IPSJ Journal Vol. 49 No. 6 1751-1762 (June 2008)

Regular Paper

Validating Safety for the Integrated Services
of the Home Network System Using JML

BEN YAN,! MASAHIDE NAKAMURA, 2
LyDIE DU BousQUET™ and KEN-1cHI MATSUMOTO!

The home network system (HNS, for short) enables the flexible integration
of networked home appliances, which achieves value-added integrated services.
Assuring safety within such integrated services is a crucial issue to guarantee a
high quality of life in smart home. In this paper, we present a novel framework
for the safety of the HNS integrated services. We first propose a way to define
safety in the context of the integrated services, which is characterized by local
safety, global safety, and environment safety. We then propose a method that
can validate the above three kinds of safety for given HNS implementations.
Exploiting the concept of Design by Contract (DbC, for short), the proposed
method represents every safety property as a contract between a provider and
a consumer of an HNS object. The contracts are embedded within the imple-
mentations, and then are validated through elaborate testing. We implement
the method using Java Modeling Language (JML, for short) and JUnit with
a test-case generation tool TOBIAS. Using the proposed framework, one can
define and validate the safety of HNS integrated services, systematically and
efficiently.

1. Introduction

The home network system (HNS, for short) is a system consisting of multiple
networked household appliances and sensors. It is one of the promising applica-
tions of emerging ubiquitous technologies. The great advantage of the HNS lies
in the flexible integration of different home appliances through the network. The
integration achieves value-added integrated services®. For example, integrating
a TV, a DVD player, lights, sound systems and curtains implements a DVD The-
ater Service, which allows a user to watch movies in a theater-like atmosphere

11 Nara Institute of Science and Technology (NAIST)
12 Kobe University
13 Joseph Fourier University (Grenoble I)

1751

within a single operation.

In developing and providing the HNS integrated services, the service provider
must guarantee that the service is safe for inhabitants, house properties and
their surrounding environment. Assuring safety is a crucial issue to guarantee
a high quality of life in smart home. With the conventional (non-networked)
home appliances, safety is ensured manually by the human user. That is, every
user is supposed to follow the safety instructions typically described in the user’s
manual.

With the HNS integrated services, however, we have to consider the safety much
more carefully. First, the networked appliances are operated automatically by
software agents, but not by the human user. Second, the integration of multiple
appliances yields global dependencies between the appliances. Moreover, the
residential safety rules of every home, which are independent of appliances and
services, should also be concerned. Most of these issues must be coped with
carefully in the software implementation. Unfortunately however, there exists no
solid framework to handle the safety of the HNS integrated services, as far as we
know.

In this paper, we propose a novel framework for the safety, consisting of two
contributions. The first contribution is to propose a way to define the safety of
the HNS integrated services. Considering the nature of the HNS and integrated
services, we define three kinds of safety: (1) local safety is the safety to be
ensured by the safety instructions of individual appliances, (2) global safety is
specified over multiple appliances as required properties of an integrated service,
and (3) environment safety is prescribed as residential rules in the home and
surrounding environment.

Our second contribution is to propose a method that wvalidates the above three
kinds of safety for given HNS implementations. For this, the proposed method
uses the technique of Design by Contract (DbC, for short)”, extensively. In
general, the HNS involves multiple stakeholders (e.g., appliance vendors, service
providers, house builders, end users, etc.). It is essential to find out who is
responsible in each instance for the safety issue. We consider every safety property
as a contract between a provider and a consumer of an HNS object.

In the proposed method, the contracts for local (global, or environment) safety

(© 2008 Information Processing Society of Japan

1752 Validating Safety for the Integrated Services of the Home Network System Using JML

are embedded within the implementations of the appliance (service, or home, re-
spectively) objects. Following this, the contracts are validated through elaborate
testing. In this paper, especially for the HNS written in Java, we implement the
method with JML (Java Modeling Language) '® and JUnit. In order to cover all
possible scenarios where the integrated service is activated, we also introduce a
tool TOBIAS for the combinatorial test-case generation.

To evaluate the feasibility, we also conduct case studies for practical integrated
services. It is demonstrated that the proposed method can automatically detect
logical faults that violate safety properties, with in a necessarily short time.

Using the proposed framework, one can define and validate the safety of HNS
integrated services, systematically and efficiently. We believe that the proposed
method would be a powerful means not only for validating given services, but
also for providing solid safety guidelines to stakeholders of the HNS.

