
Journal of Information Processing Vol.21 No.1 9–15 (Jan. 2013)

[DOI: 10.2197/ipsjjip.21.9]

Regular Paper

An Approach to VCG-like Approximate Allocation and
Pricing for Large-scale Multi-unit Combinatorial Auctions

Naoki Fukuta1,a)

Received: January 27, 2012, Accepted: April 2, 2012

Abstract: A multi-unit combinatorial auction is a combinatorial auction that has some items that can be seen as in-
distinguishable. Although the mechanism can be applied to dynamic electricity auctions and various purposes, it is
difficult to apply to large-scale auction problems due to its computational intractability. In this paper, I present an idea
and an analysis about an approximate allocation and pricing algorithm that is capable of handling multi-unit auctions.
The analysis shows that the algorithm effectively produces approximation allocations that are necessary in pricing.
Furthermore, the algorithm can be seen as an approximation of VCG (Vickrey-Clarke-Groves) mechanism satisfying
budget balance condition and bidders’ individual rationality without having unrealistic assumptions on bidders’ be-
haviors. I show that the proposed allocation algorithm successfully produced good allocations for those problems that
could not be easily solved by ordinary LP solvers due to hard time constraints.

Keywords: combinatorial auction, approximation, resource allocation, pricing algorithm

1. Introduction

A multi-unit combinatorial auction is a combinatorial auction
in that some items can be seen as indistinguishable. A combi-
natorial auction is an auction that allows bidders to place bids
for a combination of items rather than a single item [1]. As de-
scribed in many literatures [1], [2], [3], combinatorial auctions [1]
that are one of the most popular market mechanisms, have a huge
effect on electronic markets and political strategies. Combina-
torial auctions provide suitable mechanisms for efficient alloca-
tion of resources to self-interested attendees [1]. Therefore, many
works have been done to utilize combinatorial auction mecha-
nisms for efficient resource allocation [1]. For example, the FCC
(Federal Communications Commission) tried to employ combi-
natorial auction mechanisms for assigning spectrums to compa-
nies [3]. Also some possible applications have been investigated
for the procurement of frieght transportation [4]. However, to
make combinatorial auctions fully functional in such a situation,
a special mechanism to calculate each winner’s payment should
be applied. VCG (Vickery-Clarke-Groves) mechanism is a ma-
jor approach to calculate such payments [1], [5], [6]. In VCG, it
repeatedly calculates winners of slightly different auction prob-
lems. Since winner determination for such an auction can be an
NP-hard combinatorial optimization problem [1], it has been in-
vestigated to make such a mechanism computationally tractable.

Multi-unit combinatorial auctions are expected to be used on
many problems that include quantitative or countable items [7],
[8], [9], [10]. To overcome the winner determination problem,
many approaches have been proposed. For example, Zurel et

1 Faculty of Informatics, Shizuoka University Hamamatsu, Shizuoka 432–
8011, Japan

a) fukuta@cs.inf.shizuoka.ac.jp

al. proposed a heuristic approach that combines approximation
of LP and a local search algorithm [11]. Also a parallel greedy
approach [12], performance analyses of algorithms [13], [14], a
theoretical investigations [15], [16], and its possible enhance-
ments [17] have been proposed. However, they are mainly fo-
cused on single-unit auction scenarios and they cannot be easily
applied to multi-unit scenarios [18].

There are some approaches to solve winner determination
problem specifically on multi-unit combinatorial auctions [19],
[20]. However, they did not consider how their approximation al-
gorithms can be extended to make efficient pricing [21]. The only
work that considers this concern is Hafalir’s work [21]. However,
their work mainly focused on single-item multi-unit scenario but
does not cover combinatorial and multi-unit auctions.

In this paper, I present an idea and an analysis about an ap-
proximation approach that employs an approximate allocation
and pricing algorithm that is capable to handle multi-unit auc-
tions efficiently. The pricing mechanism is based on the fast ap-
proximate allocation algorithm that behaves as an approximation
of VCG mechanism and also satisfies budget balance condition
and individual rationality without having an assumption called
single-minded bidders [22]. I show that the proposed allocation
algorithm successfully produced good allocations for those prob-
lems that could not be easily solved by ordinary LP (Linear Pro-
gramming) solvers due to hard time constraints.

2. Preliminary

2.1 Multi-unit Combinatorial Auctions
Combinatorial auction is an auction that allows bidders to place

bids for a combination of items rather than a single item [1]. The
winner determination problem on single unit combinatorial auc-
tions is defined as follows [1]: The set of bidders is denoted by

c© 2013 Information Processing Society of Japan 9

Journal of Information Processing Vol.21 No.1 9–15 (Jan. 2013)

N = {1, . . . , n}, and the set of items by M = {m1, . . . ,mk}. |M| = k.
Bundle S is a set of items: S ⊆ M. I denote by vi(S), bidder i’s
valuation of the combinatorial bid for bundle S . An allocation of
the items is described by variables xi(S) ∈ {0, 1}, where xi(S) = 1
if and only if bidder i wins bundle S . An allocation, xi(S), is
feasible if it allocates no item more than once, for all j ∈ M.

∀ j ∈ M
∑

i∈N

∑

S� j

xi(S) ≤ 1

The winner determination problem is the problem to maximize
total revenue for feasible allocations X � xi(S).

Note that I used simple OR-bid representation as the bidding
language. Substitutability can be represented by a set of atomic
OR-bids with dummy items [1].

When some items in auction can be replaceable each other,
i.e., they are indistinguishable, the auction is called multi-unit
auction. Multi-unit combinatorial auction is the case when some
items are indistinguishable in a combinatorial auction [1].

