Language) and MARTE (Modeling and Analysis of Real-Time and Embedded systems). In this paper, the detailed
modeling steps for both approaches are explained through a real-world automotive development example: a cruise
control system. Moreover, discussion of the modeling steps offers a qualitative comparison of the two approaches, and
then clarifies the characteristics of the different types of ADLs.
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1. Introduction

The electrical and electronic (E/E) components of automotive
systems are continuously growing in number and complexity. In
the case of luxury cars, the number of ECUs (Electronic Control
Units) is approaching 100, so that the ratio of the production cost
of E/E components to that of the other types of components is
expected to exceed 40% in 2015. In particular, the size of soft-
ware of E/E components is expanding exponentially. More ob-
jectively, several reports [1], [2] independently predict that 100
million lines of in-vehicle software should appear around in 2015.
This fact implies that the software complexity has already become
a critical concern in effective automotive system development.

Based on this background, model-based approaches have at-
tracted considerable attention of automotive engineers due to
their potential improved productivity. In most cases, however,
the expectation of engineers is ambiguous. Thus, we must recog-
nize what we need to do through model-based approaches for the
purpose of solving the above concern.

There exist lots of modeling languages which support
model-based approaches. MATLAB/Simulink *1 and ESTEREL
SCADE *2 are the two greatest proprietary modeling languages.
In the public domain, UML is the most popular language, and lots
of tools for the UML-based modeling are available. On the other
hand, engineers working for car manufacturers (OEMs) usually
need to have a higher viewpoint overlooking the whole vehicle
systems than that the above well-known languages give. In other
words, the architecture of systems is essential to automotive OEM
engineers rather than the details of each system. When we apply
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the same discussion to model-based approaches, we can realize
that architecture modeling techniques, more precisely, modeling
languages and methodologies for system architecture, are neces-
sary.

Therefore, this paper tries to derive a practical approach (mod-
eling languages and methodologies) to architecture modeling of
automotive systems. In this paper, we choose architecture de-
scription languages (ADLs) from among several kinds of mod-
eling languages, and focuses on their practical application to the
automotive domain. Specifically, two types of approaches based
on different ADLs are introduced. We will explain how these ap-
proaches attain the development phases of automotive systems by
using several example models, and thereafter clarify their charac-
teristics by comparing from several viewpoints. The same topic
has been roughly discussed in our previous paper [3]; however,
we provide here more precise discussion and more detailed com-
parison than the previous paper [3]. The improved fidelity should
be helpful for automotive engineers to understand the practical
application of ADLs.

Although this paper focuses on automotive system architec-
ture, system behavior, which is orthogonal to the architectural
aspect, is also important for system development. While the sys-
tem architecture is still central to this paper, we briefly discuss
the behavioral aspect in some sections in a complementary way.

2. Survey on Architecture Description Lan-
guages

Architecture description languages (ADLs) have been widely
studied across several research fields and industries. Medvidovic
et al. have already conducted an exhaustive survey of ADLs from
a purely technical point of view [4]. In contrast to the previous
research [4], we performed our survey from a practical point of
view as follows.
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Firstly, we defined seven requirements of ADLs that are our
expectations from an OEM point of view. Next, we collected
lots of ADLs from both industry and research fields. Finally, we
selected promising ADLs for us through a three-step selection
process while comparing the features of the collected ADLs and
the requirements. The following sections give the details of each
stage of our survey.

2.1 Requirements of ADLs from the Automotive Manufac-
turer’s Viewpoint

This section summarizes the requirements of ADLs from an
OEM viewpoint. In order to cope with the problems mentioned
in Section 1 either in a direct or an indirect way, we expect ADLs
to fill the following requirements.
2.1.1 System Characteristics Aspect

First, we consider the system characteristics aspect, and derive
the following three requirements are derived.
(1) Large-scale systems

While automotive systems are widely distributed systems con-
sisting of lots of ECUs, each ECU has a certain (large or small)
amount of software. In order to describe such large systems
(systems of systems), ADLs shall describe complex hierarchical
and/or layered architecture while capturing the precise definition
of components within the architecture. Therefore, the derived
sub-requirements are the modeling capability of hierarchical ar-

chitecture, layered architecture, and component specification.
(2) Real-time systems

Most automotive systems, e.g., cruise control systems dis-
cussed later, are real-time systems. These systems have critical
timeliness requirements such as hard deadlines. Thus, we need to
embed real-time properties, like latencies of components, dead-
lines of paths, etc. onto architecture models. It is preferred that
timeliness analysis techniques based on the embedded properties
are available. Therefore, the derived sub-requirements are the
capability of real-time property modeling and formal real-time

analyses *3.
(3) Distributed embedded systems

As shown in Fig. 1, ECUs consist of hardware components
such as microcontrollers, bus controllers and devices; and soft-
ware. These ECUs are interconnected to each other via in-vehicle
buses e.g., CAN buses, LIN buses, etc. Therefore, we need to de-
scribe the different types of components (software, hardware, and
networks) in ADLs. Therefore, the derived sub-requirements are

Fig. 1 Basic structure of automotive systems.

