
Journal of Information Processing Vol.20 No.3 559–569 (July 2012)

[DOI: 10.2197/ipsjjip.20.559]

Regular Paper

Implementation and Verification of Concurrent
Sorting Algorithms with CSP based Architecture

Yuki Hasegawa1,a) Yoshinao Isobe2,b) Kazuhito Ohmaki1,c)

HidekiMori1,d) Kensei Tsuchida1,e) Yasunori Shiono1,f)

Received: September 15, 2011, Accepted: February 3, 2012

Abstract: Communicating Sequential Processes (CSP) based architecture is regarded as a useful method in the devel-
opment of concurrent embedded systems. Products around us are embedded in many computer systems. Concurrent
processing by software is necessary in multi-core and multi-processor environments to make more effective use of
hardware resources. There is strong demand for hierarchy, resource constraints, and safety for implementation of
embedded systems. We implemented a sorting model as a concurrent system in an experiment. We tried to design,
implement, and verify concurrent sorting model with CSP based architecture. In this study, we try to parallelize of
sorting as the subject of embedded systems for implementing. Because sorting has been widely studied, it is suitable as
the subject of parallelization. We also evaluated the system. We will consider the usefulness of CSP, which we present
in this paper, using examples of development.

Keywords: concurrent sorting, CSP architecture, embedded systems, formal methods

1. Introduction

The usefulness of the Communicating Sequential Processes
(CSP) [1], [2] architecture has been focused on in the develop-
ment of concurrent embedded systems.

Embedded systems are computer systems used to control com-
ponents and achieve specific functions, and they have been built
into consumer electronics and industrial equipments. Embedded
technology is also required in various fields. Concurrent process-
ing by software is necessary in multi-core and multiprocessor en-
vironments to effectively use hardware resources. There has been
strong demand for hierarchy, resource constraints, and safety in
the requirements [4] to implement embedded systems.

We implemented an embedded system with methodology
based on CSP in experiments in this study as an example of de-
velopments. We tried to parallelize sorting model in this study to
implement it in embedded systems. Sorting [9] is done by algo-
rithms that relocate sets of data according to certain rules. Sorting
has clearly defined requirements for internal processes and end
states. Sorting is therefore suitable for evaluating and verifying
the parallelization of algorithm.

We tried to develop parallel systems based on CSP as an ex-
ample of sorting model. Asynchronous processing by concurrent

1 Toyo University, Kawagoe, Saitama 350–8585, Japan
2 National Institute of Advanced Industrial Science and Technology,

Ikoma, Nara 630–0192, Japan
a) gz090012@gmail.com
b) y-isobe@aist.go.jp
c) ohmaki@toyo.jp
d) mori@toyo.jp
e) kensei@toyo.jp
f) shiono@toyo.jp

systems is easy to develop in the hierarchy of module units. Con-
current systems are easy to construct with CSP because devel-
opment processes that implement modules cooperate while they
are synchronously communicating. Modules can be expected to
reduce development efforts because they are highly reusable and
able to be developed in parallel. An abstract model of the system
by using CSP (CSP model) is easy to verify with a model checker.
Verification certifies that the CSP model (concurrent specifica-
tions) and original specifications (sequential) are equivalent, and
it ensures the safety of implemented model. The hardware that
implements the CSP model can be selected with XMOS [8] and
Verilog [5].

We tried to implement two sorting models in the experiments.
The first model (Star model) was a hierarchical model of the sys-
tem by using functions. The second, Ring model, was a model
that took resource constraints into consideration. Concurrent pro-
cessing generally makes it difficult to ensure safety, due to dead-
locks and livelocks.

Verification of the model with CSP ensures the safety of the
implemented model. We thought that methodology based on CSP
would be useful to develop of concurrent embedded systems after
the experiments. We considered the usefulness of CSP by develop
a CSP based case, which is discussed in this paper.

2. Background

2.1 Embedded Systems
An embedded system is one that controls the components and

specific functions and is built into industrial equipments and con-
sumer electronic devices [3], [4], [5], [6].

Product life cycles are currently being shorted, and the peri-
ods from development to verification are being completed within

c© 2012 Information Processing Society of Japan 559



Journal of Information Processing Vol.20 No.3 559–569 (July 2012)

about three months.
Four requirements are needed to implement embedded sys-

tems [3], [4], [5], [6].
• Concurrency

Multi-core and/or multiprocessors are becoming dominant
in the architecture of processors as a solution to the limits
in circuit line width, increased generation of heat, and clock
speed limits.
Therefore, it is necessary to implement applications by using
methods with parallelism descriptions.