2.2 Extending Lehmann’s Approximation Approach
Lehmann’s greedy algorithm [22] is a very simple but powerful

linear algorithm for winner determination in combinatorial auc-
tions. Here, a bidder declaring < s, a >, with s ⊆ M and a ∈ R+
will be said to put out a bid b =< s, a >. The greedy algorithm
can be described as follows. (1) The bids are sorted by some cri-
terion. In Ref. [22], Lehmann et al. proposed sorting list L by
descending average amount per item. More generally, they pro-
posed sorting L by a criterion of the form a/|s|c for some number
c, c ≥ 0, possibly depending on the number of items, k. (2) A
greedy algorithm generates an allocation. L is the sorted list in
the first phase. It walks down the list L, and allocates items to
bids whose items are still unallocated.

The allocation algorithm can naturally be extended to multi-
unit combinatorial auction problems. However, they did not men-
tion about the applicability to multi-unit combinatorial auctions
in their paper.

In Refs. [12], [13], and [17], it has shown that their
hill-climbing approach outperforms SA [12], SAT-based algo-
rithms [23], LP-based heuristic approximation approach [11], and
a recent LP solver product in the setting when an auction has a
massively large number of bids but the given time constraint is
very hard. However, the algorithm is designed for single-unit
combinatorial auction problems so it cannot be applied to multi-
unit problems directly.

2.3 Winner Approximation and Pricing
It is crucial for a combinatorial auction mechanism to have

proper pricing mechanism. In VCG (Vickery-Clarke-Groves)
mechanism, prices that winners will pay will be given as fol-
lows [5]. A payment pn for a winner n is calculated by

pn = αn −
∑

i�n,S⊆M

vi(S)xi(S)

Here, the right part of the right side of the equation denotes the
sum of all bidding prices of won bids, excluding the bids that
are placed by the bidder n. The left part of the right side of the
equation, αn is defined by

αn = max
∑

i�n,S⊆M

vi(S)xi(S)

for a feasible allocation X � xi(S). This means that the αn is the
sum of all bidding prices of won bids when the allocation is de-
termined as if a bidder n does not place any bids for the auction.

In Ref. [5], Nisan et al. showed that optimal allocations should
be used for VCG-based pricing to make the auction incentive
compatible (i.e., revealing true valuations is the best strategy for
each bidders). Also, Lehmann et al. showed that VCG-based
pricing with approximate winner determination will not make the
auction incentive compatible even when it is assumed that all bid-
ders are single-minded (i.e., each bidder can only place single bid
at each auction) [22].

To overcome this issue, Lehmann et al. prepared a special pric-
ing mechanism that can only be applied to their approximate
greedy winner determination [22]. However, this pricing mech-
anism can only be applied to their allocation algorithm and can-
not be applied to other approximation allocation algorithms. Also
the mechanism is incentive compatible only when single-minded
bidders are assumed [22]. Another approach has been proposed
to realize tractable and incentive compatible combinatorial auc-
tions in Ref. [24] based on partial search and LP-based approach.
However, it requires much stronger assumptions called “known
single minded bidders” [24].

The main problem in which VCG-based pricing is applied to
approximation allocation of items is that there are the cases that:
(1) the price for a won bid is rather higher than the bid price, and
(2) the price for a won bid is less than zero, it means the bidder
will win the items and also obtain some money rather than paying
for it [5]. In the situation of (1), it violates individual rationality
(i.e., the one will not pay a higher price than the placed bid when
the one won the bundle of items). Also the situation of (2) is not
preferable for both auctioneers and sellers.

3. Proposed Algorithm

In this section, I propose an approximation allocation algo-
rithm for multi-unit combinatorial auctions, as follows.

The inputs are Alloc, L, and S tocks. L is the bid list of an auc-
tion. S tocks is the list of the number of auctioned units for each
distinguishable item type. Alloc is the initial greedy allocation of
items for the bid list.

1: function LocalSearch(Alloc, L, S tocks)

2: RemainBids:= L - Alloc;

3: sortByLehmannC(RemainBids);

4: for each b ∈ RemainBids

5: RestS tocks:=getRestS tocks({b}, S tocks);

6: AllocFromWinners:=greedyAlloc(RestS tocks, Alloc);

7: RestS tocks:=

8: getRestS tocks(AllocFromWinners + {b},RestS tocks);

9: AllocFromRest:=

10: greedyAlloc(RestS tocks,RemainBids − {b});
11: NewAlloc:=

12: {b} + AllocFromWinners + AllocFromRest;

13: if price(Alloc) < price(NewAlloc) then

14: return LocalSearch(NewAlloc,L,S tocks);

c© 2013 Information Processing Society of Japan 10

Journal of Information Processing Vol.21 No.1 9–15 (Jan. 2013)

15: end for each

16: return Alloc

The function sortByLehmannC(Bids) has an argument Bids.
The function sorts the list of bids Bids by descending or-
der of Lehmann’s weighted bid price. The result are di-
rectly stored (overwritten) to the argument Bids. The func-
tion getRestS tocks(Bids, S tocks) has two arguments: Bids and
S tocks. The function returns how many unit of items will remain
after allocating the items in S tocks to the list of bids Bids. The
function greedyAlloc(S tocks, Bids) has two arguments: S tocks

and Bids. The function allocates the items in S tocks to the list
of bids Bids by using Lehmann’s greedy allocation, and then the
winner bids are returned as the return value. The function price

calculates the sum of bidding prices for bids specified in the ar-
gument.

