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Abstract: Recent studies revealed that some social and technological network formations can be represented by the
network formation games played by selfish multiple agents. In general, the topologies formed by selfish multiple
agents are worse than or equal to those formed by the centralized designer in the sense of social total welfare. Several
works such as the price of anarchy are known as a measure for evaluating the inefficiency of solutions obtained by self-
ish multiple agents compared to the social optimal solution. In this paper, we introduce the expected price of anarchy
which is proposed as a valid measure for evaluating the inefficiency of the dynamic network formation game whose
solution space is divided into basins with multimodal sizes. Moreover, through some computer simulations we show
that it can represent the average case behavior of inefficiency of dynamic network formation games which is missed by

two previous measures.
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1. Introduction

Recent studies revealed that some social and technological net-
work formations can be represented by the network formation
games played by selfish multiple agents. Furthermore, there are
some works introducing the dynamicity to the traditional model
for representing and analyzing the dynamics of the network for-
mation [2], [4].

In general, the topologies formed by selfish multiple agents are
worse than or equal to those formed by the centralized designer
in the sense of social total welfare. In the fields of computer sci-
ence and game theory there are several previous works for evalu-
ating the inefficiency of solutions obtained by decentralized solv-
ing compared to that by centralized solving, known as the name
of the price of anarchy (PoA) and the price of stability (PoS). The
PoA is defined as the ratio between the worst evaluation value of
equilibrium of the game and that of an optimal outcome, the PoS
is that for the best evaluation value. Since these works are based
on either worst-case or best-case analysis, it may not be valid es-
pecially in the case where there are a large number of equilibria.

In this paper, a new measure the expected price of anarchy
(EPoA) which is called as the weighted price of anarchy in the
original paper Ref.[1] is introduced. This is a measure to eval-
uate the inefficiency of solutions of the dynamic network forma-
tion game model formulated by Imai et al.[2]. This new mea-
sure utilizes the property of their model that the solution space of
the model is divided into basins corresponding to the solutions.
These basin sizes represent proportional values to the probabil-
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ity of solutions in the assumption that the probabilities of initial
states take equal values. The validity of the new measure stands
on the “average-case” analysis using these basin sizes. We also
compare the actual values of previous measures and that of our
measures by some computer simulations, and show that the EPoA
is a natural measure for the dynamic network formation games
which may have many stable solutions.

The rest of the paper is organized as follows. Section 2
presents basics on the static network formation games established
in the field of game theory and it follows the introduction of
the dynamic network formation game model formulated by Imai
et al. [2]. At the first part of Section 3, we describe details of pre-
vious measures for evaluating equilibria obtained by decentral-
ized solving, and these problems are presented. The new mea-
sure the EPoA for the dynamic network formation games is in-
troduced at the last parts of that section. Following Section 4,
we describe some numerical simulations for comparing previous
measures and our measure of inefficiency and show these results.
In the last section, we present conclusions and future works.

2. Network Formation Game

2.1 Static Network Formation Game

In this subsection, we introduce some results of the net-
work formation game. Myerson firstly suggested the game
which represents the network formation [7], described as the link-
announcement game [3]. In this paper, we refer to their model as
the static network formation game to contrast it with the dynamic
one described in the next subsection. It is formulated as follows.

Let N be the set of players and n be the size of N, and they
can form links among any pair of players. The topology (which
is same as graph in the graph theory) g is defined by a combi-
nation of the set of agents N and the set of links L ¢ N X N.
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Fig. 1 An example of payoff value defined by the payoff function (3). In this topology, a payoff value of
anode i is given by u;(g) = (0 —¢;j) + 36% +26°. The first term (6 — c;j) represents the benefit from
node j and the cost of a direct link to it, and the second term 342 represents benefit from nodes
with distance 2, ki, k> and k3 and the last term 26° is derived by /; and [, with distance 3. Each
distance is given by the shortest path hops between them.