• Hierarchy
System modules are arranged in a hierarchal fashion in main
systems, subsystems, and sub-subsystems. Diversity and re-
cycling can be improved, and reducing the number of devel-
opment processes as much as possible.

• Resource Constraints
It is necessary to comply with the constraints of built-in ob-
jects like memory and power consumption.

• Safety and Reliability System failure is a serious problem
causing severe damages and fatal accidents. It is extremely
important to guarantee the safety of the system.

2.2 Formal Methods
Concerns regarding the reliability and safety of software and

hardware modules have recently intensified, and formal methods
have therefore attracted a great deal of attention.

Formal methods [7] are useful for system development, es-
pecially software, and they have a background of mathematical
logic. It is possible to systematically evaluate the accuracy of de-
signs by describing design objects using methods that are based
on approaches that are mathematically clear and rigorous. There-
fore, the developed system can be guaranteed to be very safe and
reliable.

3. CSP

Communicating Sequential Processes (CSP) is one of the most
famous formal methods and it involves typical process algebra
based on synchronous communications [1], [2]. Process algebra
is a theory used to formally describe and analyze concurrent pro-
cessing.

The five main features of CSP are:
• Sequential processing description

Serial processing is described as an ordered set of processes.
• Concurrent processing description

Concurrent processing is described as a synthesis of pro-
cesses in parallel.

• Event prefix
An event means actions/interactions for processes such as
interprocess communication.

• Message passing
The process exchanges messages between channels on the
event.

• Selective description Behavior selected with the event is de-
scribed.

The ratio of the execution workload/time (e) and traffic
load/time (c) is important; this corresponds to the ratio of the ex-

ecution throughput (E) and communication throughput (C) of a
node. It indicates the performance of concurrency.

We use expressions to specify processes in CSP. These pro-
cesses can verify whether several behavioral equivalences among
processes are satisfied or not, by re-writing these expressions
based on the algebraic rules of the CSP. For example, we can
write a sequential process, SEQ, in CSP as:

SEQ = call?x→ ret!(f(x)+g(x))→ SKIP

Where c!v represents an output event and c?x represents an
input event. Here, → is the execution of an event and SKIP is
a successful termination process. That is, process SEQ receives
a value from x through a channel call. After event call?x, value
f(x)+g(x) is sent through channel ret. After event ret!(f(x)+g(x)),
SEQ is successfully terminated by SKIP.

We expect high-speed execution of concurrent processes when
they are running on a real multi-core parallel environment. How-
ever, the behavior of these processes is more complicated than
that with a sequential environment. We can verify several equiv-
alent relations between processes using CSP. In other words, we
can observe the complicated behavior of concurrent processes
by replacing them with equivalent sequential processes. These
equivalent relations are verified many times before actual imple-
mentation. We can then finally install equivalent concurrent pro-
cesses on an actual system.

4. CSP Platform

4.1 Architecture
The execution platform of the CSP model is a processor set,

where all processors are connected to one another with synchro-
nization channels. Channel connection involves five models.
• One to one connection model
• One to multi connection model
• Multi to multi connection model
• Mesh connection model
• Network model
The Mesh connection model is outlined in Fig. 1.

Fig. 1 CSP platform (grid).

c© 2012 Information Processing Society of Japan 560



Journal of Information Processing Vol.20 No.3 559–569 (July 2012)

Fig. 2 CSP platform (line).

Fig. 3 CSP platform (block diagram: XK-1).

The platform that we used for the experiments is the mesh
model with the series connection of six processors shown in
Fig. 2. We used a XMOS XS1-L1 [8] as the processor element.
The XS1-L1 included synchronous channel communication and
event driven mechanisms to effectively achieve CSP. We imple-
mented our CSP platform using 6 XK-1 boards that included the
XS1-L1 and peripherals.

The XK-1 development board included LEDs, push-buttons,
and an SPI flash memory, which contained the control programs.
Two or more XK-1 development boards could be connected to
one another, using two 20-pin XSYS connectors. Then they were
integrated and controlled by one program. And the logical con-
nection was represented by an XN file. It was also possible to
connect external components such as LEDs, motors, and sensors
with two 16-pin IDC connectors. Therefore, an environment for
XMOS development such as mobile devices and robots could be
prepared.

Three hardware resources must be considered in the XMOS
processor, which are necessary for designing the system.
• Eight processes/one core
• 32-channel ends/one core
• One XS1-L1 processor in an XK-1 development board
A maximum of eight concurrent processes is possible with one

processor unit. Therefore, it is possible to concurrently connect
more XK-1 development boards by running the processors in two
or more cores, using this method of connection.