*3 These kinds of technologies such as analysis, verification, and transfor-
mation can be discussed independently from modeling languages. How-
ever, the existence of these technologies, e.g., analysis tools, implicitly
shows a sort of capability of modeling languages. Thus, we directly in-
corporate the tool availability into the requirements of ADLs.

the modeling capability of software architecture and hardware

architecture (execution platform including networks).
2.1.2 System Development Aspect

The second aspect is the system development aspect. We derive
the following requirements along with this aspect.
(4) Source code handling

As has discussed in Section 1, high-level modeling is required
in any OEM company. On the other hand, certain limited divi-
sions and groups working for our core competencies, e.g., engine
systems or hybrid systems in our case, need to handle low-level
artifacts, that is, source code. Moreover, legacy code handling
is another concern which comes from the more than thirty-year-
long history of E/E automotive systems. Therefore, ADLs shall
be equipped with scalability from the high- to low-level model-
ing. Therefore, the derived sub-requirements are the capability of
modeling at multiple abstraction levels and code generation.
(5) Distributed development

Automotive system development is widely distributed which
involves lots of stakeholders, e.g., an OEM, suppliers (ECU man-
ufacturers), device suppliers, etc. This means that architecture
models are shared by such a variety of stakeholders. Therefore,
ADLs should be a common language and facilitate seamless de-
velopment among the stakeholders. Therefore, the derived sub-
requirements are the openness of language specifications (open

de facto or de jure standards) and the capability of seamless re-

finement.
2.1.3 Manufacturer Business Aspect

Third, we consider the manufacturer business aspect and the
following requirements are derived.
(6) Large-scale product line

While both use cases and users of vehicles are diverse, the au-
tomotive market is worldwide. Considering this diversity, prepar-
ing large-scale product lines of vehicles is mandatory for OEMs.
Obviously, a wide variety of vehicles lead to a wide diversity of
automotive system specifications. This requirement can be trans-
lated into the capability of variability modeling.
(7) High-level system assurance

Some automotive systems are highly safety critical systems, so
that we need to ensure high-level dependability in such systems.
Moreover, the new automotive safety standard [5] published in
2011 requires OEMs to build safety cases for the purpose of justi-
fying their safety claims. In this context, we expect ADLs to facil-
itate building of safety cases such that architecture models them-
selves are regarded as trustworthy evidence, and formal and/or
semi-formal analyses based on the architecture models form con-
vincing arguments *4. Furthermore, it is necessary that the system
dependability is considered in the architecture models. For this
purpose, we need to create models explicitly describing errors of
systems. In other words, ADLs shall be equipped with vocabulary
for error modeling *5. Therefore, the derived sub-requirements

*4 For example, we can find a model-based approach to assurance cases in
Ref. [6].

*5 Analysis techniques based on error modeling are also necessary to realize
high-level system assurance. Certainly, there are several analysis tech-
niques in the research field [7]; however, this paper focuses on practical
approaches. Therefore, this paper does not have any further discussion
on the analysis based on error modeling.
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Fig. 2 Classification of architecture description languages.

Fig. 3 Family tree of firstly selected architecture description languages.

are the formalism of language specifications (formal notation),
and the capability of formal verification and error modeling.

In summary, all the requirements and sub-requirements dis-
cussed above are described in the first and second columns of
Table 3. In the table, the sub-requirements related to supporting
technologies (tools) are shown with annotations for readability.

2.2 Classification and Qualification of ADLs: The First and
Second Selections

In our survey, we collected more than sixty ADLs from pub-
lished research papers and project reports. Figure 2 shows the
two-dimensional classification of ADLs based on their objectives,
e.g., information system development, real-time system develop-
ment, etc.

When we remember the first three requirements (1)–(3), we
can choose the nine ADLs that are highlighted in the orange el-
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Fig. 4 Comparison of design phase coverage of ADLs.

lipses. The list of the first selection consists of: AADL (Archi-
tecture Analysis and Design Language) [8], AIL Transport (Ar-
chitecture Implementation Language Transport) [9], AML (Au-
tomotive Modeling Language) [10], CAR-DL (Combined Archi-
tecture Description Language), COTRE [11], EAST-ADL [12],
MARTE (Modeling and Analysis of Real-Time and Embedded
systems) [13], MetaH [14], and SysML (Systems Modeling Lan-
guage) [15] (in alphabetical order). Because they are developed
for either large-scale, real-time, or automotive systems, they sat-
isfy at least one of the first three requirements.

Figure 3 shows the family tree of the selected nine ADLs. The
family tree clearly shows that some ADLs are no longer main-
tained, such as discontinued or merged. In these cases, we cannot
acquire their latest information even if it exists, and further dis-
cussion is difficult. In other words, the list of the second selec-
tion consists of the four ADLs enclosed by the orange oval box
in Fig. 3: AADL, EAST-ADL, MARTE, and SysML. AADL is
standardized by SAE International (Society of Automotive En-
gineers). SysML and MARTE are published by OMG (Object
Management Group). EAST-ADL is an outcome of the ATESST2
(Advancing Traffic Efficiency and Safety through Software Tech-
nology) project funded by an EU committee.

2.3 Quick Comparison of ADLs: The Final Selection
Here let us discuss the requirements along with the system de-

velopment aspect: (4) source code handling and (5) distributed
development. Regarding the requirement (4), Fig. 4 shows the de-
velopment phase coverage of each ADL. As shown in the figure,
AADL covers the software design phase adjacent to the software
implementation (coding). Unlike AADL, SysML focuses only on
system design; however, MARTE can be used for the software de-
sign in a complementary way. On the contrary, EAST-ADL does
not provide a bridge between models and source code, and in-
stead delegates this task to AUTOSAR (AUTomotive Open Sys-
tem ARchitecture) [16]. Although AUTOSAR is a useful stan-
dard to handle brand-new systems at a low abstraction level, it
does not offer any method to capture a great deal of legacy code.
We must therefore conclude that EAST-ADL does not satisfy the
requirement (4).

Moreover, EAST-ADL is not yet standardized, and is difficult
to regard as a de facto standard due to its limited supporting tools.
Therefore, it is not easy to use EAST-ADL as a common language
among stakeholders involved in automotive system development.
That is, the requirement (5) is not filled by EAST-ADL. Certainly,
EAST-ADL is an outstanding research outcome of an EU project;
however, we need to remove it from our list. Consequently, based

on the whole discussion in this section, the list of the final selec-
tion consists of three ADLs: AADL, MARTE and SysML *6.