Although generally a link is represented as (i, j) € L, for simplic-
ity we denote it as ij. In this paper, we consider only undirected
topologies. The strategy space of player i is §; = 2¥\}, where
N\i={1,2,...,i=1,i+1,...,n} and 2"\ is the power set of
N\{i}. If s € S| x---X§, is the profile of strategies played, then
link ij forms if and only if both j € s; and i € s;. The outcome
network ¢g(s) is represented by g(s) = {ijli € s; and j € s,}.

Instead of the Nash equilibrium which is generally utilized as
the concept of solution in the game theory, Jackson et al. [6] pro-
posed the novel stability concept called pairwise stability which
departs from the notion of Nash equilibrium because of the spe-
cialty of the network formation game. A topology g is pairwise
stable if

ui(g) 2 ui(g—ij), uj(g)=>uj(g-1ij) (Vij€g) (D
and
u(g +ij) > ui(g) = ui(g+ij) <ui(g) (Nij¢g) 2

where u;(g) is the payoff for player i in topology g and g + ij is
the topology which is obtained by adding a link ij to topology
g, g — ij is the topology which is obtained by removing a link i
from topology g. The former condition implies that no players
raise their payoffs by removing a link which they are directly in-
volved in. The latter condition implies that no two players can
both benefit (at least one strictly) by adding a link between them-
selves.

They also proposed some concepts about efficiency and inves-
tigated the relationship between pairwise stable topologies and
efficient topologies. In the paper we adopt the strong efficiency
as the measure of efficiency of the topology. A topology ¢ is
strongly efficient if ) ; u;(g) > X, ui(g’) forall ¢’ € G.

There are two problems in the static network formation game.
Firstly, it is difficult to find pairwise stable topologies because
the state space is critically huge and efficient methods for find-
ing pairwise stable topologies have not been found yet. Secondly,
there are many pairwise stable topologies in general, and we can
not identify important ones among these topologies. These prob-
lems are especially serious in the case where the number of play-
ers is large, and are caused by the stability conditions which re-
quire only that no link changes occur in that topology.

© 2013 Information Processing Society of Japan

2.2 Dynamic Network Formation Game

In this subsection, we describe the details of the dynamic net-
work formation game model which is analyzed in the paper. It is
formulated by Imai et al. [2] as a deterministic version of intro-
ducing dynamicity to the static network formation game model,
based on the model of Jackson et al. [4]. They adopted the con-
cept defeat and improving path defined by Jackson and Watts,
and modified their previous dynamic network formation model to
that of behaving deterministically by specifying the most payoff-
improving transition among possible transitions.

The model is formulated as a kind of processes of a time se-
ries of simultaneous-move game as follows. At each discrete time
step ¢, the game in a strategic form determined by the current state
(same as topology) ¢g(?) is played and it determines the next state
g(t + 1). As for the game which is played at each time step, play-
ers are agents who intend to improve their payofts. The strategy
of each agent i is indicated as a vector s;(¢) = (s;1(¢), ..., si(1)),
where s;;(t) € {0,1}. The player i independently sets s;;(f) ac-
cording to a change of its payoff with a change of link ij, s;;(?) is
set to 1 if it is desirable to add (or maintain) the link with player
J» otherwise s;;(#) is set to 0. s;; is always equal to 0. The payoff
of the player i is defined by the following distance-based payoff
function,

ulg)= Y %= > cy 3)