2. Preliminaries

2.1 Home Network System (HNS)

An HNS consists of one or more networked appliances connected to a LAN
at home. In general, each appliance has a set of application program interfaces
(APIs), by which the users or external software agents can control the appliance
via the network. An HNS typically has a home server, which manages all the
appliances in the HNS. Services and applications are installed on the home
server. An HNS integrated service operates multiple different appliances together,
and achieves a sophisticated and value-added service. An integrated service is
implemented as a software application that invokes APIs of the appliances.

2.2 Example of Integrated Services

Here we introduce three example scenarios of HNS integrated services.

[SS1: DVD Theater Service] Integrating a TV, a DVD player, a sound sys-
tem, a light and a curtain, this service automatically sets up the living room in a
theater configuration. Upon a user’s request, the TV is turned on with the DVD
input, the curtains are closed, the sound system is configured for 5.1ch mode, the
light darkens, and finally the DVD player plays back the contents.

[SS2: Relax Service| Integrating a DVD player, a sound system, a light, and
an air-conditioner, this service helps a user relax in the living room. When the

IPSJ Journal Vol. 49 No. 6 1751-1762 (June 2008)

user starts the service, the DVD player is turned on in music mode, a 5.1ch
speaker is selected with an appropriate sound level, the brightness of the light is
adjusted, the air-conditioner is configured with a comfortable temperature.
[SS3: Cooking Preparation Service| Integrating a gas-valve, a ventilator,
a kitchen light, and an electric kettle. This service automatically sets up the
kitchen configuration in preparation for cooking. When requested, the kitchen
light is turned on, the gas-valve is opened, the ventilator is turned on, and the
kettle is turned on with a boiling mode to prepare hot water for cooking.

2.3 Object-Oriented Model for HNS

To understand the HNS clearly, here we introduce an object-oriented model of
HNS shown in Fig. 1, which has been proposed in our previous work . As rep-
resented with the UML class diagram, the model consists of three kinds of objects
(classes): Appliance, Service, and Home. These classes have relationships such
that (R1) a Home has multiple Appliances, (R2) a Home has multiple Services,
and (R3) a Service uses multiple Appliances, which reasonably characterize the
structure of an HNS.

(A) Appliance Object

An appliance object models a networked appliance. The model involves a super
class Appliance, which aggregates attributes and methods commonly contained
in all kinds of electric appliances. It also has a Specification, which stores static
specification information such as power voltage, rated current, size, allowable
temperature and humidity. Typical methods involve the power switches (on(),
off ()), getting the current power consumptions (getCurrentConsumption()).

On the other hand, operations specific to each kind of appliance are speci-
fied in the concrete appliance classes. Such methods include TV.setChannel (),
DVD.play() and Kettle.openLid(). Every appliance also has a method that
returns the current state of the appliance (e.g. TV.getTvStatus()), so that the
state can be referred by external objects.

(B) Service Object

A service object models an integrated service, which uses several appliance
objects. There is a super class Service which has common interfaces like
getStatus(). The concrete service scenarios are implemented in sub-classes
that inherit Service. Specifically, each service contains a set of appliance ob-

(© 2008 Information Processing Society of Japan

1753 Validating Safety for the Integrated Services of the Home Network System Using JML

Digital TV Light ShowerService DVDTheaterService CookingPreparationService RelaxService DVDPlayer
-channel -brightnessLevel |- ShowerValve -DVD -Light -DVD -volumeLevel
-volumeLevel -HotWaterSystem -TV |-Ventilator -SoundSystem -workingStatus
-soundinputMode [+ switchOn() -Airconditioner -Curtain -GasValve -Light -inputSource
|-soundOutputMode + switchoff() - -Light -ElectricKettle |-Airconditioner -palyingSpeed
-visuallnputMode + setBrightnessLevel() [+start() -SoundSystem -visualOutputMode
visualOutputMode +getLightStatus() +stop() [+start() [+start()

