Journal of Information Processing Vol.21 No.1 26-32 (Jan. 2013)

[DOI: 10.2197/ipsijip.21.26]

Regular Paper

The Number of Inequality Signs
in the Design of Futoshiki Puzzle

Kazuya Haraguchr!+?

Received: February 9, 2012, Accepted: September 10, 2012

Abstract: In this paper, we study how many inequality signs we should include in the design of Futoshiki puzzle. A
problem instance of Futoshiki puzzle is given as an n X n grid of cells such that some cells are empty, other cells are
filled with integers in [n] = {1,2,...,n}, and some pairs of two adjacent cells have inequality signs. A solver is then
asked to fill all the empty cells with integers in [n] so that the n” integers in the grid form an n x n Latin square and
satisfy all the inequalities. In the design of a Futoshiki instance, we assert that the number of inequality signs should be
an intermediate one. To draw this assertion, we compare Futoshiki instances that have different numbers of inequality
signs from each other. The criterion is the degree to which the condition on inequality is used to solve the instance. If
this degree were small, then the instance would be no better than one of a simple Latin square completion puzzle like
Sudoku, with unnecessary inequality signs. Since we are considering Futoshiki puzzle, it is natural to take an interest
in instances with large degrees. As a result of the experiments, the Futoshiki instances which have an intermediate
number of inequality signs tend to achieve the largest evaluation values, rather than the ones which have few or many

inequality signs.

Keywords: Puzzle construction, Futoshiki puzzle, Latin square

1. Introduction

We deal with Futoshiki puzzle throughout this paper. An in-
stance of Futoshiki puzzle is given as an n X n grid of cells such
that some cells are empty, other cells are assigned integers in
[n] ={1,2,..
equality signs. Given an instance, a solver is asked to fill all the

., n}, and some pairs of two adjacent cells have in-

empty cells with integers in [#] so that the n? integers in the grid

satisfy the following two conditions.

Latin square condition: In each row and in each column, each
integer in [n] appears exactly once.

Inequality condition: When two adjacent cells have an in-
equality sign in between, the integers assigned to the two
cells satisfy the inequality.

Note that Futoshiki is a Japanese word that means inequality. In

Fig. 1, we show an example of a Futoshiki instance for n = 4,

together with its solution.

Let us consider how to generate an instance of Futoshiki puzzle
automatically. In our recent work [3], we proposed a framework
to generate a puzzle instance of BlockSum puzzle with various
levels of difficulty, where BlockSum is a puzzle of a similar kind
that deals with a Latin square. Following this framework, we give
an overview of an algorithm to generate a Futoshiki instance.

1. Decide the level of the solver we assume.

2. Generate an n X n Latin square randomly.

3. Decide a partial assignment of integers and the location of
inequality signs such that;

Faculty of Science and Engineering, Ishinomaki Senshu University,
Ishinomaki, Miyagi 986-8580, Japan
¥ kzyhgc@gmail.com

© 2013 Information Processing Society of Japan

<0< O
0[] 0
0 0-0 O
0o OO

Instance

(1] <[2]<[4]
[4]>[3]

Solution

(=] =] [&] [=]

Fig.1 A Futoshiki instance and its solution (n = 4).

e the instance can be solved by the solver in 1, and

e the instance has the Latin square in 2 as the unique solution.
In 1, we implement a certain mechanism to solve a puzzle in-
stance such that the mechanism reflects the level of the solver.
The higher the level we assume, the more sophisticated the mech-
anism should be. In 2, the Latin square serves as the unique solu-
tion of the produced instance. Solution uniqueness is employed
in many combinatorial puzzles; e.g., Sudoku [5], [6]. In 3, the de-
cision can be made as follows. First, assign the value of the Latin
square to each cell and embed the inequality sign between any
adjacent cells so that the inequality is satisfied by the assigned
values. Then repeat removing the assigned value from a cell or
the inequality sign from adjacent cells as long as the instance sat-
isfies the above two conditions.