J#i Jjeljlijeg)

where 0 < ¢ < 1 indicates the decay of the benefit from a con-
nected agent with an increase of the distance, d;; is the distance
between agent i and j (the number of hops from i to j), and ¢;;
is a link cost to add or maintain the link between i and j. Fig-
ure 1 shows an example of payoff value defined by the payoft
function (3). The outcome g(t + 1) obtained by playing the game
at time step ¢ is determined as follows. We describe about two
concepts adjacent and defeat. Two topologies g and ¢’ are adja-
cent if g’ differs in only one link from g, and a state ¢’ defeats an
adjacent state g if either

g =g—ijand (ui(g") > ui(g) or uj(g’) > uj(g)) “4)

or
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Fig.2 Anexample of state transitions of the dynamic network formation game model formulated by Imai
and Tanaka [2]. In this example, there exists 3 nodes and the parameters of the payoff function (3)
are as follows, § = 0.9,¢cqp = Cpa = 0.3, = Cep = 0.1,¢cq = cqe = 0.6. There are § = 2:©
states(topologies) which can be constructed by 3 nodes, and each of two adjacent states are linked
by dashed lines. The respective values of payoffs are listed in the nodes. There are arrows from a
state g(?) to a state g(¢ + 1) which have a relation that it stays at the state g(¢) at time step ¢ and it
moves to the state g(z + 1) at next time step 7+ 1. These arrows indicate the most payoff improving
transition according to the equation (8). There are 3 pairwise stable solutions in the case (and no
improving cycles) g3,gs and g¢. The basin sizes of the solutions are respectively 2, 5 and 1.

g =g+ijand
{(ui(g") = ui(g) and u;(g") = u;(g)), (5)
except (ui(g") = ui(g) and u;(g’) = uj(9))}.

g(t + 1) is specified deterministically among states which can de-
feat g(r) and ¢g(¢) itself. For a concrete description of g(f + 1), two
definitions Au;;(t + 1) and acceptable link set Lycceprabie(g) are de-
scribed as follows. Firstly, Au;;(t + 1) is defined as the amount of
change of i’s payoff in the case that the change of link ij occurs
at time step ¢. It is formulated as follows,

Auij(e + 1) = ui(g(0) +ij) —uig(®), if ij¢g@) ©)

ui(g(®) — ij) —uig(®), if ijeg).

Secondly, Lycceprabie(g) € L C N X N is defined as the set of links
which are acceptable for both player i and player j. It is formally
described as follows.

Lavceptable(g) = {l.]|l] ¢ g and g+ l] defeats g} (7)
U{ijlij € g and g — ij defeats g}.

The link ij which is changed during the game is described as

ij= argmax
i j€Lacceprable(g(1))

Au,-j(t + 1) (8)
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and determines the outcome g(f + 1). If no links satisfy this con-
dition then g(r + 1) is exactly the same as g(f), and if there is
more than one link satisfying that, the link involved by the agent
who has the youngest ID is prior than others as a matter of conve-
nience. Note that agents decide their strategies at each time step ¢
only to make their own payoffs of the next step 7 + 1 be better off
without any forecasts. The process starts from the initial state of
topology ¢go, and it continues until the state converges to a stable
state or a part of a cycle which is described as the solution of the
process. It is clear from definitions that a state is pairwise stable
if and only if the solution of the process consists of one state. So-
lutions can be an improving cycle which consists of a sequence of
adjacent states {g1, g, . . . , gk} such that each defeats the previous
one and g; = gg. The condition of existence of an improving cy-
cle is analyzed by Jackson et al. [5]. Figure 2 shows an example
of the state transitions of the dynamic network formation game
model.

We describe the solution space G. The size of G is the number
of capable states (topologies) constructed by n agents, |G| = 2/¢2,
therefore it rapidly increases by increasing the node size n. Let
the number of initial states converging to a solution be a basin, it
is the general term of the dynamic systems, the solution space is
divided into some mutually exclusive and collectively exhaustive
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Fig. 3 An example of divisions of the whole state space G by basins with highly variant sizes. It shows
results of 6 agents. CCDF (k) is the Cumulative Complementary Distribution Function which in-
dicates the rate of greater values than k. This figure is a double logarithmic chart. Parameters in
the payoff function (3) are as follows. ¢ is fixed to 0.9, and ¢;; are symmetric and randomly sam-
pled from a uniform distribution of the range (0, R]. All Results are the averages of 100 random

parameters.

basins for each corresponding solution in the model. Figure 3
shows an example of divisions of the whole state space G. It
shows that basins might take greatly different sizes in the cases
of some conditions of payoff functions. It seems natural to con-
sider the basin size of a solution as the importance of the solution
because the basin size of the solution is proportional to the prob-
ability of convergence to the solution in the assumption that all
initial states gy have the same probability.