3. Case Study: ADL-Based System Develop-
ment

This section shows detailed development steps based on differ-
ent ADLs by using a case study. We will apply the obtained ADL
models to the qualitative comparison of ADL-based approaches
in the next section.

3.1 Real-World Example: Adaptive Cruise Control Sys-
temA12,B3

In our case study, we use an automotive control system exam-
ple. The example system is an adaptive cruise control (ACC) sys-
tem whose specifications are borrowed from a particular luxury
production car. The ACC system provides the following two ma-
jor functions: (i) constant-speed cruise (CSC) control that main-
tains the desired vehicle speed; and (ii) constant-distance cruise
(CDC) control that maintains an adequate follow distance.

Fig. 5 shows a hardware configuration of the ACC system. The
Driving Support Computer (DSC), which is an ECU (Electrical Con-
trol Unit), is the central component of the ACC system. Thus,
the software running on DSC is the main topic of the following
sections. While some peripherals such as Skid Control Computer

(SCC) and Engine Control Computer (ECC) are used for both the CSC
and CDC control, the other components like Radar Sensor (RADAR)

and Distance Setting Switch (DISTSET SW) are dedicated to the CDC
control.

3.2 ADL-Based Development Process
In considering the design phase coverage of ADLs shown in

Fig. 4, we can have the following two approaches: an AADL-
based method (hereafter approach #1) and another method based
on the combination of the SysML and MARTE (approach #2).
However, ADLs are no more than modeling languages, so that
we need to define adequate development processes and method-
ologies. In our case study, we adopt the premise that we will
follow the development process shown in Table 1, which takes
the design phase coverage into account.

3.3 Approach #1: AADL-Based System Development
Before starting detailed discussion, we explain the modeling

fundamentals of AADL. AADL descriptions consist of basic el-
ements called components. An interface design (external specifi-
cation) of components is given by a type definition in AADL. In
contrast, an internal specification is specialized by an implemen-

tation of the type. By alternatively repeating the two steps: the
type definition–implementation, we eventually arrive at a hierar-
chical description of the system architecture.

Listing 1 displays that a sample system (system1) is a system
component and it consists of two processes: prod and cons. The
interface of prod is defined in the features part of the type of
producer. On the other hand, system1.imp indicates that system1
is implemented by producer and consumer (subcomponents part),

*6 The requirements (6) and (7) will be discussed in Sections 4.1 and 4.2.
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Fig. 5 Example: Adaptive cruise control system.

Table 1 ADL-based development processes.

# Development Phases Tasks Languages
Approach #1 Approach #2

1) System Design Modeling of system architecture (pe-
ripheral devices and systems, an ex-
ecution platform of software, logi-
cal software architecture, etc.) and
system-level behavior.

AADL SysML

2) Software Design Modeling of runtime architecture
(physical software architecture in-
cluding processes, threads, etc.) and
component-level behavior.

AADL MARTE

3) Software Implementation Code generation (automatic or man-
ual).

C Language

Fig. 6 Example AADL model (Graphical).

and their interconnection (connections part). Figure 6 displays a
graphical model, which is the same as Listing 1.

Listing 1: Example AADL Model (Textual).

system system1 −− Type Definition of system1 (No Interface )
end system1;
system implementation system1.imp −− Implementation of System1
subcomponents −− Two processes
prod: process producer;
cons: process consumer;
connections
proc_com: data port prod.producer_out -> cons.consumer_in;
end system1.imp;
process producer −− Type Definition of producer
features −− Interface (output )
producer_out: out data port;
end producer;
process consumer −− Type Definition of consumer
features −− Interface (input )
consumer_in: in data port;
end consumer;

3.3.1 System Architecture Modeling
The system architecture indicates system functions by combin-

ing logical components. Therefore, we can use the system com-
ponent of AADL as a symbol for logical components. Figure 7
and Listing 2 show the same system architecture model.

In this model, we define an empty type of ACCSys followed by
its implementation ACCSys.SysArch . This means that ACCSys is the
top-level component and ACCSys.SysArch shows its system archi-
tecture. The system architecture ACCSystem.SysArch is described
as the combination of components such as the logical software
component (ACCSW: an instance of ACCSoftwareLog) and the execu-
tion platform (DSCHW: an instance of DSCHardware). The required

peripherals like the skid control computer (SCC), the engine con-
trol computer (ECC), and the control switches (CTRL SW), are also
described in the same model. These peripherals are connected to
the the central component (ACCSW) as shown in the connections
part. The implementation of each connection is also defined e.g.,
the connection between SCC and ACCSW , which exchanges the ve-
hicle speed, is realized on the CAN bus (hs can bus v).