The optimality of allocations got by Lehmann’s algorithm (and
the following hill-climbing) deeply depends on which value was
set as the bid sorting criterion c. Again, in Ref. [22], Lehmann
et al. argued that c = 1/2 is the best parameter for approxima-
tion when the norm of the worst case performance is consid-
ered. However, the optimal values for each auction are varied
from 0 to 1 even if the number of items is constant. There-
fore, an enhancement has been proposed for this kind of local
search algorithms by using parallel searches for multiple sort-
ing criterion c [12]. Although the proposed enhancement is pri-
marily designed for single-unit combinatorial auctions, this ap-
proach can be applied to the above mentioned approximation al-
gorithm for multi-unit combinatorial auctions. In the algorithm,
the value of c for Lehmann’s algorithm is selected from a pre-
defined list. It is reasonable to select c from neighbors of 1/2,
namely, C = {0.0, 0.1, . . . , 1.0}. The results are aggregated and
the best one (i.e., that has the highest revenue) is selected as the
final result *1.

To realize a pricing mechanism that receives little effect from
the winners bid prices, I use the following algorithm. The inputs
are Alloc, L, and S tocks. L is the bid list of an auction. S tocks is
the list of the number of auctioned units for each distinguishable
item type. Alloc is the initial allocation of items for the bid list
that is obtained by the previously defined LocalS earch function.

1: function transformToSWPM(Alloc, L, S tocks)

2: RemainBids:= L - Alloc;

3: sortByLehmannC(RemainBids);

4: clear(payment);

5: for each b ∈ Alloc

6: RestS tocks:=getRestS tocks(Alloc − {b}, S tocks);

7: AllocForB:=greedyAlloc(RestS tocks,RemainBids);

8: NewAlloc:=Alloc-{b} + AllocForB;

9: if price(Alloc) < price(NewAlloc) then

10: return transformToSWPM(NewAlloc,L,S tocks);

11: else paymentb = price(NewAlloc) − price(Alloc − {b})
12: end for each

13: return (Alloc,payment)

*1 An analysis discussing the sensitivity of value c used in this kind of al-
gorithms has been presented in Ref. [17].

The above algorithm computes the price to be paid for each
winner bid. The payment price for a winner bid b is denoted
by paymentb, and it’s value is obtained by price(NewAlloc) −
price(Alloc − {b}). When the obtained payment price is higher
than the bidding price of the winner bid, the algorithm discards
the winner bid and place the items to AllocForB. Finally, the al-
gorithm produces modified allocations Alloc and their payment
prices payment that satisfies budget constraints for bidders.

For simplicity of description, the above algorithm is written
with single-minded bidders assumption. To extend the algorithm
without the assumption can be realized by just replacing {b} with
the all bids that come from the bidder of {b}.
4. Evaluation

4.1 Experiment Settings
For the evaluation of winner determination performance on

combinatorial auction, LeytonBrown et al. proposed CATS
benchmark testsuite [7]. However, even if multi-unit auction is
referred in Ref. [7], CATS suite does not include any data gener-
ation algorithm for multi-unit combinatorial auction. Therefore,
I extended existing auction problem generation algorithm to sup-
port multi-unit auctions by the following way *2.

Extending CATS standard dataset to multi-unit problems:
Each auction problem generation algorithm in CATS generates
artificial bids for a fixed size of items. The generated auction
problems are single-unit combinatorial auction problems where
each item in the auction has only one stock and these items are
distinguished each other. When I consider each item has many
stocks in a small size auction, the allocation problem could be
rather much easier than that of single stocks since many conflicts
(i.e., the situation that some bids placed to a set that includes an
identical item) among bids can be automatically solved by allo-
cating items to such conflicting bids. So, in the situation, many
bids could win the items and only a limited number of bids might
fail to win the items. However, when there are a huge number of
bids in a single-unit combinatorial auction, the problem could be
complex enough even when I assume there are a certain number
of stocks for each item in the auction. Here, I extend the dataset
produced by CATS workbench by adding number of stocks for
each non-dummy item in an auction. I call this ‘the number of
stocks for each item’ approach.

This representation is also useful for representing items that
can be shared with a limited number of people. For example,
when I represent a fact that a radio frequency band can be shared
by three devices at a time, the stocks for the item (i.e., the num-
ber of shared users for the bandwidth) is set to 3 in the auction.
Also this representation does not have to generate a large number
of bids even when the number of stocks is large. Another repre-
sentation could be based on a representation of indistinguishable
relationships among items but this representation inevitably gen-
erates a large number of definitions for such relationships. There-
fore, I use ‘the number of stocks for each item’ approach here.

The actual preparations of datasets have been done as follows.
I used the bid distributions (i.e., the way to generate bids for

*2 A preliminary analysis about this issue has been presented in Ref. [18].

c© 2013 Information Processing Society of Japan 11

Journal of Information Processing Vol.21 No.1 9–15 (Jan. 2013)

items) that are defined and usable for generating the auction prob-
lems with a specified number of bids. Here I chose 20,000 bids
and 100,000 bids for each auction so I chose the bid distribu-
tion L2, L3, L4, L6, L7, arbitrary, matching, paths, regions, and
scheduling *3. I prepared 100 auction problems for each bid dis-
tribution for both the size of 20,000 bids and 100,000 bids in
an auction. I used those settings to make the results comparable
to other papers [13]. The bid distribution names were borrowed
from Ref. [7] *4. Here, to keep the meaning of data generation
algorithms, I chose fixed values for those stocks (e.g., every item
has 4 stocks). I chose four fixed values, 2, 4, 16, and 256 for the
number of stocks.

Note that, as mentioned before, in multi-unit auction problems,
some bids that could be treated as dominated bids (e.g., having a
higher-price bid for the same bundle of items) in single-unit auc-
tion problems could be winners of the auction. Therefore, I did
not remove such bids in the bid generation process of the original
single-unit auction problems by CATS.