3. Evaluation of Inefficiency

In this section, we describe previous works for evaluating the
inefficiency of solutions obtained by selfish multiple agents com-
pared to the strongly efficient solution. In addition, we introduce
a new measure the expected price of anarchy (EPoA) to evaluate
the inefficiency of solutions for the dynamic network formation
game which is described in the previous section.

3.1 Previous Measures of Inefficiency and Their Problems

In the field of computer science, it is a popular issue to know
the relation between the solution obtained by centralized solving
and that by decentralized solving [12]. The centralized solving is
the one where each agent in the system is told exactly what to do
and must do so, and the decentralized solving is the one where
each agent tries to optimize its own payoffs selfishly, therefore
the latter is game theoretic. Of course a centralized solving may
be able to obtain more socially an optimal solution than that of a
decentralized solving, how much more beneficial can it be?

The price of anarchy (PoA) which is formulated by
Koutsoupias et al.[8] is the most popular measure of the
inefficiency of decentralized solving. Precisely, the PoA of a
game is defined as the ratio between the worst evaluation value
of an equilibrium of the game and that of an optimal outcome.
Since the original paper, the PoA has been studied in many
settings like the traffic routing problem [9].

The price of stability (PoS) is another measure of the ineffi-
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ciency of decentralized solving, which is the ratio between the
best evaluation value of one of its equilibria and that of an opti-
mal outcome [11]. It is designed to differentiate between games in
which all equilibria are inefficient and those in which only some
equilibrium is inefficient.

In this paper, we use these measures for evaluating the inef-
ficiency of the dynamic network formation game by evaluating
the solutions obtained by selfish multiple agents. In the case that
the process of the dynamic network formation game converges
to one pairwise stable state, we compare the optimal outcome to
pairwise stable ones instead of comparing it to outcomes derived
by Nash equilibria in the original definition.

The social evaluation function of a state (topology) is simply
given by the sum of payoffs of agents, and the social evaluation
function of a solution is given by averaged values of social eval-
uation functions of each component states of the solution. That
is, in the case of solutions which consist of one pairwise stable
states, the social evaluation value of the state indicates directly
that of the solution.

Formally, using the social evaluation function fy(g) : G — R
for a state g, the social evaluation function f(s;) : 2¢ — R of the

J-th solution s; consists of states {g1, ..., gk,} and is described as

follows,
folg) = )" uilg) ©)
£ = Filg0/K; (10)
k=1

where i indicates the agent ID. The strongly efficient solution s*
which consists of only the strongly efficient topology g* takes the
maximal social evaluation value for all solutions.

Since the strongly efficient topology g* maximizes the social
evaluation function for all states, we considered it as the “opti-
mal” state. Using the value of f;(g"), the PoA and the PoS for the
dynamic network formation game are described as follows,
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Table 1 An example of the expected price of anarchy of the dynamic network formation model by 8
agents. There are 12 pairwise stable solutions (no cycles). For each solution, the actual topology
of each pairwise stable state is illustrated. The value of the social evaluation function which is
given by the sum of payoffs of agents is described in the next column, the basin size which equals
to the number of initial states converge to the solution by the process of this model is described
in the last column. The worst and best value of the social evaluation among these solutions is
respectively 5.81 and 27.11. The strongly efficient topology ¢g* which is not included in these
stable solutions is shown at the end of the enumeration, its value of social evaluation function
is 30.22. The value of the price of anarchy is calculated as 30.22/5.81 ~ 5.20, and that of the
price of stability is 30.22/27.11 ~ 1.11. The expected price of anarchy is approximately 2.03.
All pictures of topologies are created using Pajek [13].