In this paper, we discuss what is a suitable number of inequal-
ity signs in 3. We assume that the solver in 1 and the n X n Latin
square in 2 are given. We also assume that the partial assign-
ment of integers in 3 has been determined in an appropriate way.
We can allocate O to 2n(n — 1) inequality signs to the grid, and
the question is how many inequality signs are appropriate. To

26

Journal of Information Processing Vol.21 No.1 26-32 (Jan. 2013)

this question, our answer is an intermediate number. We derive
the answer by comparing Futoshiki instances that have different
numbers of inequality signs from each other. The criterion is the
degree to which the solver uses the Inequality condition until it
solves the instance. If the degree were small, the instance would
be no better than an instance of “Latin square completion puz-
zle” like Sudoku, with unnecessary inequality signs. Since we
are considering Futoshiki puzzle, it is natural to take interest in
an instance that has a large degree.

Let us make an additional assumption on the given solver. We
assume that the given solver will use the candidate list strategy,
one of the traditional strategies for solving combinatorial puzzles.
In this strategy, the solver maintains the list of candidate integers
for each cell and repeats updating them by eliminating candidates
based on certain inference rules until all the cells have single can-
didates. The inference rules are derived either from the Latin
square condition or from the Inequality condition. Let us call the
former one L-rule and the latter one I-rule. In our context, an in-
stance seems preferable if, to solve the instance, the solver needs
to eliminate many candidates by the I-rule. The number of candi-
dates eliminated by the I-rule is expected to serve as our measure.

However, there must be a vast number of ways to solve a given
instance. For example, the solver may encounter such a situation
where more than one inference rule can be applied to update the
candidate list. In such a case, the choice of inference rules by
the solver affects the subsequent solving process and the number
of candidate integers eliminated by the I-rule. This number is
uniquely determined in one trial to solve the instance, but can be
different between trials. Therefore, we observe the average of the
numbers by conducting a large number of solving trials. In par-
ticular, we are interested in the lowest values for the worst-case
analysis; we rate an instance high if even the lowest evaluation
values are large. To estimate such values, we employ the “ma-
licious” solver. The malicious solver always applies the L-rule
whenever possible. In other words, it never applies the I-rule un-
til the L-rule cannot be applied. It is expected that the malicious
solver does not use the I-rule as frequently as ordinary solvers.
Thus, we estimate the average of the lowest evaluation values
from the behavior of the malicious solver.

We compare the instances that have different numbers of in-
equality signs by means of the criterion described above. Then
we observe that those having an intermediate number of inequal-
ity signs achieve the highest evaluation values.

The paper is organized as follows. In Section 2, we introduce
the notations and terminologies. In Section 3, we explain how to
compare the instances. We present how to generate the instances
to be compared and the comparison criterion. Then in Section 4,
we present experimental results. Finally we give concluding re-
marks in Section 5.

2. Preliminaries

2.1 Latin Square and Futoshiki Instance

Let a cell in the i-th row and in the j-th column of the grid be
denoted by (i, j) € [n]>. We say that two cells (i, j) and (7', j')
are adjacent if |i — i'| + |j — j'| = 1. Let us denote a partial as-
signment of integers in [n] to the n? cells by a partial function

© 2013 Information Processing Society of Japan

¢ : [n)* — [n]. The value ¢(i, j) represents the integer that is
assigned to cell (i, /). We denote the domain of ¢ by Dom(y),
that is, Dom(y) = {(i, j) € [1n]* | ¢(i, j) is defined}. Let us denote
Emp(¢) = [n]? \ Dom(y). For two partial assignments of integers
¢ and ¢, we call ¥ an extension of ¢, or equivalently, call ¢ a re-
striction of ¥ if Dom(y) € Dom(y) and ¢(i, j) = (i, j) holds for
any cell (i, j) € Dom(p). We call ¢ a partial Latin square if, in
each row and in each column, any integer appears at most once.
If a partial Latin square ¢ is a total function (i.e., Dom(¢) = [n]%),
we simply call it a Latin square.

Let us denote the set of all the ordered pairs of adjacent cells
by P;

P={((i,), (@,) € [n)*x[n]* | (i, j) and (7', j') are adjacent}.

Clearly we have |P| = 4n(n — 1). We call a subset S of P a sign
set if, for any two adjacent cells (i, j) and (i’, j*), at most one of
(@, ', j))and (7', j'), (i, j)) appears in S. Any sign set S sat-
isfies |S] < 2n(n — 1).