Listing 2: AADL System Architecture Model (Textual).

system ACCSys −− Top−Level Component
end ACCSys;
system implementation ACCSys.SysArch −− System Architecture
subcomponents
ACCSW: system ACCSoftwareLog; −− Subsystems
DSCHW: system DSCHardware;
CTRL_SW: system control_switch; −− Peripherals
ECC: system engine_control;
SCC: system skid_control;
RADAR: system radar_sensor;
(snip)
connections
GC0000: port group CTRL_SW.pg_ctrl_sw_status->ACCSW.

pg_ctrl_sw_status;
DC0100: data port SCC.self_speed->ACCSW.self_speed_in;
DC0500: data port ACCSW.required_drive_force->ECC.

required_drive_force;
can_msg_v_r_0004: bus access DSCHW.hs_can_bus_v
-> ACCSW.hs_can_bus_self_speed_in;

(snip)
flows
EE0100: end to end flow SCC.FS0100 -> (snip) -> ECC.FS0500
{Latency=>70 Ms;};

(snip)
end ACCSys.SysArch;

3.3.1.1 Logical Software Architecture Modeling
Next, we discuss the logical software architecture ACC-

SoftwareLog. The interface of ACCSoftwareLog is defined in its
type definition part in Listing 3. These interface specifications
are equipped with the units of data exchanged via the interfaces.
For example, the vehicle speed input (self speed in) in kph type
[km/h] and torque demand output (required drive force) in Nm -
type [Nm]. The interface between ACCSoftwareLog and CTRL SW
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Fig. 7 AADL system architecture model (Graphical).

is described by port group that includes multiple interfaces (see
the bottom of Listing 3). The internal structure of ACCSoftwareLog
is described in its implementation (ACCSoftwareLog.imp). In this
model, ACCSoftwareLog.imp is the combination of the follow-
ing four logical components (functions): CCMain, CSCSpdCalc,
CDCSpdCalc, and DrvForceCalc. If necessary, the internal struc-
ture of the logical components can be drilled down. The flows
part in Listings 2 and 3 defines event flows, data flows, etc. These
flows are exploited in the runtime architecture analyses in the next
section.

As have been above, we can perform system architecture mod-
eling of complex systems just by repeating the two simple steps:
(i) define the type of a logical component (system) and (ii) imple-
ment the component.

Listing 3: AADL Logical Software Architecture Model.

system ACCSoftwareLog −− Type Definition of Logical Software
Architecture

features
pg_ctrl_sw_status: port group
pg_receptacle_ctrl_sw_status; −−Multiple Interfaces
self_speed_in: in data port kph_type; −− [km/h]
required_drive_force: out data port Nm_type; −− [Nm]
(snip)
flows
FS0100: flow path self_speed_in -> required_drive_force;
(snip)

end ACCSoftware;
system implementation ACCSoftwareLog.imp −− Implementation
subcomponents
CSCSpeedCalc: system csc_speed_calculator in modes (

csc_mode);
CDCSpeedCalc: system cdc_speed_calculator in modes (

cdc_mode);
(snip)
modes −− CSC Mode and CDC Mode
csc_mode: initial mode;
cdc_mode: mode;
csc_mode -[pg_ctrl_sw_status.mode_sw_status]-> cdc_mode;
cdc_mode -[pg_ctrl_sw_status.mode_sw_status]-> csc_mode;

end ACCSoftwareLog.imp;
data kph_type −− Data Types
end kph_type;
port group pg_receptacle_ctrl_sw_status_csc
features
main_sw_status: in event port;
mode_sw_status: in event port;
(snip)

end pg_receptacle_ctrl_sw_status_csc;
(snip)

3.3.1.2 Behavior Modeling
While AADL provides enough vocabulary to describe archi-

tecture of systems, a limited vocabulary for behavior modeling
is also available. For example, the modes part in Listing 3 indi-
cates two internal states (csc mode and cdc mode) of ACCSoftware-
Log.imp. As explained in Section 3.1, the ACC system has two

types of control, which can chosen by a driver. Regarding this
functionality, the AADL model shows that the transition be-
tween two modes is triggered by the event of mode sw status from
CTRL SW . Synchronizing with the mode transition, an active com-
ponent is also switched between CSCSpeedCalc and CDCSpeedCalc.
As shown in this example, AADL offers a kind of state-based
modeling. Moreover, event chains such that an event propagates
from a component through its subcomponents enable hierarchical
modeling aligning with the corresponding system architecture.

The behavior modeling example shown above is trivial but im-
portant because we cannot expect AADL to provide further com-
plex behavior modeling. Fortunately, if necessary, we can use
state-of-the-art behavior modeling technologies, e.g., AADL Be-
havior Annex [17], a collaboration technique with Simulink [18],
etc.
3.3.2 Runtime Architecture Modeling

The runtime architecture of software consists of physical
software entities such as processes and threads. Therefore,
we can straightforwardly use the process and thread compo-
nents from the AADL vocabulary. Here, we need to replace
ACCSoftwareLog by a combination of these physical entities. This
substitution can be easily started with extends and refined to
as shown in Listing 4. More precisely, the system architecture
ACCSys.SysArch is extended such that the runtime software ar-
chitecture ACCSoftwarePhy.imp, which is an implementation of
ACCSoftwarePhy, substitutes for the logical software architecture
ACCSoftwareLog.imp. Together with the above substitution (re-
finement), the type definition of ACCSoftwarePhy also refines its
interfaces. For instance, the vehicle speed input (self speed in)
is refined to kph fxp type which is 16-bit data with two fraction
digits.

Listing 4: AADL Runtime Architecture Model (System).

system implementation ACCSys.RunArch
extends ACCSys.SysArch −− Runtime Architecture (System)
subcomponents
ACCSW: refined to system ACCSoftwarePhy.imp;

end ACCSys.RunArch;
system ACCSoftwarePhy −− Software Runtime Architecture
extends ACCSoftwareLog −− Logical −> Physical
features
self_speed_in: refined to in data port kph_fxp_type;
FS0100: refined to flow path {Latency => 60 Ms;};

end ACCSoftwarePhy;
data kph_fxp_type −− Refine Data Type Definition
extends kph_type
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Fig. 8 AADL runtime software architecture model (cf. Fig. 7).

properties
Source_Data_Size => 16 Bits;
Data_digits => 5;
Data_scale => 2;

end kph_fxp_type;

Next, let us consider the implementation of the runtime soft-
ware architecture (ACCSoftwarePhy.imp). In this case study, we
only develop the ACC system on DSC so that we can adopt a
single-process architecture. The single-process architecture is
easily described as shown in Listing 5.