Figure 3 shows a block of an XK-1 development board. We
used the XC language developed by XMOS for programming.

4.2 CSP Oriented Language
The CSP oriented languages were Occam, JCSP, and XC [8]

developing language.
We used the XC developing language that XMOS Ltd. devel-

oped for the XMOS processor for evaluation.

The XC developing language is an extended version of C, in
which I/O functions (sending and receiving using channels or
ports), time management, and concurrent processing (par sen-
tence) functions are added in addition to standard C control state-
ments such as “while,” and “do-while.”

XMOS development tools, which integrate C and XC compil-
ers, a simulator, and a debugger, enable systems and algorithms
to be developed using parallelism, concurrent and real-time pro-
gramming, CSP-based communications, and event-driven con-
trol.

5. Concurrent Method of Sorting model

5.1 Sorting and Implementation of Concurrent Program-
ming

Sorting involves an algorithm that relocates a set of data ac-
cording to certain rules. Computational complexity and sorting
differ according to the algorithm used to implement them. Sort-
ing has also clearly defined requirements for internal processes
and states. These are very easy to assess. In addition, well-known
algorithms such as insertion sort have already been analyzed in
many studies.

We tried to implement concurrency, verification, and evalua-
tion with sorting as the subject in this experiment. Sorting with
a clear definition of the algorithm made it easy to evaluate per-
formance in implementing concurrency. We tried to develop a
parallel sorting model by focusing on resource constraints and
hierarchy in this experiment.

5.2 Parallel Split Sorting Model
We developed a parallel sorting model, which we called the

“Parallel Split Sorting Model.” This model is a method of split-
ting data that are to be sorted. It is intended to reduce the com-
putational time it takes for sorting without splitting data. This
model’s main features are “split data” and “parallel sorting.” The
sorting algorithm can be used to implement existing algorithms
such as insertion sort. The computation time data are reduced by
splitting data. These data are then sorted in parallel.

5.3 Parallel Split Sorting Algorithm
The algorithm for this model involves six steps:
1. Input the test data of N.
2. The data set is split on M nodes, and transferred to nodes.
3. Each node is sorted in concurrent processing.
4. Each node exchanges data between neighboring nodes if

necessary.
5. Repeat the exchange until data do not need to be replaced.
6. Finally, we combine data from each node, and use this

algorithm to sort all data.
This sorting uses an existing sorting algorithm such as insertion

sort.
The algorithm in Fig. 4 is composed of two types of processes:

IO and Sort. Each process is assumed to operate asynchronously.
IO proc is a process that inputs unsorted data, monitor the ex-

change flow, and outputs sorted data. This process is the only one
in the program. After “input Test data” has finished, the transfer
data subsets of data transfer them to Sort proc processes while

c© 2012 Information Processing Society of Japan 561



Journal of Information Processing Vol.20 No.3 559–569 (July 2012)

Fig. 4 Split sorting flow.

Fig. 5 Exchange neighbor nodes.

splitting the data.
Sort proc is a process that sorts the subset of data and neighbor

exchange. Several sort processes are implemented and connected
in one model. The system updates the data with each process
running concurrently.

The Sort proc process finishes by exchanging a neighbor
node’s data in communication to inform whether exchange has
occurred or not. If a node’s data can be exchanged, the system
sorts to start next sort.

If a node’s data cannot be exchanged at all nodes, the system
completes sorting and transfers data to the IO process. There is
always one IO process in the implementation. However, the Sort
process splits the number of nodes M.

The main advantage of this model, i.e., parallel processing by
splitting the sorting part, is that computation time can be reduced.

We assumed that data would be sorted in ascending order from
left to right, as shown in Fig. 5. Each node M (Sort process) is
located in a row from left to right.

First, the data that are a subset of the original data are split, and
each node is assigned by each transfer. Each node sorts data and
each node’s data are sorted. These data are combined but the data
sets are unsorted.

Table 1 Property of bitonic sort.

Table 2 Property of parallel split sorting.

Therefore, we focused on the data of boundary (lmax, rmin) be-
tween two sorted neighbor nodes. Then, we compare lmax (max-
imum data on the left node) and rmin (minimum data on the right
node). As a result, if lmax > rmin, we exchange these data because
this is not in ascending order in this part of data. If lmax < rmin,
the data will be completely sorted only in them because this is in
ascending order and the data in each node are sorted.

In other words, we compare the data between neighbor nodes,
exchange them when the order relation is correct, or do not ex-
change them when the order relation fails. Finally, if there are no
exchanges between any neighbors, the data will complete sorting
by combining all data nodes.