We denote a Futoshiki instance by /. We define / as a pair
I = (¢,8), where ¢ : [n]*> — [n] is a partial Latin square
and S is a sign set. The cells of Dom(y) are assigned integers
(i, j)’-s that are given as hints to the solver, whereas the cells
of Emp(g) are the empty cells that the solver should complete.
The sign set S represents the set of inequality signs in the in-
stance, i.e., ((i, j), (i, j’)) € S indicates that the solver needs to
assign a smaller integer to (i, j) than (i, j). Since S is a sign
set, ((i, j),(,j)) € S implies ((/’,),(,j)) ¢ S. Then we
have no contradicting inequality sign. A partial solution to I is
a partial Latin square ¢ that is an extension of ¢ and that sat-
isfies the inequality ¥(i, j) < ¢,) if (G,), ,j)) € S and
(i,), (@, j') € Dom(y). A partial solution is simply called a solu-
tion if it is a Latin square.

2.2 Candidate List Strategy

The candidate list strategy refers to an algorithm that solves a
given instance as follows. Let us denote a given instance by / =
(¢, S). A candidate list is defined as a mapping C : [n]*> — 2],
where 2"l denotes the power set of [n]. The set C(i, j) C [n] rep-
resents integers that can be assigned to (i, j). The candidate list
strategy starts with the following mapping;

o) e Py if (i, j) € Dom(gp),
CG,j= :
[n] otherwise.
At this time, the number of all candidate integers over the 1> cells
is;

D ICG, pl=IDom(@)| + nEmp(g)| =n” + (n = DIEmp(¢)|.
(i, yeln]?

Then we repeat choosing an appropriate cell (i, j) and updating
C(i, j) by eliminating some of the integers in it based on infer-
ence rules that we describe later. During the process, if C(i, j) is
reduced to a singleton {v}, which means that there is no candidate
other than v, then the integer v can be assigned to the cell (i, j). In
other words, we can construct a partial solution ¢ as follows;

27

Journal of Information Processing Vol.21 No.1 26-32 (Jan. 2013)

(a)

X L)4 1)
>
3 N 3 .
4] /{ 4
(b)

Fig. 2 Example of Naked Pair: (a) The candidate list before the rule is ap-
plied. (b) The candidate list after the rule is applied.

Wi j) = { v if C(i, j) is a singleton {v},

(not defined) otherwise.
Then we have solved [if C(i, j) is reduced to a singleton for ev-
ery (i, j) € [n]*>. When [is solved, there are n candidate integers
over the n2 cells. Hence, the number of candidate integers that
have been eliminated is;

n* + (n — DEmp(¢)| — n* = (n — 1)[Emp(¢)|. (1)

Hence, if we cannot reduce (n — 1)[Emp(¢)| candidate integers
in any way, the instance cannot be solved by the candidate list
strategy.

What we call inference rules are logical techniques that are
used to eliminate the (n — 1)|[Emp(¢)| candidate integers. We use
two types of inference rules, that is L-rule and I-rule, where the
former rule (resp., the latter rule) is derived from the Latin square
condition (resp., the Inequality condition). For the L-rule, we take
inference rules that are prevalent in Sudoku. Before we derive
their generalized formulation, let us illustrate Naked Pair [1], [4]
for example. See Fig. 2. The example assumes n = 4. The figure
(a) shows the candidate list of a certain row before Naked Pair is
applied. The digits in a cell indicate the candidate integers of the
cell. Naked Pair updates the candidate list as follows; since the
two cells in the 2nd and 4th columns contain the same 2 candi-
dates, that is 1 and 4, these two cells can have 1 and 4 respectively,
or 4 and 1 respectively. Then none of the other cells in this row
can take 1 or 4. We can eliminate 1 and 4 from the candidate lists
of the other cells, as shown in (b). In this case, three candidate
integers are eliminated.

We formulate the L-rule by generalizing Naked Pair as follows.
Assume that a candidate list C is given. For an arbitrary row, say
the i-th row (i € [n]), we construct an n X n 0-1 matrix. We de-
note the matrix by M and the entry in the x-th row and in the y-th
column by M, , (x,y € [n]). We define M, so that it indicates
whether the integer x is contained in the list C(i, y);

M = 1 ifxeCQ,y),
) 0 otherwise.