Evaluating overheads to support multi-unit problems: It
is said that the difficulty of winner determination in single-unit
combinatorial auction problems is sometimes rather more diffi-
cult than that in multi-unit problems [2]. Therefore, some algo-
rithms are focused on single-unit problems and they may behave
better than an algorithm which also supports multi-unit prob-
lems. For comparison to existing winner determination algo-
rithms that only support single-unit combinatorial auctions, I pre-
pared a dataset with 20,000 bids in a single-unit combinatorial
auction. The dataset was produced by CATS [7] with default pa-
rameters in 5 different distributions. They contain 100 trials for
each distribution, and the number of bids does not include the
number of dominated bids since they have been removed in this
setting. Each trial is an auction problem with 256 items *5.

Compared algorithms: In this analysis, I compared the
following search algorithms: greedyL(C=0.5) uses Lehmann’s
greedy allocation algorithm [22] with parameter (c = 0.5).
HC(c=0.5) uses a local search in which the initial allocation is
Lehmann’s allocation with c = 0.5 and conducts the hill-climbing
search [12]. HC-3 uses the best results of the hill-climbing search
with parameter (0 ≤ c ≤ 1 in 0.5 steps) [12], [13]. MHC(c=0.5)

and MHC-3 are the proposed multi-unit enabled algorithms ex-
tended from HC(c=0.5) and MHC-3, respectively. greedyO

means a simple greedy allocation of the received bids by the in-
put order. SA uses simulated annealing algorithm presented in
Ref. [12]. I denote the Casanova algorithm [23] as casanova and
Zurel’s algorithm [11] as Zurel. Also I denote results of 1st stage
of Zurel’s algorithm as Zurel-1st. Note that Zurel’s algorithm
does not produce any approximation result until completing its
1st stage. cplex is the result of CPLEX within the specified time
limit.

Comparison criteria: Since it is really difficult to obtain the
maximum revenue for an auction problem, I have compared algo-

*3 The reason why there are some missing number (e.g., L1, and L5,) is
mainly the difficulty of generating the necessary number of bids by such
bid distributions.

*4 For more details about each bid distribution, see Ref. [7].
*5 For easiness of comparisons, here I used the same distributions that ap-

peared in Ref. [13].

rithms with the values computed by average revenue ratio [13]. I
use the same approach to evaluate performances of algorithms on
single-unit auction problems.

Let A be a set of algorithms, z ∈ A be the Zurel’s approxima-
tion algorithm, L be a dataset generated for this experiment, and
revenuea(p) such that a ∈ A be the revenue obtained by algo-
rithm a for a problem p such that p ∈ L, the average revenue ratio
ratioAa(L) for algorithm a ∈ A for dataset L is defined as follows:

ratioAa(L) =

∑
p∈L revenuea(p)
∑

p∈L revenuez(p)

Here, I use ratioAa(L) for my comparison of algorithms on
single-unit auction problems.

Unfortunately, since Zurel’s approximation algorithm is de-
signed for single-unit auction problems, the same evaluation
function cannot be applied.

Here, I use another approach that is based on the optimality
ratio to the best one in the average on each bid distribution.

Let A be a set of algorithms, L be a dataset generated for this
experiment, and revenuea(p) such that a ∈ A be the revenue ob-
tained by algorithm a for a problem p such that p ∈ L, the average
revenue ratio ratioMa(L) for algorithm a ∈ A for dataset L is de-
fined as follows:

ratioMa(L) =

∑
p∈L revenuea(p)

maxm∈A(
∑

p∈L revenuem(p))

Here, I use ratioMa(L) for my comparison of algorithms on
multi-unit auction problems. I also showed the actual compu-
tation time for obtaining the approximation allocations.

Evaluating pricing performance: In addition to above-
mentioned comparisons, I compared the performance of the pro-
posed pricing mechanism. Since the pricing mechanism itself
may modify the allocations, I compared the algorithms in ratioB,
and execution time to complete allocations and pricing.

Experiment environment: I implemented algorithms in
a C program for the following experiments. I also implemented
the Casanova algorithm [23] in a C program. For Zurel’s algo-
rithm, I used Zurel’s C++ based implementation that is shown in
Ref. [11] with the suggested value for epsilon. Also I used
CPLEX Interactive Optimizer 11.0.0 (32 bit) in the experiments.
The experiments were done with above implementations to exam-
ine the performance differences among algorithms. The programs
were run on a Mac with Mac OS X 10.4, a CoreDuo 2.0 GHz
CPU, and 2 GBytes of memory.

4.2 Results
Table 1 shows the performance ratioA of approximate win-

ner determination in single-unit auction problems. Here, I ex-
pect some computational overheads to support multi-unit auction
problems. However, the overheads can be seen as very small
compared with the results of HC-3 and MHC-3, HC(c=0.5) and
MHC(c=0.5), respectively. In both cases, the obtained results
within 100 msec are slightly lower than the results of single-unit
optimized algorithms. However, the results within 1,000 msec are
rather slightly higher than the results obtained by single-unit opti-
mized algorithms. Note that this result does not mean that MHC-

3 and MHC(c=0.5) are always better when the time increases.

c© 2013 Information Processing Society of Japan 12

Journal of Information Processing Vol.21 No.1 9–15 (Jan. 2013)

Table 1 Winner Determination Performance on Single-Unit Auctions (20,000 bids-256 items).