5.4 Comparison with the Other Works
5.4.1 Bitonic Sort

Bitonic sort [12], [13] is an efficient sorting network.
Sorting network is configured in Wire and Comparator. Wire

is placed in more than two lines and it is used to carry data. Com-
parator is connected between the two wires and it compares and
exchanges data at the connecting point. When Sorting network is
implemented as a parallel sorting, its wire is defined in process
(processor). If the number of data handled by the processor is
only one, the behavior of the comparator is simple to interpret.
However, one element of data in a process is unrealistic in a lim-
ited environment such as an embedded system. In implementa-
tion of Bitonic sort, the number of processes is needed 2x(x > 0).

A narrow Bitonic sort can sort Bitonic sequence in O(log(p))
steps. In order to convert the general sequence to Bitonic se-
quence will require the necessary steps to sort half of the input
data.
5.4.2 Advantage of Parallel Split Sorting

Our Parallel Split Sorting model provides a connection be-
tween the process, which involves sorting in parallel, and a
method to determine the sorting is complete. The process of sort-
ing algorithms can use existing, verified sorting algorithm.

Our model is a realistic implementation model, and can handle
a static change to the number of divisions (the number of parallel
sorting processes). In implementation by our model, the number
of processes is not limited to 2x(x > 0).

In Table 1 and Table 2, we show the comparison of number
of processors, time complexity, and space complexity in the pro-
posed method and Bitonic sort. N and M are constants. N is the
number of target data. M is the number of division (the number
of parallel sorting process).

c© 2012 Information Processing Society of Japan 562



Journal of Information Processing Vol.20 No.3 559–569 (July 2012)

Fig. 6 Concurrent sorting models.

6. Experiment

6.1 Parallel-Split-Sorting Model
6.1.1 Design of Parallel-Split-Sorting Model

We developed two models, which we called the star model and
the ring model in the experiment.

The star model focused on hierarchy and it implemented pro-
cesses that were split by functions.

The ring model focused on resource constraints and reduced
the number of processes by improving the star model.

Both models are shown in Fig. 6, where the circles represent
processes, the lines represent channels, and vectors represent the
direction communication is sent. The P and C correspond to the
number of processes and channels, when the number of original
data is split. The implemented sort algorithm is an insertion-sort
type.
6.1.2 Implementation of Method

We implemented these models on the XK-1 development board
using XC language and an XC compiler. The maximum number
of enabled cores was six (Core[0-5]) in the experiment with a
maximum of 48 processes since six XK-1 were used. However,
the number of channels and memories were constrained.

The results we obtained from the experiment will be discussed
in the next section.

6.2 Experiment on Our Star Model
6.2.1 Design

We implemented Star-par-split-sort for Parallel Split Sorting
with star model (Fig. 6 (Left)).

The star model is composed of IO process (I), sorting (S), data
exchange between neighbor nodes (E), and checking exchanges
(T). This design is simple.

This model has a star formation because I is mainly connected
to the star. Therefore, the number of split ch channels connected
to I depends on the number of splits.

First, I inputs the test data, and transfers the split data to S with
split ch.

S sorts the data when it receives them from I. To exchange
neighbor nodes, S transfers the maximum and minimum data to
E (exchange process) or T (terminate process) connected with
exchange ch.

E receives data from the two Ss connected to the E, and we

Table 3 Star model relations for process names, number of processes and
channel-end.

compare these data. If it is necessary to exchange the data, E
transfers the data to S. E has a flag that signals whether data has
been exchanged or not with S.

T is the raw data sent from S to be returned.
When S, E, and T finish exchange processing, T checks each

E if exchange has been replaced with chain ch. E accumulates
flags indicating whether exchange has been replaced by received
information from one of the chain ch, and transfers to another
chain ch.

These flags are defined as zero when swapping occurs or one
when there is no swapping. If these have been replaced at any
one place, they continue to be able to process sorting.

T sends a message to I with sync ch by continuing to deter-
mine sorting with chain ch.

When I receives a message with sync ch, it continues to sort
for each S, or exits sorting and transfers data to each S. While
continuing to sort, S repeats the process of sorting and exchang-
ing. When sorting is completed, S returns the results to I.

I holds the final data which will be sorted by combining the
data transferred from S.
6.2.2 Experimental Results

Table 3 lists the relations between processes. A Channel-end
is the connecting point between a process and a channel. M is the
number of S processes. This process involves sorting where that
the process has a data set. This means the number of S and the
number of split data sets.