Let Y C [n] denote a column subset of M, and X(Y) C [n] de-
note the row subset of M such that X(Y) = {x € [n] | M,, =
1 for some y € Y}. Let k € [n] denote a natural number. Then
if M has a column subset Y such that |Y| = |X(Y)| < k, all the
entries whose rows are in X(Y) and whose columns are out of Y
can be turned into 0. In other words, we can eliminate the inte-
ger x from the list of cell (i,y), i.e., C(i,y) «— C(i,y) \ {x}, for

© 2013 Information Processing Society of Japan

Table 1 Relationship between our formulation and the prevalent inference
rules (R: grid row, C: grid column, I: candidate integer).

Fix Row Column k=1 k=2 k=3
of M of M

R 1 C Naked Naked Naked
C I R Single Pair Triple
R C I Hidden | Hidden Hidden
C R 1 Single Pair Triple

1 R C - X-wing | Sword-fish
1 C R

any (x,y) € X(Y) X ([n] \ Y). The number of candidate integers
eliminated becomes;

M,,.
(ey)eX(Y)X([n]\Y)

One sees that Naked Pair is a special case of this rule for k = 2.

In the above, we constructed the matrix M for a fixed row of
the grid. We associated a candidate integer with each row of M,
and a column of the grid with each column of M. Interestingly,
we can update the candidate list as above even if we exchange
the roles of grid row, grid column and candidate integer. Some
of the prevalent rules can be explained in this way, and we show
the relationship between our formulation and the prevalent rules
in Table 1. In the rest of the paper, we assume that & is a given
constant.

Next we introduce the I-rule. For any pair ((7, j), (i’, j)) € S of
adjacent cells that have an inequality sign, some of the candidate
integers in C(i, j) and C(i’, j') can be eliminated from the Inequal-
ity condition in the following way. Let u = min{v € C(i, j)} and
v = max{v’ € C(i’, j')}. Since the integer assigned to (i, j) can-
not be larger than or equal to v, we can eliminate v,v + 1,...,n
from C(i, j), ie., C@i,j) <« CG)\ {v.v+1,...,n}. Simi-
larly, since the integer assigned to (i’, j) cannot be smaller than
or equal to u, we can eliminate 1,2,...,u from C(/, j), i.e.,
C{',j)« C({, j)H)\{1,2,...,u}. The number of integers elimi-
nated is;

ICG, HN{v,v+ 1,0} +|CE,)N {12, u1l 2)

For example, in Fig.2 (a), an inequality sign exists between the
cells of the 1st and 2nd columns. Then the candidate integer 1
in the cell of the 1st column can be eliminated, and the candidate
integer 4 in the cell of the 2nd column can be also eliminated.

3. How to Compare Futoshiki Instances

In this section, we explain how to compare Futoshiki instances
having different numbers of inequality signs from each other. In
Section 3.1, we present how to generate the instances to be com-
pared. In Section 3.2, we explain the criterion for the comparison.

3.1 How to Generate Instances

For the comparison, we would like to generate several in-
stances so that they have different numbers of inequality signs
from each other. Besides, they need to satisfy the following con-
ditions;
(i) the instances can be solved by the candidate strategy,
(ii) the instances have the given Latin square as the unique so-

lution, and

28

Journal of Information Processing Vol.21 No.1 26-32 (Jan. 2013)

(iii) the instances have the same partial Latin square as the hints
which are given to the solver.

We need some preparatory procedures before presenting the al-

gorithm. We denote the given Latin square by £. Due to (ii), we

restrict ourselves to the instances that have ¢ as a solution. Let us

denote by 7 the set of all the instances that have ¢ as a solution.

We define S, as the sign set induced by ¢, i.e.,

Se={G .G,) e PILG j) < (',)}

Proposition 1 An instance (¢, S) has ¢ as a solution if and
only if ¢ is a restriction of £ and § is a subset of S .
Using Proposition 1, 7 can be expressed as;

I ={(p,5) | ¢is arestriction of £ and § C S}.