-workingStatus +...() L+...) +start() H+stop() H+stop() +setinput()
+stop() ... () ... +setSoundOutput()
+switchOn() +..() +setVolumeLevel()
+-switchOff() Appliance I +play()
+setChannel() [Name Home +stop()
-+setVolumeLevel() L - - +pause()
|+ setSoundinputMode() _51‘:;‘:‘;5';;59 <<USES>> -enwronmer?IFfequlrment _ |astForward()
+sgtSoundOutputMode() -applianceSpecification Service +fastRewind()
+Visuallnput() s - - [+upVolume()
H+PauseTv() -serviceNumber +getEnvironmentRequirement() +downVolume()
+upChannel() B e L_|-workingStatus -0 +getDvdStatus()
+downChannel() +off() o= +...()
+upVolume() +ge:g?v‘ver() [+ getStatus() Specification
[+downVolume() :thCL:';z(t)Consumption() -0 -appliancePowerSupplyRequirement
+getTvStatus() 0 -applianceEnvironmentRequirement
-0 +getAppliancePowerSupplyRequirement() SoundSystem
Zﬁ +getApplianceEnviromentyRequirement() -musicMode
I— -volumeLevel
[I L_}-soundinputSource
ElectricKettle Ventilator HotWaterSystem [workingStatus
-waterTemperature -windLevel -waterTemperature - =
-lidStatus -onTime -startTime AlrConditioner +setMusicMode()
-heatingMode -offTime -endTime -windLevel +setVolumeLevel()
-temperature +setinputSource()
- GasValve ElectricCurtain .
+switchOn() +-switchOn() +setWaterTempreature() -mode [+switchOn()
L+ switchOff() L+switchOff() | setStartTime() [-workingStatus -curtainStatus [+switchOff()
+openLid() |+setOnTime() L+ setEndTime() -+switchOn() [+pasueMusic()
+closelLid() +setOffTime() +-openValve() +switchOff() +openGas() +open() [+upVolume()
[+setWaterTemperature() +setWindLevel() H+closeValve() -+setRequiredTemperature() H+closeGas() +close() |+downVolume()
L+ getKettleStatus () L+ getVer 18() L+ getHot ystemStatus() +...() +getGasStatus() +getCurtainStatus() +getSoundSystemStatus()
+...() +...() +..() +getACStatus() +..() +..() -0

Fig.1 Object-oriented model of HNS.

jects, and invokes methods of the appliance objects according to a certain logic.
Figure 2 shows a Java implementation of the DVDTheaterService. It can be
seen in start () that the scenario SS1 (see Section 2.2) is implemented.

(C) Home Object

A home object, represented as a singleton object Home, models the house
that involves environmental attributes. The attributes include energy consump-
tion, sound level, brightness, temperature and humidity. We assume that
values of these attributes can be computed from the current states of ap-
pliances and services. For instance, the current temperature is obtained by

Home.currentEnvironment.getTemperature().
The current electricity consumption is computed from specifications and states

IPSJ Journal Vol. 49 No. 6 1751-1762 (June 2008)

of appliances that are currently on. Note that a user may want to operate some
appliances directly and not through the integrated services. To simulate this, we
assume that Home has methods that can directly invoke any appliance methods.

3. Formalizing the Safety of the HNS Integrated Services

3.1 Safety in a Broad Sense

Our first concern is to see what safety is. In a broad sense, the safety of an
integrated services could be defined as follows:

Definition 1 (safety in broad sense) An HNS integrated service s is safe
iff s is free from any condition that can cause [injury or death to home users
and neighbors], or [damage to or loss of home equipment and the surrounding

(© 2008 Information Processing Society of Japan

1754 Validating Safety for the Integrated Services of the Home Network System Using JML

public class DVDThaterService {
DigitalTV tv; DVDPlayer dvd; SoundSystem sound;
Light light; ElectricCurtain curtain; //Appliances used.
public class DVDTheater (DigitalTV tv, DVDPlayer dvd,
SoundSystem sound, Light light, ElectricCurtain curtain) {
this.tv = tv; this.dvd = dvd; this.sound = sound;
this.light = light; this.curtain = curtain; //Constructor
}
public void start() { // Initiate DVDTheater
tv.on() ; /* Turn on TV */
tv.visualInput ('DVD') ;
dvd.on() ;
dvd.setSoundOutput ('5.1") ;

/* Turn on DVD player */
sound.on () ; /*Turn on Sound System*/
sound.setInput ('DVD') ;

sound.setVolumeLevel (25) ;
curtain.close() ; /*Close curtain*/
light.setBrightnessLevel (1) ; /*Minimize brightness*/

dvd.play () ; /*Play DVD*/

Fig.2 Java Implementation of DVD Theater Service.

environment).

Our long-term goal is to establish a solid framework that can guarantee the
safety in Definition 1. In general however, it is quite difficult to achieve 100%
safety. Hence, safety is often evaluated by means of risk. To assure safety to a
considerable extent, a set of conditions or guidelines minimizing the risk (called,
safety properties) are usually considered?. Considering the nature of the HNS,
we propose to classify the safety properties into the following three types.

3.2 Local Safety Property

For every electric appliance, the vendor of the appliance prescribes a set of
safety instructions for the proper and safe use of the appliance. Conventionally,
these instructions have been designated for human users. In the HNS however,
the instructions must be guaranteed within the software that uses the appliance.
For instance, the following property is taken from a safety instruction of an
electric kettle.