This means that the number of channel-ends on I depends on
the number of S processes. A process is implemented in a core.
Fewer than 32 channel-ends could be implemented on one core.
We need to take into account this limited number when imple-
menting channel-ends.

We need to consider hardware constraints when implementing
each process in each core. I and T were implemented in Core[0],

c© 2012 Information Processing Society of Japan 563



Journal of Information Processing Vol.20 No.3 559–569 (July 2012)

Fig. 7 Implementation arrangement for star model.

Fig. 8 Relations between running time and number of splits (M) with
starred model.

and the other processes were implemented in Core[1] or higher.
Figure 7 shows when the number of splits equals five.
When M is more than six, E will be implemented in Core[5].

Then S and E will be implemented in order in Core[1].
Each core can implement a maximum of eight processes. One

core can implement four sets (I and T) in this model. Process S in
these cores can implement a maximum of eight processes. This
shows it is possible to make twenty splits.

Figure 8 shows the relation between the number of splits M
with running time. The M is the number of S processes. The time
is the running time.

This shows that the running time asymptotically converges and
we found that running time decreased with increasing numbers of
splits in the measurement range.

6.3 Experiment on Our Ring Model
6.3.1 Design

We implemented Ring-par-split-sort for Parallel Split Sorting
with ring model (Fig. 6 (Right)).

The ring model is composed of IO process (I), sorting (S). I
was included in the ring model’s I and T. S was included in the
ring model’s S and E. This model simplified the complex design.
This is because it is difficult to understand the whole process by
increasing the number of steps in the process and the frequency
of communication.

A ring means that S and I are connected to a ring. Therefore,
split ch connected to I is constant regardless of the number of
splits M.

This model’s configuration is very similar to the flow of the al-
gorithm. It is necessary to reduce the number of processes when
this model is implemented, which also greatly reduces the num-
ber of channels. As the processes are connected in ring shaped,
channel-ends are not concentrated in a single process. Therefore,
it is affected by hardware limitations.

The star model process was reused in this experiment to imple-

Fig. 9 FDR verification result for ringed split sorting algorithm.

ment the ring model. This was intended to reduce the effort spent
in development.
6.3.2 Verification Tool

FDR [10] is a tool for automatically checking the CSP specifi-
cations for dead-lock freeness, live-lock freeness, and refinement
relations. That is, FDR is a model-checking tool for CSP. FDR
is also used to check refinement relations in failure divergence.

We specified a parallel split sorting algorithm using a CSP pro-
cess. Processes communicated and collaborated with one another
through a synchronized message-passing mechanism. We had to
specify an appropriate order for messages to be sent and received
for this reason. The final result was not correct or the system was
deadlocked if this order was not correct.

We verified an equivalent relation of a refinement in failure di-
vergence between CSP specifications for the parallel split sorting
algorithm and a model for hiding internal events by using FDR.
Figure 9 shows a screenshot of the FDR checker.

Verification ensured that specifications behave correctly. Ver-
ification was used to determine the cause of failures and early
resolution in this experiment.
6.3.3 Case Studies of Execution and Verification

Here, we explain how the process of our concurrent sorting is
performed by giving case study.
• Case study I: Execution of concurrent sorting

Figure 10 is a composition of Ring-par-split-sort.
IO process is a process that transfers data to Sort pro-

cesses, monitors the completion of the sorting, and collects
the sorted data. Only one IO process is implemented.

Sort process is a process that sorts the subset of
data provided by the IO. The Sort process consists of
M MAX pieces, and has a unique ID within the range of
0–M MAX-1.

The IO and M MAX Sort processes are connected to the
ring, with channel fw chs and bk chs between processes.
Fw chs and bk chs consist of M MAX+1 pieces respec-
tively, and both have the unique ID within the range of 0–
M MAX.

c© 2012 Information Processing Society of Japan 564



Journal of Information Processing Vol.20 No.3 559–569 (July 2012)

Fig. 10 Composition of Ring-par-split-sort.

Fig. 11 Connection of channels and channel ends.

Fig. 12 Flow of Exchange Neighbors (with Ring-par-split-sort).

The original data set is divided into sub data, and each is
distributed from the leftmost Sort process to the rightmost
Sort process by the IO process.

Sorting is planned to line up the data over all processes
from the leftmost process to the rightmost process, in as-
cending order.

Finally, the sorted data is returned to the IO.
Figure 11 shows the connection of channels and the chan-

nel ends of the processes. The Sort process is equipped with
channel ends of from left ch, to right ch, from right ch,
and to left ch. It is connected to the channel end of the ad-
jacent processes through the channel fw chs and bk chs as
shown in Fig. 11.