Listing 5: AADL Runtime Architecture Model (Software).

system implementation ACCSoftwarePhy.imp −− Implementation
subcomponents −− Single Process
ACCSWProc: process ACCSoftwareProcess.imp;
connections
(snip)
flows
FS0100: flow path self_speed_in -> (snip) ->

required_drive_force;
end ACCSoftwarePhy.imp;
process ACCSoftwareProcess −− Type Definition of Process
features
pg_ctrl_sw_status: port group pg_receptacle_ctrl_sw_status

;
self_speed_in: in data port kph_fxp_type;
required_drive_force: out data port Nm_fxp_type;
(snip)
flows
FS0100: flow path self_speed_in -> required_drive_force
{Latency => 50 Ms;};

end ACCSoftwareProcess;

On the other hand, the process consists of multiple threads
(tasks). In Listing 6, we prepare the following four threads:
CCMainTsk ,CSCSpdCalcTsk , CDCSpdCalcTsk , and DrvForceCalc-

Tsk; which are derived from the four logical components in
Fig. 7. Moreover, we prepare two more additional threads:
(InputTsk ,OutputTsk) for input and output signals processing.

Listing 6: AADL Process Model.

−− Implementation of Process
process implementation ACCSoftwareProcess.imp
subcomponents
InputTsk: thread input_controller_thread.imp;
CCMainTsk: thread ccmain_thread.imp;
CSCSpdCalcTsk: thread csc_speed_calculator_thread.imp;
CDCSpdCalcTsk: thread cdc_speed_calculator_thread.imp;
DrvForceCalcTsk: thread drive_force_calculator_thread.imp;
OutputTsk: thread output_controller_thread.imp;
connections
ET0100: data port self_speed_in -> InputTsk.self_speed_in;
ET0500: data port OutputTsk.required_drive_force_out ->

required_drive_force;
TT0100: data port InputTsk.self_speed_out -> CSCSpdCalcTsk

.self_speed_in;
(snip)

flows
FS0100: flow path self_speed_in -> ET0100 -> (snip)
-> ET0500 -> required_drive_force in modes (csc_mode);
(snip)

end ACCSoftwareProcess.imp;

Finally, we describe thread models as leaf components of the
runtime architecture. For example, the thread CSCSpdCalcTsk ,
which implements control algorithm for the CSC mode, is de-
scribed as shown in Listing 7. As have seen above, by repeating
the two step modeling again, we can eventually obtain the run-

Fig. 9 Latency analyses for end-to-end and flow paths.

time architecture model, which is located at the adjacent level to
the source code level (see Fig. 4).

Listing 7: AADL Thread Model.

thread csc_speed_calculator_thread −− Type Definition of Thread
features
self_speed_in: in data port kph_fxp_type;
target_speed: out data port kph_fxp_type;
flows −− w/ Expected Latency
FS0100: flow path self_speed_in
-> target_speed {Latency => 5 Ms;};

end csc_speed_calculator_thread;
thread implementation csc_speed_calculator_thread.imp −−

Implementation
flows
FS0100: flow path self_speed_in -> target_speed;
properties
Dispatch_Protocol => Periodic;
Period => 10 Ms;
Deadline => 10 Ms;
Compute_Execution_Time => 3 Ms .. 5 Ms;

end csc_speed_calculator_thread.imp;

Figure 8 shows a graphical model of the runtime software ar-
chitecture. Although the graphical notation is easy-to-understand,
its expressiveness is limited as compared to the textual model in
Listings 4–7.
3.3.2.1 Formal Analyses

In Listing 7, real-time properties such as latencies and dead-
lines, are embedded onto thread models. By integrating these
embedded properties, we can perform some types of formal real-
time analyses, e.g., a schedulability analysis, a latency analysis,
etc. Figure 9 shows the results of latency analyses of the end-
to-end path of EE0100 in Listing 2 and the flow path of FS0100 in
Listing 4. The results show that the expected latencies satisfy the
corresponding deadlines specified in the model. These analysis
techniques are available in a standard modeling tool called OS-
ATE (Open Source AADL Tool Environment) *7, so that we can
use them anytime if necessary.
3.3.3 Code Generation

We can derive source code templates from the runtime archi-
tecture model obtained in Section 3.3.2. For example, if we use
the OSEK/VDX-C platform [19], we can produce a configuration
file in OIL (OSEK Implementation Language) shown in Listing 8
and the skeleton code shown in Listing 9. The AADL specifica-
tion [8] itself contains the guidelines for translation from AADL
descriptions into source code. Moreover, a source code genera-

*7 http://www.aadl.info/aadl/currentsite/tool/osate.html
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tor *8 has been developed for some platforms. However, it should
be noted that these translations depend heavily on the platform
used; that is, different target platforms require different transla-
tion strategies.

In summary, AADL allows us to perform the following mod-
eling steps seamlessly: (i) system architecture modeling, (ii) re-
finement of runtime architecture models, and (iii) translation into
source code templates.

Listing 8: Generated Configuration in OIL.

/∗ Tasks ∗/
TASK InputTsk {
TYPE = BASIC;
/∗ Snip ∗/
}
TASK CSCSpdCalcTsk{
TYPE = BASIC;
/∗ Snip ∗/
}
/∗ Messages ∗/
Message GC0000 { /∗ CAN Message (External Communication) ∗/
TYPE = EXTERNAL;
ACCESSNAME = {InputTsk_self_speed_in};
CAN_ADDRESS = {can_msg_v_0004};
/∗ Snip ∗/
};
Message TT0010 {/∗ Inter−Task Message (Internal Communication) ∗/
TYPE = INTERNAL;
ACCESSNAME = {InputTsk_self_speed_out,

CSCSpdCalcTsk_self_speed_in};
/∗ Snip ∗/
};

Listing 9: Generated Skelton Code of Tasks.