We introduce a binary relation on the instances in 7. For any two
instances in 7, say (¢, S) and (¢’,S’), we write (¢,S) < (¢',S”)
if ¢ is a restriction of ¢’ and S € S’. Clearly the relation < is
a partial order. Then I has the top element and the bottom ele-
ment with respect to <. The top is I+ = ({,S,) and the bottom
is I = (Pemp, D), Where ¢emp denotes an empty function (i.e.,
Dom(@emp) = 0). Since (7, <) is a partially ordered set, it can
be represented by means of the Hasse diagram. In the Hasse di-
agram, each node corresponds to an instance in 7. An edge is
drawn between (¢, S) and (¢’, S") if (¢, S) < (¢, S’) and exactly
one of the following two equalities holds: |[Dom(¢’)\Dom(p)| = 1
or [S’\ S| = 1. The nodes are arranged so that (¢, S) is placed
under (¢, S”) if (¢, S) < (¢’,S’). In particular, I+ is placed at the
top and /, is placed at the bottom.

We call an instance solvable if it can be solved by the candidate
list strategy anyhow. The strategy solves an instance by updating
the candidate list based on inference rules, that is logic. Hence,
any solvable instance has a unique solution. To meet (i) and (ii),
we search for solvable instances in 7.

Proposition 2 Let (¢,5) and (¢’,S’) denote instances such
that (¢, S) < (¢’,S’). If the instance (¢, S) is solvable, (¢’,S’) is
also solvable.

Proposition 2 means that solvability is upward monotone with re-
spect to <.

Now we are ready to present the algorithm to generate in-
stances. We illustrate the Hasse diagram of 7 and the trajectory
of the algorithm in Fig.3. The algorithm starts the search from
the initial instance, denoted by I;,;. We define the initial instance
as the one such that all the n? cells are empty and any two ad-
jacent cells have an inequality sign, that is, lini = (@emp»S¢)-
In Fig.3, the initial instance is represented by the black point.
Note that the initial instance is not necessarily solvable. First,
the algorithm gives appropriate integers to some empty cells so
that the instance is solvable. In other words, the algorithm finds
a certain restriction of £. This corresponds to climbing upward
along edges of the Hasse diagram. Suppose that the algorithm
eventually finds a restriction ¢ of ¢ such that (¢, S) is solvable.
Let us denote this instance by I° = (¢, S), where S = S,. The
instance I° is represented by the shaded point in Fig.3. In the
sequel, we may write 19 as Iy since it has 2n(n — 1) inequal-
ity signs, which is the maximum. Then, the algorithm repeats

© 2013 Information Processing Society of Japan

Solvable

Linie = (‘Pempa Se)

Not solvable

I, = (‘pemps @)

Fig. 3 Hasse diagram of the instance set 7 and the trajectory of the algo-
rithm.

1. Find arestriction ¢ of the given Latin square ¢ such that (¢, S)
is solvable.
2. LetH «—QandS « S,.
3. Repeat the followings;
3-1. LetH «— HU{(p,S)}.
3-2. If there exists e = ((i, j), (7', j')) € S such that (¢, S \
{e}) is solvable, then S « S \ {e}. Otherwise, output H and
halt.

Fig. 4 Algorithm to generate instances for the comparison experiment.

removing an inequality sign as long as the instance is solvable.
In other words, the algorithm lets S «— S \ {((7, /), (i’, j'))} for a
certain ((i, j), (', j)) € S. The removal of inequality signs corre-
sponds to descending downward along edges. Finally, the algo-
rithm halts if it encounters a minimal solvable instance, i.e., an
instance such that the removal of any inequality sign results in
an unsolvable instance. During this process, we find the solvable
instances 1° = Inax, I', ..., Imin, Where I, denotes a minimal
solvable one. Clearly these instances have different numbers of
inequality signs from each other and also satisfy the above con-
ditions (i) to (iii). We use them for the comparison experiment.

We summarize the algorithm in Fig.4. In 1, we can obtain ¢
by extending the domain of an empty function repeatedly; start-
ing with ¢ = @emp, repeat letting ¢(i, j) « £(i, j) for a certain
(i, j) € Emp(¢) until (¢, S¢) is solvable. In the experiment, how-
ever, we borrow the given Latin square ¢ and its restriction ¢ from
instances on the Internet. Whether an instance is solvable or not
can be recognized by applying the candidate list strategy. The de-
tailed implementation of the candidate list strategy is explained
in the next subsection, together with the criterion for comparing
the instances.