Ring-par-split-sort is an implementation of Parallel Sprit
Sorting, as shown in Fig. 4 of Section 5.3. In each Sort pro-
cess, it sorts the sub data set internally (Sorting in Fig. 4),

then exchanges the data between adjacent processes (Ex-
change Neighbors in Fig. 4). The detailed processing flow
in the part of Exchange Neighbors is shown in Fig. 12.

From left ch, to right ch, from right ch, and to left ch
are channel ends to achieve the waiting state needed for com-
munications. In the waiting state, a receive event or send
event (ex: from left ch?min?fw) changes the state to the
next.

Head(data) is the minimum value among data of the Sort
process. Min is data just received from the from left ch
channel end. The data is input from the left process, on the
latest event.

Last(data) is the maximum value among data of the Sort
process. Max is data just received from the from right
channel end. The data is input from the right process, on
the latest event.

c© 2012 Information Processing Society of Japan 565



Journal of Information Processing Vol.20 No.3 559–569 (July 2012)

Exchange Neighbors is an operation that performs the
comparison and the exchange of head(data) and min, and
last(data) and max, respectively.

Fw and bk are tokens. These tokens show that whether or
not the sorting has been completed. Each token has the two
states ‘true’ or ‘false’, and ‘true’ means to exchange freely
(Fig. 12 (a)). Fw initializes with ‘true’ in IO, goes around
sort.0, sort.1 . . . and sort.M MAX-1, and then returns to
IO. When IO receives the token fw from the sort.M MAX-
1 process, IO sends it back to the sort.M MAX-1 process as
bk. The token travels via sort.M MAX-1, sort.M MAX-2,
. . . and sort.0, and then returns to IO again. The states of
tokens fw and bk become false when once there occur ex-
change among the Sort processes. It can be judged that sort-
ing of all processes is completed if the states of fw and bk
are true after travelling over all processes of the loop.

Next case study, we explain how the FDR model checker
verifies by giving case study.

• Case study II: Verification with FDR
FDR is Failure-Divergence Refinement model checker.

With this refinement tool, a concurrent model description
can be automatically validated from the model specification.
All reachable states are checked, inspection whether error-
free or not is performed, and non-deterministic features;
namely livelocks or deadlocks are detected. When a con-
current model and the specification are verified to be equiv-
alent by failure divergence, the concurrent model satisfies
the specification. FDR performs failure divergence among
models, so it can evaluate the equivalence of concurrent im-
plementations and the specifications. The Ring-par-split-sort
model is verified by using FDR.

Figure 13 shows a part of the specification description to
our concurrent model; deadlock-free and livelock-free are
verified in the model.

In Fig. 9, the result shows that the verification process is
completed in the normal terminations (checks on green), and
the abovementioned features are verified without failures.

Therefore, our Ring-par-split-sort has been proven to be
deadlock-free, and livelock-free.

6.3.4 Results from Experiment
Table 4 lists the relations between processes. A channel-end

is a connecting point between a process and a channel. M is the
number of S processes. This process involves sorting processes
that have data sets. This means the number of S and the number
of split data sets.

This means that the number of channel-ends on I does not de-
pend on the number of S processes.

We need to consider hardware constraints in implementing
each process in each core. I was implemented in Core[0]. S were
implemented in Core[1] or higher.

Figure 14 shows the number of splits when M is five. When
M is six or more, more than one S is appropriated in Core[1] or
higher.

Since each Core[1-5] appropriates a maximum of eight pro-
cesses, it is possible to make forty splits.

Figure 15 plots the relation between the numbers of splits M

Fig. 13 FDR description.

Table 4 Ring model relations for process names, number of processes and
channel-end.

Fig. 14 Implementation arrangement for ring model.

with running time. The M is the number of S processes. The time
is running time. This indicates that the running time decreases up
to M = 22. However, when M is more than 22, the running time
slowly increases.
6.3.5 Evaluation of Performance

We found from these experimental results that the execution
time could be expected to be reduced by increasing the number
of divisions. However, the results indicated that the execution
time increased as a boundary point with too many divisions.

In Fig. 16, we show the ratio of sorting time and neighbor ex-
changes (communication time) in the execution time of one cycle
for Sorting and neighbor exchanges on increasing M.

Execution time (E) is determined by RM times the sum of sort-
ing time (s) and communication time (x).

RM is the number of repeat cycle for Sorting (in Fig. 4) and
Exchange Neighbors (Fig. 4) between sorting start and finish.

c© 2012 Information Processing Society of Japan 566



Journal of Information Processing Vol.20 No.3 559–569 (July 2012)

Fig. 16 The ratio of sorting time on increasing of M.