TASK (InputTsk) {
short l_self_speed_in = 0;
while(ReceiveMessage(GC0000, InputTsk_self_speed_in) ==

E_OK){
/∗CAN Message (External Communication) ∗/
l_self_speed_in = InputTsk_self_speed_in;}
/∗ Snip ∗/
SendMessage(TT0100, InputTsk_self_speed_out) ;
/∗ Inter−Task Message ( Internal Communication)∗/
}
TASK (CSCSpdCalcTsk) {
short l_s_speed_in = 0;
while(ReceiveMessage(TT0100, CSCSpdCalcTsk_self_speed_in)

== E_OK){
l_self_speed_in =CSCSpdCalcTsk_self_speed_in; }
/∗ Snip ∗/

}

3.4 Approach #2: SysML /MARTE-Based System Develop-
ment

First of all, we explain the modeling fundamentals of SysML.
SysML provides two typical diagrams that are useful for sys-
tem architecture modeling: BDD (Block Definition Diagram) and
IBD (Internal Block Diagram). These two diagrams are similar
to the type definition and implementation of AADL, respectively.

The AADL example shown in Fig. 6 is translated into
Fig. 10 (a), which is a BDD model of system1. In this diagram,

(a) Example of Block Definition Dia-
gram (BDD).

(b) Example of Internal Block Dia-
gram (IBD).

Fig. 10 Example SysML Models (cf. Fig. 6).

*8 For example, http://penelope.enst.fr/aadl/

the interface of system1 (no interface in this case) and its subcom-
ponents are described *9. As shown in the diagram, the primitive
components are components whose stereotype is �block� *10. In
the diagram, the interfaces of the subcomponents are also defined
as flow ports (e.g., producer out). On the other hand, the internal
structure of system1 is described as the interconnection of its sub-
components by using IBD as shown in Fig. 10 (b). Similarly to
the AADL case, SysML also offers hierarchical modeling by re-
peating two modeling steps that are based on BDD and IBD, re-
spectively. We do not discuss the MARTE case here due to the
space limitation; however, we can adopt the same approach as the
SysML case.
3.4.1 System Architecture Modeling

As shown in Table 1, we use SysML, mainly, BDD and IBD
models, in the system architecture modeling. Figure 11 is an IBD
model that is equivalent to the AADL model in Section 3.3.1.
Certainly, the BDD model corresponding to Fig. 11 is also neces-
sary; however, it was omitted due to space limitations. In ad-
dition to the target hardware DSCHardware, the peripheral sys-
tems and devices such as SCC and CTRL SW are described in
the diagram. The target software DSCSoftware is deployed on
DSCHardware by using allocation. While the following stereotypes:
�system�, �device�,�bus�, and �hardware� are newly intro-
duced for readability; �HwResource� comes from HRM (Hard-
ware Resource Modeling) of MARTE and indicates a shared
hardware resource.

In the figure, the interfaces (flow ports) of DSCHardware are
specified by �flowSpecification�. For example, the interface to
CTRL SW has the type of fs ctrl sw status that is specified by
�flowSpecification� as shown in Fig. 12 (a). The flow specification
shows that DSCHardware receives the inputs from the main switch,
mode setting switch, etc. The functionality of flow specification is
quite similar to that of port group of AADL. The connections
between interfaces are also specified precisely in the model, e.g.,
the connection between DSCHardware and SCC is implemented by
a CAN message on the CAN V bus (see the allocation part of
hs can bus v). The unit of data exchanged over this connection
is specified as kph [km/h] by valueType as shown in Fig. 12 (b).
Although this example uses flowSpecification and valueType exclu-
sively, we can use them together.
3.4.1.1 Logical Software Architecture Modeling

Next, we consider logical software architecture. In this case
study, all the required functionalities are implemented by soft-
ware. Thus, the top-level software component of DSCSoftware and
its logical variant (DSCSoftwareLog) are obtained by specializing
DSCHardware because the specialization allows the software com-
ponents to inherit all the interfaces from DSCHardware. This in-
terface inheritance is described as the BDD model in Fig. 13 (a).
On the other hand, an IBD model is used in order to describe
the internal structure of DSCSoftwareLog. The IBD model shown
in Fig. 13 (b) describes the equivalent model to Fig. 7. As have
seen here, the modeling procedure of DSCSoftwareLog is exactly
the same as that of the upper level component of ACCSys SysArch.

*9 In contrast, the type definition of AADL does not describe subcompo-
nents.

*10 �� indicates a stereotype.
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Fig. 11 SysML system architecture model in sysML (cf. Fig. 7).

(a) Top-Level Logical and Physical Software Components. (b) Logical Software Architecture Model (cf. Fig. 7).

Fig. 13 SysML logical software architecture models.

(a) Flow Specification.

(b) Value Type.

Fig. 12 SysML interface specifications.

This means that we can eventually obtain hierarchical architec-
ture by simply repeating the same procedure.
3.4.1.2 Behavior Modeling

SysML provides several diagrams for behavior modeling such
as the sequence diagram (SD), the activity diagram (ACT), and
the state machine diagram (STM); which are inherited from
UML. We cannot provide specific diagrams here due to space
limitations; however, SysML obviously has strong capability of

the system behavior modeling. In Section 3.3.1.2, we saw that
AADL provides state-based behavior modeling aligning with ar-
chitectural hierarchy by exploiting event chains. We can adopt
the same approach in the case of STM of SysML.
3.4.2 Runtime Architecture Modeling

As shown in Fig. 4, SysML cannot describe the runtime ar-
chitecture. On the other hand, MARTE is equipped with a suffi-
ciently wide vocabulary of elements to allow runtime architecture
modeling, e.g., �MemoryPartition� and �swSchedulableResource�
represent processes and threads, respectively. Thus, here we use
MARTE in a complementary way.