Sum of Sum of
Solution Topology Payoffs Basin Size | Solution Topology Payoffs Basin Size
O/O/O\O R M%
S O & 7.83 | 106,966,207 53 L 21.21 177,032
52 @) & 21.82 69,057,682 59 %ﬁ 25.41 1,522,866
53 M/%ﬁ 27.11 6,745,020 S10 O A 20.01 | 14,864,197
S4 M%ﬁ 24.29 841,521 St &ﬁ 25.18 8,107,411
o——X, o %
S5 O & 5.81 23,915,112 S12 A 23.16 735,093
S6 O [ 20.63 31,149,583
57 & 26.15 4,353,732 5" M/%é@ﬁ 30.22 _
(PoA) = Jo(g") (an number of equilibria and they take widely distributed evaluation
min f(s;) values, neither the worst-case analysis of the PoA nor the best-
J . .
£(g") case analysis of the PoS may be far from “average-case” behavior.
(PoS) = m. (12) There are some works to analyze a “typical” equilibrium by defin-
PR ing some kind of Nash equilibrium as a “typical” one. However,

We describe the limitation of these previous measures. In gen-

eral, there are multiple equilibria and these equilibria take respec-
tive evaluation values. Especially in the case that there are a huge
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they have not been used successfully to study the inefficiency of
equilibria [11] because, within the frame of the static game, it is
difficult to define in a meaningful and analytically tractable way
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to differentiate some kind of “typical” Nash equilibrium from oth-
ers.

3.2 The Expected Price of Anarchy

We introduce a new measure the expected price of anarchy
(EPoA) for evaluating the inefliciency of the dynamic network
formation game which has the property that each solution is
weighted by its basin size. Precisely, it is the ratio between
the weighted average evaluation value of solutions by their basin
sizes and that of the strongly efficient solution,

Jo(g")

(EPoA) = —2 -~
> w;fi(s)/IGl
Jj

(13)

where w; is the basin size of the solution s; and }.; w; = |G|. Ta-
ble 1 shows an example of the expected price of anarchy of the
dynamic network formation model.

It is clear from the definitions that (PoS) < (EPoA) < (PoA),
and all values are equal if and only if there is only one solution.
This EPoA seems a natural candidate as a valid measure for eval-
uating the inefficiency of the dynamic network formation game
in average means, because, as described above, the basin size of
the solution is proportional to the probability of converging to the
solution in the assumption that all initial states g, take the same
probability.

Following are two notations about contributions of the paper.
First is that we do not insist that we should use only the EPoA
instead of the two previous measures, PoA and PoS. These are
successively valid because they represent a particular boundary
of possible behaviors of the system. We only insist that the EPoA
is also valid as an additional information for evaluating the dis-
tribution of inefficiency of the solution. That is available in the
case that we can evaluate importance of multiple stable solutions.
Second is that the stable solutions (except cycle solutions) of the
dynamic model are also the pairwise stable solutions of the static
game. Although all pairwise stable solutions are indifferent in the
frame of the static game, each solution has its basin size in the

4
' I Pricelof Anarchy(PoA) Il:I
35} Price of Stability(PoS) tessssa
Expected POA(EPOA) mssssss
3l i
& 25F
C
0
) 2
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£ 15
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0
1 2 3
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(a) 6 = 0.5,c;; € [0.0,3.0)

Inefficiency

frame of the dynamic model, and these are additional properties
of solutions. The main contribution of the paper is to propose a
more precise method for evaluating the inefficiency of pairwise
stable solutions of the static game. For this purpose, we use the
additional property (i.e., basin size) about each solution obtained
by the frame of the dynamic model.

4. Numerical Results

In this section, we investigate the actual values of the measures
described in the previous section by computer simulations.