Fig. 15 Relations between running time and number of splits (M) with ring
model.

M is the number of divisions. The repeat count is RM < R(M+1).
Sorting time (s) is determined by a function of the number of

data (N) and M depended.
For example, the computing time for insertion sort is

f((N/M)) > f(N/(M + 1)).
Neighbor exchange involves comparing and exchanging being

repeated once across each node.
The communication time of one cycle (x) becomes constant,

and it is independent of M.
The total execution time (E) and the total communication time

(C) are defined by the expressions in the square of Fig. 16.
From the left of Fig. 16 makes it clear that there is a rise in

the percentage of the communication time in the execution time
with increasing M. E/C is the ratio of execution throughput and
communication throughput, and it is inversely proportional to M.
When M is small, the change in the execution time by decreasing
s is large. This change is the main benefit of parallelization. The
percentage of communication in the execution time will increase
by increasing M.
6.3.6 Effectiveness Comparison of Concurrency

Our parallel split sorting algorithm has the O(N2) time and
O(N) space computational complexity. We show the execution
time of the non-parallel insertion sort and the Ring-par-split-sort
in Table 5.

6.4 Discussions
In this experiment, parallelization of sorting was implemented

on the CSP based methodology. We designed and implemented
a system with two concurrent sorting models by focusing on the
requirements for resource constraints and hierarchy.

Table 5 Execution time of non-parallel insertion sort and
Ring-par-split-sort.

[Concurrency]
We found from the experimental results that the execution time

could be expected to be reduced by increasing the number of di-
visions. However, the results revealed that the execution time
increases as a boundary point with too many divisions.
[Hierarchy]

CSP based architecture enables cooperation with synchronous
communications, making it easy to develop it into hierarchal
structures among module units. The modules in the star model
were easy to reuse in developing the ring model. Our experiment
revealed that it was able to reduce the number of development
processes.
[Resource Constraints]

Embedded systems have resource constraints. Our experiment
revealed we could reduce the number of processes while retain-
ing concurrency. We found resource usage could be reduced by
comparing the star model and the ring model.
[Safety]

Inter-process communications tend to become complicated in
parallelizing sequential processes. This problem was resolved
with the CSP based architecture, because modules were able to
determine the cause of bugs and to ensure the safety of specifica-
tions. Our experiments revealed FDR is a useful tool for verifying
the safety of software modules.

We implemented a sorting algorithm on practical hardware,
which contained the basic mechanisms for controlling data. We
were able to apply the sorting algorithm in embedded systems
easily by replacing these data control mechanisms with device
control instructions. The CSP based architecture satisfied the
requirements of having a hierarchical structure, resource con-

c© 2012 Information Processing Society of Japan 567



Journal of Information Processing Vol.20 No.3 559–569 (July 2012)

straints, and safety, as previously mentioned. Therefore, CSP
based architecture can be said to be useful in the development of
embedded concurrent systems. Moreover, the sorting algorithm
is good benchmark software to test the properties of embedded
systems.

7. Concluding Remarks

In this paper, we proposed a model of parallel sorting and im-
plemented it in an experiment. We tried to measure results by run-
ning it on hardware and we evaluated the performance of concur-
rency by focusing on the ratio of communication time in execu-
tion time. We also discussed the usefulness of the CSP-based ar-
chitecture. Although there are several approaches to paralleliza-
tion in sequential processing, CSP can be developed to meet the
requirements of hierarchy and safety.

We are considering future experiments on evaluating power-
savings in embedded systems.

Acknowledgments The authors would like to express their
thanks to Prof. Zenjiro Ohba of Toyo Univ. and Dr. Kazuhito
Matsui of CSP Consortium for helpful discussions.

References

[1] Hoare, C.A.R.: Communicating sequential processes, Comm. ACM,
Vol.21, No.8, pp.666–667 (1978).

[2] Roscoe, A.W.: The theory and practice of concurrency, Prentice Hall
(1998).

[3] Zurawski, R.: EMBEDDED SYSTEMS DESIGN AND VERIFICA-
TION, CRC Press (2009).

[4] Narayan, S.: Requirements for Specification of Embedded Systems,
Proc. 9th Annual IEEE International ASIC Conference and Exhibit,
pp.133–137 (1996).

[5] Saifhashemi, A. and Beerel, P.A.: High Level Modeling of Channel-
Based Asynchronous Circuits Using Verilog, Communicating Process
Architectures 2005, pp.275–288, IOS Press (2005).