L1: Do not open the lid while the water is boiling, or there is a risk of scald.

IPSJ Journal Vol. 49 No. 6 1751-1762 (June 2008)

Any integrated service using the kettle (e.g., SS3 in Section 2.2) must be im-
plemented so that the service never opens the lid while the kettle is in boiling
mode. Usually the safety instructions of an appliance can be regarded as a set of
safety properties that are locally specified within that appliance only. Thus we
define them as local safety properties as follows:

Definition 2 (local safety property) A safety property Ip is called local
safety property, iff Ip is defined over a single appliance d. Let Local Prop(d) =
{lp1,1pa, ..
appliance d. For a given integrated service s, let App(s) = {di,ds,..

., Ipm} be the set of all local safety properties with respect to the
.,dn} be
the set of networked appliances used by s. Then, we define LocalProp(s) =
Ud, e App(s) Local Prop(d;) which is the set of local safety properties with respect
to the service s.

3.3 Global Safety Property

Since an integrated service operates multiple appliances, it is also necessary
to consider global dependencies among different appliances. For instance, the
following safety property is for the SS3 to avoid carbon monoxide poisoning.

G1: While the gas valve is opened, the ventilator must be turned on.

Note that the property G1 requires a global dependency between the gas valve
and the ventilator. These kinds of safety properties are often service-specific,
and are not covered by the local safety properties of individual appliances. So
we define them as global safety properties.

Definition 3 (global safety property) A safety property gp is called global
.,d, that are
, gpi } denotes the

safety property iff gp is defined over multiple appliances dy, do, . .
used by an integrated service s. GlobalProp(s) = {gp1,gpa2,. ..
set of all global safety properties for s.

3.4 Environment Safety Property

In general, each house has a set of residential rules for inhabitants to create a
safe living environment. For instance, most houses have a capacity for electricity.
In addition, a community might have a rule for noise control at night:

E1: The total amount of current used simultaneously must not exceed 30 A.

E2: Do not make a loud noise after 9 p.m.

These residential rules might vary from house to house, but they are usually

(© 2008 Information Processing Society of Japan

1755 Validating Safety for the Integrated Services of the Home Network System Using JML

independent *! of appliances or services in the house. The integrated services of
course have to conform to the rules to be safe in the environment.

Definition 4 (environment safety property) A safety property ep is
called an environment safety property iff ep is defined as an environmental
or residential constraint, which is independent of any appliances or services.
EnvProp = {ep1,epa, . ..,ep;} denotes the set of all environment properties.

3.5 Who Gives Safety Properties?

Since an HNS involves several stakeholders, it is important to clarify who is
responsible for specifying the safety properties. In this paper, we assume that
Local Prop(s) are given by appliance vendors, since the properties are derived
based on the safety instructions of the appliances. Next, Global Prop(s) is sup-
posed to be given by the service provider of s, since the provider is responsible for
the integration of appliances. Finally, we assume that EnvProp should be given
by the house builder, considering the house specification and the surrounding
community rules.

3.6 Safety of HNS Integrated Services

Based on the discussion above, we define three kinds of safety as follows.

Definition 5 (safety of integrated service) For a given integrated service
s, and a set P of safety properties, we write s = P iff s satisfies all properties
contained in P. Then, we define the safety of s as follows.

e s is locally safe iff st Local Prop(s).

e s is globally safe iff s+ Global Prop(s).

e s is environmentally safe iff s = EnvProp.

e s is safe iff s is locally, globally and environmentally safe.

4. Exploiting Design by Contract (DbC) for Safety Validation of
HNS

4.1 Safety Validation Problem
Once the safety is defined, our next concern is how to wvalidate it. Specifically,
the problem is formulated as follows:

*1 Here “independent” means that the definition of each environment property does not require
the direct reference of appliances or services. In reality, each environment property becomes
true or false, indirectly depending on the status of appliances and services.

IPSJ Journal Vol. 49 No. 6 1751-1762 (June 2008)

Definition 6 (safety validation problem) Let h be a given implementa-
tion of HNS and s be an integrated service. Let LocalProp(s), Global Prop(s),
and EnvProp be given. The safety validation problem is to check if s is safe.

We assume that the given h and s are implemented based on the object-oriented
model presented in Section 2.3.

4.2 Key Idea: Introducing DbC

As seen before, an HNS consists of many heterogeneous objects, and the safety
properties defined over the objects are given by multiple stakeholders. So, when
a safety violation occurs in an object, say obj, it is not always easy to prove
which stakeholder is to be blamed for the accident. To do this rigorously, the
consumer and the provider of obj must agree with mutual responsibilities before
obj is used. This motivated us to describe every safety property as a contract
to be fulfilled between the consumer and the provider of any HNS object. To
implement this, we borrow a software design strategy called Design by Contract
(DbC, for short) 7.