L2 L3 L4 L6 L7 average
greedyL(c=0.5) 1.0002 (7.3) 0.9639 (6.8) 0.9417 (7.1) 0.9389 (6.4) 0.7403 (8.3) 0.9170 (7.2)

HC(c=0.5)-100 ms 1.0004 (100) 0.9742 (100) 0.9576 (100) 0.9532 (100) 0.8335 (100) 0.9438 (100)
HC-3-seq-100 ms 1.0004 (100) 0.9698 (100) 1.0000 (100) 0.9966 (100) 0.8723 (100) 0.9678 (100)
HC-3-para-100 ms 1.0004 (100) 0.9742 (100) 1.0001 (100) 0.9969 (100) 0.9438 (100) 0.9831 (100)

MHC(c=0.5)-100 ms 1.0004 (100) 0.9843 (100) 0.9755 (100) 0.9532 (100) 0.7980 (100) 0.9423 (100)
MHC-3-seq-100 ms 1.0004 (100) 0.9787 (100) 1.0009 (100) 0.9966 (100) 0.8238 (100) 0.9601 (100)
MHC-3-para-100 ms 1.0004 (100) 0.9844 (100) 1.0012 (100) 0.9969 (100) 0.9981 (100) 0.9784 (100)
HC(c=0.5)-1,000 ms 1.0004 (1,000) 0.9850 (1,000) 0.9757 (1,000) 0.9638 (1,000) 1.0102 (1,000) 0.9870 (1,000)
HC-3-seq-1,000 ms 1.0004 (1,000) 0.9795 (1,000) 1.0003 (1,000) 0.9975 (1,000) 1.0062 (1,000) 0.9968 (1,000)
HC-3-para-1,000 ms 1.0004 (1,000) 0.9850 (1,000) 1.0006 (1,000) 0.9985 (1,000) 1.0236 (1,000) 1.0016 (1,000)

MHC(c=0.5)-1,000 ms 1.0004 (1,000) 0.9973 (1,000) 0.9909 (1,000) 0.9638 (1,000) 0.9862 (1,000) 0.9877 (1,000)
MHC-3-seq-1,000 ms 1.0004 (1,000) 0.9914 (1,000) 1.0012 (1,000) 0.9975 (1,000) 0.9835 (1,000) 0.9947 (1,000)
MHC-3-para-1,000 ms 1.0004 (1,000) 0.9973 (1,000) 1.0012 (1,000) 0.9985 (1,000) 1.0166 (1,000) 1.0027 (1,000)

SA-1,200 ms 1.0004 (1,200) 0.9773 (1,200) 0.9594 (1,200) 0.9449 (1,200) 1.0083 (1,200) 0.9781 (1,200)
Zurel-1st 0.5710 (11,040) 0.9690 (537) 0.9983 (2,075) 0.9928 (1,715) 0.6015 (1,796) 0.8265 (3,433)

Zurel 1.0000 (13,837) 1.0000 (890) 1.0000 (4,581) 1.0000 (4,324) 1.0000 (3,720) 1.0000 (5,470)
casanova-10 ms 0.2795 (10) 0.0074 (10) 0.0282 (10) 0.0376 (10) 0.7142 (10) 0.2134 (10)
casanova-100 ms 0.7216 (100) 0.1631 (100) 0.1377 (100) 0.1921 (100) 0.7776 (100) 0.3984 (100)

casanova-1,000 ms 0.9951 (1,000) 0.6478 (1,000) 0.4095 (1,000) 0.4578 (1,000) 0.8787 (1,000) 0.6778 (1,000)
cplex-100 ms 0.0000 (288) 0.0000 (121) 0.0299 (111) 0.0000 (150) 0.0000 (119) 0.0060 (158)
cplex-333 ms 0.0000 (489) 0.0000 (393) 0.9960 (497) 0.9716 (354) 0.0000 (487) 0.3935 (444)

cplex-1,000 ms 0.0000 (1,052) 0.0000 (1,039) 0.9960 (1,143) 0.9716 (1,140) 0.0000 (2,887) 0.3935 (1,452)
cplex-3,000 ms 0.0000 (9,171) 0.9338 (3,563) 0.9964 (3,030) 0.9716 (3,077) 0.0000 (3,090) 0.5804 (4,386)

(each value in () is time in milliseconds)

Table 2 Detailed Winner Determination Performance on Multi-Unit Auctions (20,000 bids-256items,
with dominated bids, stocks=16).

MHC-3-para-100 ms MHC-3-para-1,000 ms greedyL(c=0.5) greedyO cplex-1,000 ms cplex-3,000 ms
L2 1.0000 (100) 1.0000 (1,000) 0.9992 (7.3) 0.4714 (1.8) 0.0000 (1,801) 0.0000 (3,547)
L3 0.9967 (100) 1.0000 (1,000) 0.9925 (6.3) 0.5222 (0.6) 0.0000 (1,143) 1.0000 (3,039)
L4 0.9949 (100) 0.9963 (1,000) 0.9200 (5.5) 0.5294 (0.5) 0.2399 (1,058) 0.0000 (1,661)
L6 0.9976 (100) 1.0000 (1,000) 0.9286 (7.8) 0.5185 (1.3) 0.0000 (1,102) 0.0000 (3,086)
L7 0.9784 (100) 1.0000 (1,000) 0.9272 (9.5) 0.4720 (0.7) 0.0000 (1,119) 0.0000 (3,043)

arbitrary 0.9897 (100) 1.0000 (1,000) 0.9276 (7.8) 0.8503 (0.9) 0.0000 (1,018) 1.0000 (3,056)
matching 0.9869 (100) 0.9882 (1,000) 0.9857 (6.0) 0.8705 (0.1) 0.9999 (711) 0.9595 (784)

paths 0.9945 (100) 1.0000 (1,000) 0.9824 (5.8) 0.7595 (0.5) 0.0056 (1,026) 0.0000 (4,495)
regions 0.9908 (100) 1.0000 (1,000) 0.9071 (7.5) 0.8039 (0.5) 0.0000 (1,017) 1.0000 (3,063)

scheduling 1.0000 (100) 1.0000 (1,000) 1.0000 (2.8) 0.9470 (0.4) 1.0000 (501) 0.3371 (501)
average 0.9930 (100) 0.9984 (1,000) 0.9570 (6.6) 0.6745 (0.7) 0.2245 (1,050) 0.4297 (2,627)