3.2 Criterion for Comparing Instances

Basically, our criterion for comparing instances is the number
of candidate integers that are eliminated by the I-rule when the
instance is solved by the candidate list strategy. In the course of
solving the instance, when the I-rule is applied, the number of
eliminated candidates is counted by Eq. (2). The evaluation value

29

Journal of Information Processing Vol.21 No.1 26-32 (Jan. 2013)

is the sum of Eq. (2) over a trial to solve the instance. Hence, it is
unique in one trial, but can be different between trials. For exam-
ple, the given solver may encounter such a situation where more
than one inference rule can be applied. Figure 2 (a) is a good ex-
ample. We can use not only the L-rule (Naked Pair) but also the
I-rule to eliminate the integer 1 from the cell in the 1st column.
The choice of inference rules should affect the evaluation value.

To observe the tendency of the evaluation values, we sample a
sufficiently large number of solving trials. Let T denote a natural
number. We solve a given instance / by applying the candidate list
strategy 7 times. Let p,() (t € [T]) denote the number of can-
didate integers that are eliminated by the I-rule in the f-th trial.
Then we compute the average;

D I
p == ;p,m. 3)

To solve an instance, we need to eliminate (n — 1)|[Emp(¢p)| candi-
date integers, as seen in Eq. (1). We normalize the average p(/) by
this number. We call the normalized value the evaluation ratio,
denoted by r(/), and use it as the criterion.

pU)
(n = DIEmp(p)|
The larger (/) is, the higher we rate /.

r) = C))

Among all the possible evaluation ratios of the instance, we
are interested in the lowest ones for the worst-case analysis; we
can rate the instance high if even the lowest evaluation ratios are
large. To estimate the lowest evaluation ratios, we employ the
“malicious” solver that never uses the [-rule as long as the L-rule
can be applied. Formally, the solver works as follows;

1. As long as there is a non-empty subset A C [n]? of cells to
which the L-rule can be applied, update C(i, j) for any cell
(i, j) € A by the L-rule.

2. Choose a pair ((i, j), (i’, j)) € S arbitrarily such that the I-
rule can be applied to (i, j) and (¢, j/). Update C(i, j) and
C(i’, j’) by the I-rule. The number of eliminated integers is
counted by Eq. (2).

3. If the instance is not solved, return to 1.

In 2, we have the freedom to choose a pair of adjacent cells among

the ones to which the I-rule can be applied. We choose one pair

at random. Then, the observed values p;(/)’-s can be different
between trials.

4. Computational Experiments

In this section, we compare Futoshiki instances that have dif-
ferent numbers of inequality signs from each other.

4.1 Experimental Settings

In the candidate list strategy we assume, the L-rule is the col-
lection of Naked Single, Naked Pair, Hidden Single and Hidden
Pair in Table 1, and the I-rule is the one described in Section 2.2.
We decide the Latin square ¢ of the solution of the generated
instances in the following way; We pick up 18 instances from
sudoku-puzzles.net [2]. Let us call them original instances. We
solve each original instance to find its solution, and use the so-
lution as £. We find that each original instance can be solved by

© 2013 Information Processing Society of Japan

Table 2 Summary of the original instances from sudoku-puzzles.net [2].

n ID Empty cells Signs
5 321860229 19 5
5 323730102 19 3
5 326429168 23 7
5 327451171 23 11
5 325826019 25 10
5 326412689 25 10
7 341198303 33 6
7 342599334 33 7
7 341189239 41 19
7 341579254 41 17
7 341240325 45 17
7 341819854 45 18
9 362803405 57 18
9 365807617 57 16
9 366299530 69 35
9 366364349 69 34
9 361309814 75 41
9 364108856 75 47

the candidate list strategy, and thus ¢ is the unique solution. Let
us denote the original instance by Ioiz = (¢, S orig). We generate
instances that have ¢ as the unique solution by the algorithm in
Fig. 4. We need to specify a restriction of ¢ in 1. For this, we use
the one ¢ of the original instance. The instance I° = (¢, S,) is
surely solvable since Iy, < 1° and Iorig is solvable. In 3-2, we
employ the greedy method for selecting a pair of adjacent cells to
be removed, that is, we remove the pair of adjacent cells so that
the evaluation ratio achieves the highest. To compute the evalua-
tion ratio of an instance I, we solve I by the candidate list strategy
100 times, that is, we use 7" = 100 in Eq. (3).