For a given program, the DbC describes properties, conditions and invariants as
a set of contracts between calling and callee objects. The contracts are verified
during the runtime of the program under testing. During the execution, if a
contract is broken, an exception is thrown or an error is reported. Thus, if we
could successfully represent the safety properties as DbC contracts among the
HNS objects, then the safety validation problem can be reduced to the testing of
the HNS implementations.

4.3 Guidelines for Describing Safety Properties as DbC Contracts

There are three types of contracts in the DbC.

[Pre-Condition:] A pre-condition of a method m is a condition that must be
satisfied before executing m.

[Post-Condition:] A post-condition of a method m is a condition that must be
satisfied after executing m.

[Class Invariant:] A class invariant of a class ¢ is a condition that must be
guaranteed (i.e., kept unchanged) no matter which methods in ¢ are executed.

4.3.1 Choosing the Type of Contract

We first consider which type of the DbC contracts is appropriate for repre-
senting a given safety property. By definition, a pre-condition characterizes a

(© 2008 Information Processing Society of Japan

1756 Validating Safety for the Integrated Services of the Home Network System Using JML

premise of an API m. Therefore, we represent any safety property that must be
satisfied by the consumer side of m as a pre-condition. On the other hand, a
post-condition characterizes a conclusion of m. We describe any safety property
to be guaranteed by the provider side of m in a post-condition. For a safety
property that must hold globally without depending on any specific APIs, we use
the class invariant to represent it.

4.3.2 Choosing an Object for Contract

Suppose that a safety property p is represented as a DbC contract c,. We then
have to choose an appropriate object (class) in Fig. 1 where ¢, is embedded. For
this, we propose the following criteria based on the property type:

e If p € Local Prop(s), then embed ¢, in Appliance or its sub-classes.

o If p € GlobalProp(s), then embed ¢, in Service or its sub-classes.

e If p € EnvProp, then embed ¢, in Home or its sub-classes.

The above criteria is quite reasonable, considering the definition of each type of
safety properties and the role of each class in the object-oriented model.

4.4 Examples

Based on the guideline above, let us describe some contracts for the safety
properties presented in Section 3.

First, let us take the safety property LI. Since L1 is a local property related
to an operation “open the lid” of ElectricKettle, LI can be represented as the
following contract:
Target Method:
Pre-condition:

ElectricKettle.openLid ()
heatingMode != ’boiling’
Post-condition: 1lidStatus == ’open’ && heatingMode != ’boiling’

The pre-condition is stating a consumer-side responsibility that any service that
invokes openLid () must ensure the kettle is not in boiling mode before executing
it. In addition, the post-condition prescribes a provider-side responsibility that
when the method is completed, the lid is surely opened and the status never
changes to boiling mode.

The next example is the property G1. Since GI is a global property, the
contract should be embedded in the service class, CookingPreparationService.
The property should be satisfied globally no matter what method of the service
is executed. So, we represent G as the following class invariant.

IPSJ Journal Vol. 49 No. 6 1751-1762 (June 2008)

Target Class: CookingPreparationService
Invariant: GasValve.workingStatus==’open’
-> Ventilator.powerStatus==’0N’

The above contract prescribes a condition that at any time when the gas valve
is opened, the ventilator must be turned on. Note that it is not appropriate to
embed the contract in the appliance class, e.g., GasValve. Since GasValve does
not know what other appliances exist in the HNS, it is difficult for GasValve to
obtain the status of the Ventilator directly.

The last example is the property E1. Since it is an environment property, the
contract is embedded in Home class. Since the property does not depend on any
specific APIs, we represent E1 as a class invariant.

Target Class: Home
Invariant: Home.currentEnvironment.getTotalConsumption() <= 30

The method getTotalConsumption() is supposed to return the current total

consumption of electricity, which is computed from the appliances that are being

turned on.
5. Implementing Safety Validation

Based on the discussion above, we implement a method of safety validation,
especially for the Java implementations of the HNS.

Figure 3 depicts the overview of the proposed method. The method mainly
consists of the following three steps.
Stepl: Describe the DbC contracts in JML.
Step2: Generate test cases.
Step3: Run the test.

5.1 Stepl: Describing DbC Contracts in JML

The proposed method extensively uses the JML (Java Modeling Language) -1
to implement the DbC-based safety validation. The JML is a specification lan-
guage that can be used to describe the DbC contracts in the form of Java com-
ments, called JML annotations.