Figure 4 shows the results of computer simulations. In the
simulation, the number of agents is 8 in all settings. Link cost
parameters ¢;; in the payoff function (3) are symmetric and ran-
domly sampled from a uniform distribution of the range (0, R],
i.e., 0 < ¢;; < R. It shows the results for each case of 6 = 0.5,0.9
and R = 3.0. The simulations are run with 5 random parameters,
and all results in Fig. 4 are the averages of these trials.

The number of agents in the simulations is very small com-
pared to the social and technological networks in the real world
like the AS-level network of the Internet which is constructed by
over 30,000 nodes [10], therefore there may be a lack of some
important properties. The reasons of adopting the setting of 8
agents are as follows. Mainly it is caused by the limitation of the
computing performance compared to the solution space described
above. In addition, the payoft function (3) uses the distance (the
number of hops of shortest path) from an agent to all other nodes
and we use the simple Dijkstra algorithm to obtain it. Then the
amount of computation for obtaining the value of the payoff func-
tion is too large in the case of many agents. The latter problem
might be improved by applying techniques of parallel computing
and more efficient algorithms for solving the all-pairs-shortest-
path problem.

Although the simulations have limitations in the sense of the
scale, we can find in these results that the values of our new mea-
sure EPoA are different both from that of PoA and of PoS. It is
especially clear in the case of many stable solutions, for example
the case of 6 = 0.9,R = 3.0. There are examples of represent-

Pricelof Anarcllwy(PoA) [—
35 Price of Stability(PoS) s
Expected POA(EPOA) mssssss

N
[9)]
T
1

Sample ID
(b) 6 =0.9,¢;; €[0.0,3.0)

Fig. 4 Results of numerical simulations of 8 agents. All solutions which consist of one stable
states(topologies), therefore these are pairwise stable solutions of the static network formation
game. Link cost parameters c;; in the payoft function (3) are symmetric and randomly sampled
from a uniform distribution of the range (0.0,3.0]. All results in these figures are the averages
of 5 trials. In the result (a) of § = 0.5, the number of solutions of each sample is 1,3,1,6 and 1
respectively. In the result (b) of 6 = 0.9, these are 418,6,199,721 and 186 respectively.
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ing the average case behavior which is not covered with the two
previous measures.

5. Conclusion

We have focused on the inefficiency of topologies formed by
selfish multiple agents compared to that by a centralized designer
in the sense of social total welfare. We have introduced the two
previous measures for evaluating that, the former is the price of
anarchy (PoA) which is defined as the ratio between the worst
evaluation value of an equilibrium of the game and that of the op-
timal outcome, and the latter is the price of stability (PoS) which
is the ratio of the best value and the optimal value. In addition
we have pointed out their limitation that it may not be valid es-
pecially in the case that there are a large number of equilibria.
We have introduced a new measure the expected price of anarchy
(EPoA) to evaluate the inefficiency of solutions of the dynamic
network formation game model formulated by Imai et al. [2]. The
EPoA utilizes the property of their model whereby the solution
space of the model is divided into basins corresponding to the so-
lutions and these basin sizes are proportional to the probabilities
of solutions in the natural assumption that the probability of ini-
tial states take the same value. Moreover, through some computer
simulations we show that it can represent the average case behav-
ior of inefficiency of dynamic network formation games which is
not covered with the two previous measures.

We present two future works. It is important for the dy-
namic network formation game model to investigate the behavior
of a larger number of agents through more large scale simula-
tions, because some actual networks consist of a huge number
of nodes (agents). Under the assumption that initial states are
given by some probabilistic distribution, inefficiencies of solu-
tions obtained by the dynamic network formation game model
are random variables which obey some distribution function of
solutions. Although it is guaranteed that the variance of the distri-
bution function converges to a finite value because the number of
instance of solutions is finite, concrete shapes of the distribution
function of solutions are not revealed yet. In addition, the dis-
tribution of basin sizes which is shown by Fig. 3 implies that the
distribution function of solutions might take multimodal shapes.
Then it might be needed some additional verification of the valid-
ity of the representativeness of an expected value.
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