4.2 Results

We show the summary of the 18 original instances in Table 2.
Each original instance is given its ID number. One can see the
instance and play with it by entering the ID number at sudoku-
puzzles.net. The column “Empty cells” represents the number of
empty cells, that is [Emp(¢p)|, and the one “Signs” represents the
number of inequality signs, that is |S oig|.

For each original instance (¢, S orig), We generate the instance
set H = {I° = Ina, I',..., Inin} in the way described above.
Among the instances in H, I, has the maximum number of in-
equality signs, thatis 2n(n—1), and I, has the minimum number
of inequality signs. We denote by /. the instance that achieves the
highest evaluation ratio among the ones in H.

In Table 3, we show the numbers of inequality signs and the
evaluation ratios of Iohg, Imin, I+ and Ip.. By definition, I,
achieves higher evaluation ratios than /Iy, and In.. It is also
better than /. Judging from the number of inequality signs and
the evaluation ratio, Iyg is close to I, rather than I, or Iax.
The original instances and the minimal solvable instances are not
good in our context.

It appears that, if an instance has few inequality signs, the
evaluation ratio would be low since the solver should meet few
chances to apply the I-rule. This is supported by the following
fact; Let us denote an instance by I = (¢,S5). Clearly we have
pI) < 2(n — 1)|S|, where |S| denotes the number of inequality
signs. From Eq. (4), we have;

pn 2]

r(l) = < .
(n = DIEmp(p)| ~ [Emp(ep)|

)

30

Journal of Information Processing Vol.21 No.1

26-32 (Jan. 2013)

Table 3 The numbers of inequality signs and the evaluation ratios.

n ID I, orig Inin L. Iax
Signs Ratio | Signs Ratio | Signs Ratio | Signs Ratio
5 321860229 5 133 5 176 15 234 40 178
5 323730102 3 .072 3 .103 21 175 40 112
5 326429168 7 223 7 270 33 372 40 .340
5 327451171 11 299 8 263 22 400 40 373
5 325826019 10 304 12 412 22 .503 40 431
5 326412689 10 339 14 AT2 18 502 40 442
7 341198303 6 .070 8 114 36 175 84 120
7 342599334 7 .050 8 .089 24 116 84 .076
7 341189239 19 222 17 224 57 337 84 249
7 341579254 17 184 20 .240 52 344 84 268
7 341240325 17 255 25 353 62 453 84 379
7 341819854 18 234 23 314 57 446 84 .380
9 362803405 18 .101 29 .160 97 220 144 157
9 365807617 16 .097 20 131 98 222 144 .146
9 366299530 35 .245 37 .306 90 411 144 321
9 366364349 34 241 36 272 109 391 144 311
9 361309814 41 319 43 375 122 485 144 423
9 364108856 47 352 43 358 103 .500 144 409
ri) other H’-s that are generated from other original instances; as
500 shown in Fig. 5, the instances that have an intermediate number
of inequality signs achieve the highest evaluation ratios.
Let us observe these results. For each number of inequality
458 signs, the algorithm should find an instance that attains approxi-
mately the largest evaluation ratio among those having the same
A17 \ number of inequality signs since we employ the greedy method in
the choice of the inequality sign to be removed (see Section 4.1).
375 Then, among all the found instances, the one 7, with an interme-
/ diate number of inequality signs achieves the largest evaluation
ratio in all the 18 test cases. Thus, in the instances that have the
333 43 100 144 largest evaluation ratios, the number of inequality signs should
Lo The number of inequality signs Lo be intermediate rather than small or large. Based on these, we

Fig. 5 Evaluation ratios of the instances generated from the original in-
stance with the ID number 364108856 (n = 9).

If I has few inequality signs, that is, if |S| is small, the above
upper bound becomes small. Then r(/) is expected to achieve
a small value. In fact, r(/yin) < r(Imax) holds for 15 out of the
18 cases; the 3 exceptional cases are the original instances with
the ID numbers 326412689 (n = 5), 342599334 (n = 7), and
362803405 (n = 9). However, we have r(Iy.x) < r(I.) although
I, has a significantly smaller number of inequality signs than /yy.
A reason is described as follows. Among the inequality signs in
I'max. there must be ones such that applying the I-rule to them im-
mediately leads us to a situation where the L-rule can be applied.
Even if we remove such inequality signs from /;,,«, the evaluation
ratio must not be decreased, or may be even increased.