In Step 1, for each safety property p given, we represent DbC contract ¢, in
the JML annotation, and embed ¢, to the Java source code according to the
guideline in Section 4.3.

(© 2008 Information Processing Society of Japan

1757 Validating Safety for the Integrated Services of the Home Network System Using JML

Safety Properties JGIobaIProp(s)(J Loca/Prop(s)(J EnvProp ‘

i'ét;'p'z """"""""" TiSept MMM K

! Test Patterns N Description of JML Contracts i
1 1 1

i (TOBIAS Test Schemas)J [(e, i

1 1 1

1 [. . 1

ith JML Annotati

i - i E Jav.a Source Codé with J nnotation E

1 - 11| Services Appliances Home !

:[Test Case Generation] v i

! TOBIAS ' — i

: i Compilation (JML Compiler, |

: - b (p (BlED)]i

i Test Cases E i Java Instrumenled Byte Code !

] -I [Services Appliances

i _______ ______i i.__\%i%m

—_—
[Step 8 Run Test Driver (J-Unit)]

‘_7
Verdi Local Global Environment
erdicts Safe Safet: Safe

Fig. 3 Proposed safety validation method.

public class ElectricKettle extends Appliancef
private /*@spec_public@*/ String heatingMode;//BOILING or IDLE
private /*@spec_public@*/ String lidStatus; //OPEN or CLOSE

// --- Contract Ll: ---
// Do not open the 1lid while the kettle is in the boiling mode.
/*@ assignable lidStatus;
@ requires heatingMode.equals ("OFF") ;
@ ensures lidStatus.equals ("OPEN")&&!heatingMode.equals (*"BOILING");
@*/
public void openLid () {
//Implementaion ...

Fig.4 ElectricKettle.java with JML annotations.

Figure 4 shows the JML annotation describing contracts for the property
L1 of ElectricKettle (see Section 4.4). The contracts are described in com-
ment lines just above method openLid(). The line starting with requires (or
ensures) represents the pre-condition (or post-condition, respectively). The
word spec_public is for exporting the attribute to be used in the JML annota-
tion. Just for convenience, we describe 1idStatus and heatingMode as simple
string variables.

As shown in Fig. 3, the source code with the JML annotations is then compiled

IPSJ Journal Vol. 49 No. 6 1751-1762 (June 2008)

by the JML compiler into instrumented bytecode, implementing assertion-based
checking routines of the DbC contracts.

Note that one might want to encode DbC contracts directly in the source code
using the Java assertions. However, the great advantage of using JML rather
than Java assertions is that we can completely separate the contracts from the
implementation. Thus, the safety properties can be specified in the code as
comment lines, without modifying the original code.

5.2 Step 2: Generating Test Cases

The next step is to construct test cases used for safety validation. In real life,
integrated services can be activated under various situations (i.e., states) in the
HNS. For instance, the CookingPreparationService may be activated when
all the appliances are off. Or, it may be activated when the ventilator is already
on and the lid of the kettle is initially opened. CoolingPreparationService
must be implemented so that the service behaves safely, in whatever state it is
activated. Therefore, for a given integrated service s, we generate test cases
activating s under all possible states.

To generate such test cases systematically and efficiently, we use a combinato-
rial test generation tool, called TOBIAS V'%. TOBIAS allows us to define abstract
test patterns, in which similar operations and parameter values are managed by
sets, called groups. The groups are combined algebraically based on regular ex-
pressions, to construct more sophisticated test schemas. The test schemas are
then translated by TOBIAS into a large set of executable test cases for JUnit 'V,
where all elements in each group are unfolded.

Now we present our key idea. Suppose that s is a given integrated service
and that we want to validate a method s.m(). Then, we construct the following
TOBIAS test schema T"

T == Init;

In the schema, ; represents a sequential operator.

AppOp™ ; s.mJ()

Init represents a group
containing initialization operations (typically constructors of HNS objects, or
settings of environment parameters). AppOp is a group containing any appli-
ance operations (methods). AppOp™ means the n-time product of AppOp, which
my (m; € AppOp). Thus, the
part “Init; AppOp™” is a preamble to generate possible states before s.m() is

characterizes all possible sequences mi;mao;...;

(© 2008 Information Processing Society of Japan

1758 Validating Safety for the Integrated Services of the Home Network System Using JML

Group HomeInit ::= {begin seq Home home := new Home() end seqg }
Group KettleOperation ::= {begin seq home.OffKettle() end seq,
begin seq home.SwitchOnKettle() end seq

begin seq home.SwitchOffKettle() end seq ,

begin seq home.CloseLidKettle() end seg

begin seq home.OpenLidKettle () end seq
begin seq home.SetWaterTemperatureKettle(98) end seq };