(each value in () is time in milliseconds)

Table 3 Average Winner Determination Performance on Multi-Unit Auctions (20,000 bids-256 items,
with dominated bids, stocks=2, 4, 16, 256).

stocks MHC-3-para-100 ms MHC-3-para-1,000 ms greedyL(c=0.5) greedyO cplex-1,000 ms cplex-3,000 ms
2 0.9669 (100) 0.9845 (1,000) 0.9122 (6.6) 0.5998 (0.4) 0.2016 (1,168) 0.6161 (2,864)
4 0.9774 (100) 0.9879 (1,000) 0.9286 (6.8) 0.6227 (0.6) 0.2952 (1,217) 0.5523 (2,658)

16 0.9930 (100) 0.9984 (1,000) 0.9570 (6.6) 0.6745 (0.7) 0.2245 (1,050) 0.4297 (2,627)
256 0.9982 (100) 0.9992 (1,000) 0.9942 (7.7) 0.8366 (1.4) 0.5000 (766) 0.5396 (1,728)

(each value in () is time in milliseconds)

Rather it depends on the settings and their differences are quite
small.

Table 2 shows the performance ratioM of approximate winner
determination in multi-unit auction problems that are extended
from single-unit problems. Note that the values are represented
as ratioM, and each auction problem has 20,000 bids for 256 kind
of items. In Table 2, the shown result is the detailed performance
in each bid distributions when the number of stocks for each auc-
tion problem is 16. Table 3 shows the average results for all bid
distributions when the number of stocks for each auction problem
is 2, 4, 16, or 256.

Here, since I did not increase the number of bids while the
number of stocks increases, the auction problems tend to be easy
to be solved when the number of stocks becomes larger. Hence, in
some bid distributions, both CPLEX and the proposed approach
obtained the same (i.e., optimal) results and in some other cases

CPLEX can obtain better results compared to the proposed ap-
proach. However, since in other bid distributions CPLEX could
not even obtain any intermediate approximation results within
the specified time, the greedy-based approaches (i.e., MHC-3 and
greedyL(c=0.5)) obtained totally good results in the average.

Table 4 shows the results in the setting of 100,000 bids in each
auction. In Table 4, It can be seen that in many bid distribu-
tions, CPLEX could not obtain intermediate approximation re-
sults since the size of each problem is much larger than the case
of 20,000 bids. Also it can be seen that the optimality on MHC-

3 is still high even when that of greedyL(c=0.5) has dropped on
this setting.

Table 5 shows the performance ratioM of approximate win-
ner determination when the proposed pricing mechanism is ap-
plied for each approximate allocation obtained by the shown ap-
proximate winner determination algorithms. The used dataset

c© 2013 Information Processing Society of Japan 13

Journal of Information Processing Vol.21 No.1 9–15 (Jan. 2013)

Table 4 Average Performance on Multi-Unit Auctions (100,000 bids-256 items, with dominated bids,
stocks=2, 4, 16, 256).

n.of stocks MHC-3-para-100 ms MHC-3-para-1,000 ms greedyL(c=0.5) greedyO cplex-1,000 ms cplex-3,000 ms
2 0.9848 (100) 0.9943 (1,000) 0.9202 (40.2) 0.5850 (1.8) 0.0011 (1,788) 0.1119 (3,550)
4 0.9865 (100) 0.9934 (1,000) 0.9325 (40.6) 0.6044 (2.3) 0.0000 (1,784) 0.1104 (3,538)

16 0.9948 (100) 0.9987 (1,000) 0.9491 (40.8) 0.6447 (2.8) 0.0000 (1,785) 0.1093 (3,597)
256 0.9989 (100) 1.0000 (1,000) 0.9778 (44.0) 0.7275 (3.5) 0.0000 (1,787) 0.1143 (3,560)

(each value in () is time in milliseconds)

Table 5 Detailed Pricing Performance on Multi-Unit Auctions (20,000
bids-256 items, with dominated bids, stocks=16).

MHC-3-para-100 ms greedyL(c=0.5) greedyO
L2 1.0000 (157) 0.9994 (57) 0.6932 (6,057)
L3 1.0000 (744) 0.9988 (764) 0.7064 (36,503)
L4 1.0000 (414) 0.9705 (23,761) 0.8664 (66,774)
L6 1.0000 (292) 0.9497 (7,207) 0.7380 (34,904)
L7 1.0000 (475) 0.9771 (364) 0.7886 (1,091)

arbitrary 1.0000 (13,273) 0.9577 (4,071) 0.8883 (6,483)
matching 1.0000 (19,633) 0.9996 (22,137) 0.9718 (118,207)

paths 1.0000 (95,337) 0.9969 (84,245) 0.9889 (49,906)
regions 1.0000 (26,031) 0.9731 (14,288) 0.9461 (18,883)

scheduling 1.0000 (140) 1.0000 (51) 0.9663 (58)
average 1.0000 (15,650) 0.9823 (15,695) 0.8554 (33,886)

(each value in () is time in milliseconds)

is the same that is used in Table 2, but the results for CPLEX
are omitted due to its low performance on the experiment set-
ting. Although the actual execution time for the pricing mech-
anism deeply depends on the number of winners in each auc-
tion problem, the average total execution time on MHC-3-para-

100 ms is somewhat faster than that on greedyO, and also it is
slightly faster than that on greedyL(c=0.5). Furthermore, the
performance ratioM of MHC-3-para-100 ms is higher than the
others. This shows that the combination of MHC-3-para-100 ms

and the proposed pricing mechanism can work better than other
combinations on the experiment setting.