In Fig. S, we illustrate this observation by showing the evalua-
ey ooy Innin}-
The instances are generated from the original instance with the ID
number 364108856 (n = 9). In this generation process, the algo-
rithm starts from /;;,,x and repeats removing an inequality sign un-

tion ratios of all the instances in H = {I° = Iy, - . -

til it reaches a minimal solvable instance I,,;,. Let us follow how
the evaluation ratio changes as the number of inequality signs is
decreasing. Starting from .409, the evaluation ratio first increases
up to almost .500. It remains to be so high values as .500 for a
while, and dramatically decreases when the number of inequal-
ity signs is smaller than 100. We observe a similar tendency in

© 2013 Information Processing Society of Japan

claim that one should include an intermediate number of inequal-
ity signs in the design of a Futoshiki instance.

5. Concluding Remarks

In this paper, we started to consider how to design a Futoshiki
instance automatically. Employing the algorithmic framework
presented in our recent work on BlockSum puzzle [3], we have
considered what is a suitable number of inequality signs. To com-
pare instances having different numbers of inequality signs, we
introduced the evaluation ratio as the criterion. The evaluation
ratio estimates the degree to which the I-rule is needed to solve
the instance. Since the puzzle is “Futoshiki puzzle,” the larger
the evaluation ratio is, the higher we rate the instance. In the ex-
perimental studies, we observed that the instances with an inter-
mediate number of inequality signs achieve the largest evaluation
ratios.

Given the number of inequality signs, it is another task to de-
cide their location so that the evaluation ratio is large. Our fu-
ture work includes development of a fast algorithm to do this.
The algorithm we used to generate the instances is not practical
in terms of computation time. For example, our implementation
takes about 5.7 x 10° seconds to generate the instance set 7 from
an original instance of n = 9. This is mainly because the algo-
rithm searches too many instances and solves each found instance
by the candidate list strategy many times to compute its evalua-
tion ratio. Then we need not only to reduce the search space but

31

Journal of Information Processing Vol.21 No.1 26-32 (Jan. 2013)

also to develop a fast implementation of the candidate list strat-
egy.

We introduced the evaluation ratio r only to compare the in-
stances that have different numbers of inequality signs from each
other. However, this criterion can be used to compare any two
instances. In Table 3, the ranges of the evaluation ratios are dif-
ferent between original instances even if they have the same n.
We conjecture that the range should be strongly affected by the
Latin square of the unique solution. We are interested in what
kind of Latin squares induce a highly rated Futoshiki instance.
We are also interested in the relationship between the evaluation
ratio and the difficulty level. These are left for future work.

References

[1] Davis, T.: The Mathematics of Sudoku (online), available from
(http://www.geometer.org/mathcircles/sudoku.pdf) (accessed 2011-06-
01).

[2] Flueckiger, M.: Sudoku-Puzzles.net (online), available from
(http://www.sudoku-puzzles.net/) (accessed 2011-06-01).

[3] Haraguchi, K., Abe, Y. and Maruoka, A.: How to Produce BlockSum
Instances with Various Levels of Difficulty, Journal of Information Pro-
cessing, Vol.20, No.3, pp.727-737 (2012).

[4] Johnson, A.: Simple Sudoku (online), available from
(http://www.angusj.com/sudoku/) (accessed 2011-06-01).

[5] Lewis, R.: Metaheuristics can solve sudoku puzzles, Journal of Heuris-
tics, Vol.13, pp.387-401 (2007).

[6] Simonis, H.: Sudoku as a Constraint Problem, Proc. 4th Interna-
tional Workshop of Modelling and Reformulating Constraint Satisfac-
tion Problems, pp.13-27 (2005).

Kazuya Haraguchi received his B.E.,
Master of Informatics, and Doctor of In-
formatics from Kyoto University, in 2001,
2003 and 2007, respectively. He is cur-
rently with the Department of Informa-
tion Technology and Electronics, Faculty
of Science and Engineering, Ishinomaki

Senshu University. His interests include
algorithms, optimization, and their application to artificial intelli-
gence and operations research.

© 2013 Information Processing Society of Japan