Group threeKettleOperations ::= KettleOperation™3..3

Group testAllKettleOperations::= { begin seq
HomeInit ;threeKettleOperations

end seq }

(a) Test Schemas for ElectricKettle

Group testCookingWRTKettleOp ::= { begin seq HomeInit;
threeKettleOperations; home.CookingPreparationService.start ()

end seq }

Group testEachServiceWRTKettleOp ::= { begin seq HomeInit;
threeKettleOperations; OneActivationForEachService

end seq }

Group HomeInitEnv ::=
begin seq Home home :
begin seqg Home home :
begin seq Home home :
begin seq Home home :
begin seq Home home :
}i

Group testEachServiceWRTevironmentSettings ::= {begin seq
HomeInitEnv; OneActivationForEachService

end seq }

Home (tempValues, 12,10, 8,0) end seq ,
new Home (21,brightValues,10,8,0) end seq,
new Home (22,1, volumeValues, 9,15) end seq,
new Home (17,20,5, timeValues, 13) end seq,
new Home (19,2,15,11,powerValues) end seq

L T T T T
=1
o
5

(b) Test Schemas for CookingPreparationService and other services

Fig.5 TOBIAS test schemas.

activated. Note that the preamble can also be used as test schemas of individual
appliances.

Figure 5 (a) shows an example of TOBIAS schemas, which define the preamble
using operations of ElectricKettle. In the figure, HomeInit creates a Home
object. KettleOperation contains 6 methods for operating the kettle in home
from outside (see Section 2.3 (C)).
of KettleOperation. Concatenating HomeInit and threeKettleOperations

threeKettleOperaions is 3-time product

yields a preamble of the proposed method. Note that the preamble can be used
to test ElectricKettle itself, we name the schema testAllKettleOperations,
from which 216 (=6 x 6 x 6) test cases will be unfolded.

Figure 5(b) shows TOBIAS schemas for testing integrated services. The

IPSJ Journal Vol. 49 No. 6 1751-1762 (June 2008)

first schema tests the activation of CookingPreparationService by using
threeKettleOperations as its preamble. The second one deals with one ac-
tivation of any integrated service (definition of the group is omitted due to the
space). The third schema initializes Home with varying environment parame-
ters, under which safety properties concerning the environment can be validated
thoroughly.

The test schemas are then translated by TOBIAS into JUnit test classes. For
instance, from the group testEachServiceWRTKettleOp, the total 1512 JUnit
tests *! have been automatically generated within just 0.641sec. (in a mid-class
PC, Pentium-M 1 GHz, 760 MB). Thus, using TOBIAS we can manage a large
number of test cases in a very compact form, which significantly reduces the cost
of test case generation.

5.3 Step 3: Running Test

In this step, we conduct the test using the JUnit testing framework for Java.
According to the test cases obtained in Step 2, JUnit automatically runs the in-
strumented bytecode under test. During the execution, if any contract is broken,
then a JML exception is thrown to JUnit. Then, we can get a report about which
safety property is violated. Thus we can solve the safety validation problem in
Section 4.1.

6. Case Study

To evaluate the proposed method, we have conducted safety validation for a
practical HNS and integrated services.

6.1 Preparations

For the experiment, we have prepared Java implementations of 11 appliances
and 7 integrated services, as follows:
DVDPlayer, AirConditioner, ElectricKettle, Ventilator,
Light, Door, SoundSystem, TV, GasValve, Blind, Curtain.

Appliances:

Integrated Services: CookingPreparation, Relax, DVDTheater, Shower,
Blind, Sleep, ComingHome.
Although the appliance classes behave as virtual appliances without hardware

+1 OneActivationForEachService contained 7 integrated services.

(© 2008 Information Processing Society of Japan

1759 Validating Safety for the Integrated Services of the Home Network System Using JML

Table 1 Validated safety properties in the case study (only a part).

Safety Type

Safety Property

Local Prop

: Do not open the lid while the water is boiling or there is a risk of scald (for ElectricKettle).
: Make sure that the lid is closed before boiling water (for ElectricKettle).

: Do not connect it with outlets except exchange 100V (for all appliances).

: Do not connect it with an outlet of rating 15A or less (for all appliances).

: While the gas valve is opened, the ventilator must be turned on (for cookingPreparationService).
Global Prop G2:

: When the service turns on the shower valve, the water temperature of the gas-boiler must be

Do not change the temperature while the shower is open (for shower service).

between 35 and 45 degrees (for shower service).