5. Conclusions

In this paper, I introduced a mechanism that employs an ap-
proximate allocation algorithm that is capable of handling huge
size multi-unit auctions. The proposed pricing mechanism was
built based on the fast approximate allocation algorithm that be-
haves as an approximation of VCG and also satisfies budget bal-
ance conditions and individual rationality without having single-
minded bidders assumption. Throughout these experiments, I
showed that the proposed allocation algorithm MHC-3 success-
fully produced good allocations for those problems that cannot be
easily solved by ordinary LP solvers due to hard time constraints.
Furthermore, the proposed combination of MHC-3 allocation al-
gorithm and the VCG-like approximate pricing algorithm is even
faster than other combinations with simple greedy allocation al-
gorithms.

Limitations in the proposed approach include the low revenue
problem for the sellers which also appears in VCG [1], [22], and
the lack of detailed theoretical considerations for incentive com-
patibility. In Ref. [22], Lehmann et al. pointed out that an incen-
tive compatible auction protocol should satisfy four requirements:
Exactness, Monotonicity, Critical, and Participation. The pro-
posed algorithm does not have enough theoretical investigations
to satisfy Monotonicity, i.e., it guarantees that a winner should
be still a winner even when its bidding price is increased in the

same auction. There is a proof that a similar greedy allocation
algorithm does not satisfy Monotonicity [15]. Furthermore, on an
online scenario, an auction mechanism does not always satisfy in-
centive compatibility even when it employs VCG-based pricing
with optimal winner allocations [25]. Obtaining an approxima-
tion allocation algorithm which guarantees Monotonicity by us-
ing sensitivity analysis or other related approaches (e.g., Ref. [26]
etc.) is one of future work.

Acknowledgments The work was partly supported by
Grants-in-Aid for Young Scientists (B) 22700142.

References

[1] Cramton, P., Shoham, Y. and Steinberg, R. (Eds.): Combinatorial Auc-
tions, The MIT Press (2006).

[2] Sandholm, T., Suri, S., Gilpin, A. and Levine, D.: CABOB: A Fast
Optimal Algorithm for Winner Determination in Combinatorial Auc-
tions, Management Science, Vol.51, No.3, pp.374–390 (2005).

[3] McMillan, J.: Selling Spectrum Rights, The Journal of Economic Per-
spectives, Vol.8, No.3, pp.145–162 (1994).

[4] Caplice, C. and Sheffi, Y.: Combinatorial Auctions for Truckload
Transportation, Combinatorial Auctions, Cramton, P., Shoham, Y. and
Steinberg, R. (Eds.), chapter 21, pp.539–571, The MIT Press (2006).

[5] Nisan, N. and Ronen, A.: Computationally feasible VCG mecha-
nisms, Proc. ACM Conference on Electronic Commerce (EC2000),
pp.242–252 (2000).

[6] Parkes, D.C. and Shneidman, J.: Distributed Implementations
of Vickrey-Clarke-Groves Mechanisms, Proc. International Joint
Conference on Autonomous Agents and Multi Agent Systems
(AAMAS2004), New York, USA, pp.261–268 (2004).

[7] Leyton-Brown, K., Pearson, M. and Shoham, Y.: Towards a Universal
Test Suite for Combinatorial Auction Algorithms, Proc. ACM Confer-
ence on Electronic Commerce (EC2000), pp.66–76 (2000).

[8] de Vries, S. and Vohra, R.V.: Combinatorial Auctions: A Survey,
International Transactions in Operational Research, Vol.15, No.3,
pp.284–309 (2003).

[9] Fukuta, N. and Ito, T.: Toward Combinatorial Auction-based Bet-
ter Electric Power Allocation on Sustainable Electric Power Sys-
tems, Proc. International Workshop on Sustainable Enterprise Soft-
ware (SES2011), pp.392–399 (online), DOI: 10.1109/CEC.2011.64
(2011).

[10] Fukuta, N. and Ito, T.: An Approach to Sustainable Electric Power
Allocation Using a Multi-Round Multi-Unit Combinatorial Auction,
Proc. International Workshop on Multi-agent Smart computing (MAS-
mart2011), pp.67–81 (2011).

[11] Zurel, E. and Nisan, N.: An Efficient Approximate Allocation Al-
gorithm for Combinatorial Auctions, Proc. 3rd ACM Conference on
Electronic Commerce (EC2001), pp.125–136 (2001).

[12] Fukuta, N. and Ito, T.: Towards Better Approximation of Winner De-
termination for Combinatorial Auctions with Large Number of Bids,
Proc. 2006 WIC/IEEE/ACM International Conference on Intelligent
Agent Technology (IAT2006), pp.618–621 (2006).

[13] Fukuta, N. and Ito, T.: Fine-grained Efficient Resource Allocation Us-
ing Approximated Combinatorial Auctions–A Parallel Greedy Winner
Approximation for Large-scale Problems, Web Intelligence and Agent
Systems: An International Journal, Vol.7, No.1, pp.43–63 (2009).

[14] Fukuta, N. and Ito, T.: Periodical Resource Allocation Using Ap-
proximated Combinatorial Auctions, Proc. 2007 WIC/IEEE/ACM In-
ternational Conference on Intelligent Agent Technology (IAT2007),
pp.434–441 (2007).