[6] Mori, H.: Study of Embedded Concurrent Systems, The Institute of
Electronics Information and Communication Engineers (IEICE) FIIS-
11-307 (in Japanese), pp.1–7 (2011).

[7] Nakajima, S.: Formal Methods as Software Engineering Tools, Na-
tional Institute of Informatics NII-2007-007J (2007) (in Japanese).

[8] XMOS Limited, available from 〈http://www.xmos.com/〉.
[9] Breshears, C.: The Art of Concurrency, O’REILY (2009).
[10] Formal Systems (Europe) Limited, available from

〈http://www.fsel.com/〉.
[11] Hasegawa, Y., Isobe, Y., Ohmaki, K., Mori, H. and Tsuchida, K.: Par-

allel Processing by CSP based Architecture, The Institute of Electron-
ics Information and Communication Engineers (IEICE) FIIS-10-278
(in Japanese), pp.1–9 (2010).

[12] Thanakulwarapas, T. and Werapun, J.: Communication-Space Ef-
ficient Parallel Bitonic Sorting on Symmetric Multiprocessors, Ad-
vances in Computer Science and Technology (ACST 2008), pp.75–79
(2008).

[13] Lee, J.D. and Batcher, K.E.: Minimizing Communication in the
Bitonic Sort, IEEE Trans. Parallel and Distributed Systems, pp.459–
473 (2000).

Yuki Hasegawa received his M.E. de-
grees in Open Information Systems from
Toyo University in 2011. His research in-
terests include parallel and concurrent ar-
chitectures.

Yoshinao Isobe received his B.E. and
M.E. degrees in Electrical Engineering
from Shibaura Institute of Technology in
1990 and 1992 respectively. In 1992,
he joined Electrotechnical Laboratory,
MITI. He received his D.E. degree from
Shizuoka University in 2001. He was
a visiting researcher of the University of

Wales, Swansea for one year in 2003. He is currently a senior re-
searcher in the National Institute of Advanced Industrial Science
and Technology. His research interests include formal verifica-
tion of concurrent systems. He is a member of IEICE, JSSST,
and IPSJ.

Kazuhito Ohmaki received his M.S. and
Ph.D. degrees in Computer Science from
Tohoku University in 1976 and 1979 re-
spectively. He joined Electrotechnical
Laboratory, Agency of Industrial Science
and Technology in 1979. He was an in-
vited researcher af ETH Zurich in 1984.
He has been a professor of Faculty of In-

formation Sciences and Arts at Toyo University since 2009. His
major interests include Software Engineering based on formal se-
mantics. He is a member of IPSJ, JSSST, ACM and IEEE.

Hideki Mori received his M.S. and Ph.D.
both from Keio University in 1974 and
1978, respectively. He joined the Faculty
at Toyo University from 1978 to 2008.
He was a Visiting Scholar of the Depart-
ment of Computer Science of UCLA in
1984. Currently, he is a visiting profes-
sor of the Graduate School of Open In-

formation Systems of Toyo University, and a Visiting Professor
of Tokyo Denki University. His research interests include paral-
lel and concurrent architectures, and fault-tolerant computation.
Most recently, his research has emphasized on concurrent sys-
tems. He is a member of IEEE, ACM, IPSJ and IEICE.

c© 2012 Information Processing Society of Japan 568



Journal of Information Processing Vol.20 No.3 559–569 (July 2012)

Kensei Tsuchida received his M.S. and
D.S. degrees in mathematics from Waseda
University in 1984 and 1994 respectively.
He was a member of the Software En-
gineering Development Laboratory, NEC
Corporation in 1984–1990. From 1990 to
1992, he was a research associate of the
Department of Industrial Engineering and

Management at Kanagawa University. In 1992 he joined Toyo
University, where he was an instructor until 1995 and an asso-
ciate professor from 1995 to 2002, and a professor of from 2002
to 2009 at the Department of Information and Computer Sciences
and since 2009 he has been a professor of Faculty of Informa-
tion Sciences and Arts. He was a visiting associate professor of
the Department of Computer Science at Oregon State University
from 1997 to 1998. His research interests include software visual-
ization, human interface, graph languages, and graph algorithms.
He is a member of IPSJ, IEICE Japan and IEEE Computer Soci-
ety.

Yasunori Shiono received his M.E. and
D.E. degrees from Toyo University in
2006 and 2010 respectively. He is cur-
rently an assistant professor of Faculty
of Information Sciences and Arts at Toyo
University. His research interests include
graph algorithms, graph grammars, fuzzy
theory and software development environ-

ments. He is a member of IEICE Japan, JSSST, JSIAM and IEEE.

c© 2012 Information Processing Society of Japan 569