As has discussed in Section 3.3.1, the target software has a
single-process architecture. That is, the top-level software com-
ponent is a process that can be described by �MemoryPartition�
of MARTE. The BDD model in Fig. 13 (a) shows that the spe-
cializing mechanism of SysML allows us to define the process of
ACCSoftwareProcess via the physical software architecture (ACC-

SoftwarePhy) while inheriting all the required interfaces. More-
over, each thread within ACCSoftwareProcess can be modeled by
�swSchedulableResource�. Therefore, we can have a runtime ar-
chitecture model as shown in Fig. 14, which is quite similar to the
AADL model in Fig. 8.
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Fig. 14 MARTE runtime architecture model (cf. Fig. 11).

3.4.2.1 Formal and Semi-Formal Analyses
Similar to the case of AADL in Section 3.3.2, we can add cer-

tain real-time properties. However, unlike the AADL case, there
are no standard tool environments that can bring formal analy-
ses based on these real-time properties. Therefore, if we need
these kinds of analysis, we must translate the MARTE models
into AADL models that are analyzable by OSATE. On the other
hand, some tools provide semi-formal analyses of SysML mod-
els, namely, the simulation of SysML models. For example, the
modeling tool of Rhapsody from IBM *11 offers functionalities to
simulate SD and STM models.
3.4.3 Code Generation

Similar to the method of Section 3.3.3, we can generate source
code templates from the runtime architecture model shown in
Fig. 14. Unfortunately, unlike in AADL, no code generation
guidelines or automatic code generators are available. Therefore,
hand coding that considers the target platform is necessary.

As is shown in Fig. 4, neither SysML nor MARTE can cover
all the development phases of automotive systems by itself. How-
ever, the above discussion shows that the combined use of SysML
and MARTE allows us to perform each step of model-based au-
tomotive system development.

4. Qualitative Comparison of ADL-Based Ap-
proaches

This section provides a qualitative comparison of the proposed
two approaches by comparing the requirements in Section 2.1 and
the case study in Sections 3.3 and 3.4. We have already acquired
enough evidence to discuss the requirements (1)–(5) through the
case study in Section 3. The upper half of Table 3 shows the com-
parison of the two approaches from the viewpoints of the require-
ments (1)–(5). The detailed comparison from each viewpoint has
been described in the table. Thus, we will only provide a sum-
mary of the comparison in Section 4.3.

Besides the requirements (1)–(5), we also need to discuss the
requirements: (6) large-scale product line and (7) high-level sys-
tem assurance. However, we have not obtained appropriate evi-
dence for these two requirements through our case study. There-
fore, we will provide a supplemental case study below.

*11 http://www-01.ibm.com/software/awdtools/rhapsody/

(a) Variability Model of Interfaces.

(b) Variability Model of Components.

Fig. 15 SysML/MARTE variability modeling.

4.1 Variability Modeling
In order to discuss variability modeling, we need to prepare a

suitable example of system variation. To this end, we define a
cruise control system (CC system, hereafter) by simplifying the
ACC system, namely, excluding the CDC function. Due to the
simplification, some peripheral systems such as the mode setting
switch and the radar sensor are removed in the CC system.
Approach #1 (AADL Case)

The variation of the specification of individual interfaces, inter-

face signature, can be described by port group and extends. For
example, Listing 10 shows that the interface of the ACC system to
the control switches can be defined by adding an interface to the
interface of the CC system. The added interface should be con-
nected to the mode switch that is unnecessary in the CC system.
Moreover, extends and refined to can be applied to the type def-
inition of components (see the features part of ACCSoftwarePhy
in Listing 4). In this case, we can add new interfaces or override
existing interfaces by another specifications. That is, the vari-
ability of the combination of interfaces, interface assembly, can
be modeled. When we apply extends and refined to to the im-
plementation of components, the combination of subcomponents
(internal specification of components) can be varied. In this case,
we can add new subcomponents or override existing subcompo-
nents (see ACCSW in Listing 4 for example). The same discussion
on the AADL-based variability modeling can be found in our pre-
vious paper [20].

Listing 10: AADL Variability Modeling.

port group pg_receptacle_ctrl_sw_status_cc
features −− Control Switches for CC
main_sw_status: in event port;
(snip)

end pg_receptacle_ctrl_sw_status_cc;
port group pg_receptacle_ctrl_sw_status
extends pg_receptacle_ctrl_sw_status_cc
features −− Add Mode Switch
mode_sw_status: in event port;
(snip)

end pg_receptacle_ctrl_sw_status;

Approach #2 (SysML /MARTE Case)
In the case of SysML and MARTE, we can exploit their in-

heritance mechanism. The variation of an interface signature can
be described by specialization of �flowSpecification� as shown in
Fig. 15 (a). The interface assembly and the combination of sub-
components can be varied by using the inheritance again as shown
in Fig. 15 (b). In the figure, interfaces: dist set sw status and tar-

get distance, and a component: CDCSpdCalc, which are not rele-
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Table 2 Comparison of Variability Modeling Based on Approaches #1 and #2.

Comparison points Approach #1: AADL Approach #2: SysML /MARTE
External
Specifi-
cation

Interface Signa-
ture

Port group can be varied by
extends. Interfaces can be added
and overridden by refined to.