[15] Fukuta, N. and Ito, T.: Toward A Large Scale E-Market: A Greedy
and Local Search based Winner Determination, Proc. 20th Interna-
tional Conference on Industrial, Engineering and Other Applications
of Applied Intelligent Systems (IEA/AIE2007), pp.354–363 (2007).

[16] Fukuta, N. and Ito, T.: Winner Price Monotonocity for Approxi-

c© 2013 Information Processing Society of Japan 14

Journal of Information Processing Vol.21 No.1 9–15 (Jan. 2013)

mated Combinatorial Auctions, Proc. IEEE/WIC/ACM IAT Interna-
tional Workshop on Electronic Commerce, Business, and Services
(ECBS2008), pp.533–537 (2008).

[17] Fukuta, N. and Ito, T.: An Experimental Analysis of Biased Paral-
lel Greedy Approximation for Combinatorial Auctions, International
Journal of Intelligent Information and Database Systems, Vol.4, No.5,
pp.487–508 (online), DOI: 10.1504/IJIIDS.2010.035773 (2010).

[18] Fukuta, N.: Toward a VCG-like Approximate Mechanism for Large-
scale Multi-unit Combinatorial Auctions, Proc. IEEE/ACM/WIC In-
ternational Conference on Intelligent Agent Technologyb (IAT2011),
pp.317–322 (2011).

[19] Leyton-Brown, K., Shoham, Y. and Tennenholtz, M.: An Algorithm
for Multi-Unit Combinatorial Auctions, Proc. 17th National Confer-
ence on Artificial Intelligence (AAAI2000), pp.56–61 (2000).

[20] Gonen, R. and Lehmann, D.: Optimal Solutions for Multi-Unit Com-
binatorial Auctions: Branch and Bound Heuristics, Proc. ACM Con-
ference on Electronic Commerce (EC2000), pp.13–20 (2000).

[21] Hafalir, I., Ravi, R. and Sayedi, A.: Sort-Cut: A Pareto Optimal
and Semi-Truthful Mechanism for Multi-Unit Auctions with Budget-
Constrained Bidders (2009). July 16 2009, CMU Working Paper.

[22] Lehmann, D., O’Callaghan, L.I. and Shoham, Y.: Truth Revelation
in Rapid, Approximately Efficient Combinatorial Auctions, J. ACM,
Vol.49, pp.577–602 (2002).

[23] Hoos, H.H. and Boutilier, C.: Solving Combinatorial Auctions using
Stochastic Local Search, Proc. 17th National Conference on Artificial
Intelligence (AAAI2000), pp.22–29 (2000).

[24] Múalem, A. and Nisan, N.: Truthful Approximation Mechanisms for
Restricted Combinatorial Auctions, Games and Economic Behavior,
Vol.64, No.2, pp.612–631 (2008).

[25] Hajiaghayi, M.T., Kleinberg, R. and Parkes, D.C.: Adaptive Limited-
Supply Online Auctions, Proc. ACM Conference on Electronic Com-
merce (EC2004), pp.71–80 (2004).

[26] Lai, J.K. and Parkes, D.C.: Monotone Branch and Bound Search
for Restricted Combinatorial Auctions, Proc. ACM Conference on
Electronic Commerce (EC2012), pp.705–722 (2012).

Appendix

A.1 Worst-case Computational Complexity of
transformToSWPM

Here, I give a brief anaylsis about the computational com-
plexity of transformToSWPM. For simplicity of discussion, the
single-unit case is assumed where the number of items be k and
the number of bids be N. In the function transformToSWPM,
for each winner, it consumes O(kN) of pricing computation cost
since the greedy allocation *6 takes this cost. Then, let there be
w winner bids in the given allocation but no re-allocation of win-
ners (i.e., by the line 10 of the algorithm) will happen there, its
worst-case computation cost is O(wkN). Here, the worst case to
compute transformToSWPM with re-allocation of winners is the
case that initially it has only one winner and then re-allocations
have been done on the pricing for the last winner with only one
increment of the number of winners *7. Therefore, its worst-case
computation cost is O(kN+2kN+3kN+ ...+k2N) = O(k(k+1)

2 ·kN)
= O(k3N). When the number of the final winners is known as w,
the worst-case computational cost is O(w2kN). In a multi-unit
case (i.e., the number of items is k but there is l of distinguishable
item types where k > l, it should be at most equal but typically
less than the cost in the single-unit case since some items are in-
distinguishable so that it should have less opportunities to make
re-allocations of winners.

*6 This does not include the sorting cost of bids by a certain criteria since it
should arleady be done at the initial winner allocation process.

*7 This is because the greedy allocation produces at most only once a better
result without an increment of the number of winners. Also this is a brief
proof of the computability of transformToSWPM.

Naoki Fukuta received his B.E. and
M.E. from Nagoya Institute of Technol-
ogy in 1997 and 1999 respectively. He
received his Doctor of Engineering from
Nagoya Institute of Technology in 2002.
Since April 2002, he has been working
as a research associate at Shizuoka Uni-
versity. Since April 2007, he has been

working as an assistant professor. In 2012, he received the IPSJ
Yamashita SIG Research Award. His main research interests
include Mobile Agents, SemanticWeb, Konwledge-based Soft-
ware Engineering, Logic Programming, Applications of Auc-
tion Mechanisms, and WWW-based Intelligent Systems. He
is a member of ACM (Association for Computing Machinery),
IEEE-CS (IEEE Computer Society), JSAI (Japanese Society for
Artificial Intelligence), IPSJ (Information Processing Society of
Japan), IEICE (Institute of Electronics, Information, and Com-
munication Engineers), JSSST (Japan Society of Software Sci-
ence and Technology), and ISSJ (Information Systems Society of
Japan).

c© 2013 Information Processing Society of Japan 15