Interfaces can be added by the inheri-
tance of�flowSpecification�.

Interface Assem-
bly

Component type can be varied by
extends and refined to (same as
above).

Interfaces can be added by the inheri-
tance of blocks.

Internal Specification Subcomponents can be added by
extends and overridden by refined
to.

Subcomponents can be added by the
inheritance of blocks.

Table 3 Comparison of Approaches #1 and #2.

Requirements Sub-
Requirements

Approach #1: AADL Approach #2: SysML /MARTE Relevant
Sections

(1) Large-Scale
Systems

Hierarchical
Architecture

System components can have a hier-
archical architecture.

�Block� can have a hierarchical ar-
chitecture.

Sects. 3.3.1
and 3.4.1

Layered
Architecture

Requires, provides, and access
combine multiple layers.

Allocation combines multiple layers.

Component
Specification

Component type definition provides
formal interface specifications.

BDD, �flowSpecification�, �flow-
Property�, and �ValueType� for-
mally define interfaces.

(2) Real-Time
Systems

Real-Time
Properties

Several properties such as deadline and execution time can
be specified.

Sects. 3.3.2
and 3.4.2

Formal Real-
Time Analy-
ses�

OSATE provides formal analyses,
e.g., schedulability analysis, etc.

Not supported by a standard tool.

(3) Embedded
Systems

Software
Architecture

Both logical and physical software architecture can be de-
scribed.

Sects. 3.3
and 3.4

Hardware
Architecture
(Execution
Platform)

Several elements such as device,
bus, and processor are available.

HRM (Hardware Resource Model-
ing) of MARTE is available.

Sects. 3.3.1
and 3.4.1

(4) Source Code
Handling

Multiple
Abstraction
Levels

Lowest abstraction level is adjacent to the source code level. Sects. 3.3.3
and 3.4.3

Code Genera-
tion�

Automatic /Manual Manual

(5) Distributed
Development

Open Standard SAE Standard OMG Standard Sect. 2.2
Seamless Re-
finement

By extends and refined to. By the inheritance mechanism. Sects. 3.3.2
and 3.4.2

(6) Large-Scale
Product Line

Variability
Modeling

Both external and internal specifica-
tions can be varied by extends and
refined to.

Inheritance can vary both external
and internal specifications in an incre-
mental way.

Sect. 4.1
or more
details in
[20].

(7) High-Level
System Assurance

Formal Nota-
tion

Specified by BNF (Backus-Naur-
Form).

Specified by UML Metafile. N/A

Formal Verifi-
cation�

Some kinds of formal verification,
e.g., timeliness verification, are sup-
ported by OSATE.

Simulation-based (semi-formal) veri-
fication is supported by some tools.

Sects. 3.3.2
and 3.4.2

Error Model-
ing

Supported by Error Model An-
nex [21].

Extension like EAST-ADL is neces-
sary.

Sect. 4.2

(*) Behavior
Modeling

Fundamentals Mode gives simple state-based model-
ing.

Several diagrams, e.g., SD, ACT, and
STM, are available.

Sects. 3.3.1.2
and 3.4.1.2

Alignment
with Architec-
ture Models

Event propagation between state machines enables hierar-
chical and layered modeling.

�These items are the requirements of supporting technologies (tools).

vant to A CCSoftwareLogCC, are newly installed in ACCSoftwareLog.
However, unlike AADL, it is not easy to override existing inter-
faces or subcomponents *12.

In order to summarize the above discussions, Table 2 shows the
comparison of the variability modeling based on both approaches.

4.2 Error Modeling
For the purpose of system assurance, dependability analysis is

mandatory. Furthermore, from an architectural point of view, it

*12 This is possible from a language specification point of view; however, no
tools support this functionality.

is essential to clarify how component errors lead to hazardous
events. This kind of analysis can be supported by error modeling
techniques. In the case of AADL, the standardized annex for the
error modeling [21] is available. In contrast, neither SysML nor
MARTE are not yet ready for the error modeling, so that we need
to extend them similarly to what EAST-ADL has done.

4.3 Comparison Summary
Table 3 summarizes the qualitative characteristics of the two

approaches. The table shows that both approaches bring similar
effects on each requirement except for the following items: code
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generation, formal verification, error modeling, and variability
modeling. Based on these criteria, approach #1 (AADL) is su-
perior to approach #2 (SysML and MARTE). Therefore, so far as
these items are important to a given development project, AADL
is a better candidate than SysML and MARTE. Otherwise, we
can choose a suitable approach while considering the information
literacy of the engineers who are involved in a project.

5. Conclusion and Future Work

In this paper we discussed ADL-based approaches to automo-
tive system development. We derived two different kinds of ap-
proaches: (i) an AADL-based method, and (ii) a collaborative
modeling method using SysML and MARTE. Detailed modeling
steps of each approach were explained through modeling trials
based on an ACC system. These trials also proved that both ap-
proaches can cover similar phases of automotive system develop-
ment. Moreover, by comparing the two approaches from multiple
viewpoints, we clarified the differences between the approaches,
namely among the three ADLs. The comparison also showed that
both approaches offer several different advantages to automotive
system development.

While this paper mainly dealt with the architectural aspects,
the behavioral aspect was discussed only briefly. Therefore, it is
also necessary to perform a precise comparison from a behavioral
angle as a future work.

Although this paper discussed only automotive system devel-
opment, some of the discussion given in this paper possibly can
be applied to other domains, e.g., medical devices, consumer
electronics, etc. For example, some of the requirements of ADLs
in Section2.1 can be common among these domains. Therefore,
even in other domains, it might be possible to find practical ADL-
based approaches by choosing common requirements and simply
following the steps given in this paper.
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