El1:
EnvProp E2:
ES:

The total amount of current used simultaneously must not exceed 30 A.
Do not make a loud noise or sound after 9 p.m.
Unlock doors and windows in the event of fire.

Table 2 Results of safety validation.

TOBIAS Test Schemas

of Total TC # of Failed TC Time Elapsed Safety Violation

testAllKettleOperations 216 78 1.5sec. L1, L2
testCookingWRTKettleOp 216 216 2.265sec. G1
testEachServiceWRTKettleop 1,512 0 25.892sec. none
testEachServiceWRTevironmentSettings 231 18 2.719sec. El1

devices, their source code has been partially taken from the service layer of a real
HNS® under operation in our laboratory.

In the source code, we then inserted the total 209 JML annotations (17 pre-
conditions, 150 post-conditions, and 42 invariants). Table 1 shows a part of
validated safety properties. The experiment has been performed in a PC with
Pentium-M 1 GHz, 760 MB RAM, Windows XP Pro, J2SDK 1.4.2, JUnit 3.8.1,
JML tools release 5.3 and TOBIAS Eclipse plug-in.

6.2 Experiment

The safety validation experiment has been conducted based on incremental
testing. That is, taking one TOBIAS test schema at a time, we ran the generated
test cases. If the proposed method detected any safety violation, we fixed the
related faults in the source code, and then tested the revised version again. If
all the test cases were passed, we took the next test schema to validate. Thus,
the HNS implementations have been incrementally updated to a safer version for
each run of testing.

IPSJ Journal Vol. 49 No. 6 1751-1762 (June 2008)

6.3 Results

Table 2 summarizes the validation statistics of each test schema. The table
contains the total number of test cases generated from the schema, the number
of test cases failed, the time taken for testing, and the safety properties violated
during the test. Due to limited space, the table shows only some interesting
results. For each safety violation detected, we explain the cause of the violation
as follows.

(A) Violation of L1 and L2

The test cases from testAllKettleOperations revealed violations of lo-
cal safety properties LI and L2 within the original implementation of
ElectricKettle class. First, the violation of LI was due to the omission
of checking the heating mode in openLid() method. Therefore, a sequence
kettle.switchOn(); kettle.openLid() leads to an unsafe situation where the
lid is opened during the boiling mode.

The caused by a logical error in method
kettle.switchOn(), which sometimes bypassed the checking of the lid status.

violation of L2 was

(© 2008 Information Processing Society of Japan

1760 Validating Safety for the Integrated Services of the Home Network System Using JML

Hence in some sequences, the kettle entered boiling mode without checking if
the lid was surely closed. We fixed the errors in ElectricKettle class before
proceeding to the next test schema.

(B) Violation of G1

In the wvalidation of testCookingWRTKettleOp, the proposed method
detected the violation of the global safety property G1 within the
CookingPreparationService class. The code inspection revealed that the in-
vocation of ventilator.setVentilatorLevel() was omitted in the service.
Hence, the ventilator did not start the fan although the power of the ventila-
tor was on.

(C) Violation of E1

We have found that the environment safety property EI was violated in
When the
total power consumption was close to maximum, if DVDTheaterService (or

some test cases from TestEachServiceWRTevironmentSettings.

RelaxService) was activated, the consumption exceeded 30 A. To assure en-
vironment safety, the home should have a mechanism that estimates the total
consumption before every integrated service is activated.

7. Discussion

7.1 Summary of Contribution

We have proposed a comprehensive framework that can define and validate
the safety of HNS integrated services. We believe that our safety definitions
are reasonable and the idea of introducing DbC for safety validation fits well
the nature of HNS. Thanks to JML, we have developed a safety validation
method that can be directly applied to implementations written in Java. By using
powerful tools such as JUnit and TOBIAS, a major portion of the validation can
be automated. As demonstrated in the case study, the time taken for each test
was very short. Thus, the proposed method is quite promising for many other
practical settings.

7.2 Limitations

One limitation is that sophisticated TOBIAS schemas may yield the combina-
torial explosion of test cases. As a result, TOBIAS generates so many test cases
that the Java VM cannot accept them for execution. For such complex schemas,

IPSJ Journal Vol. 49 No. 6 1751-1762 (June 2008)

we need a technique to prune irrelevant test cases.

Another limitation is that we have not yet considered the case where two or
more integrated services are executed simultaneously. When multiple services
are executed, we need to consider functional conflicts among the services. This
is called the feature interaction problem®. We leave these limitations for our
future work.

7.3 Related Work

Despite their importance, the safety issues have not been well studied yet in the
ubiquitous computing area. As far as we know there exists only a small amount
of research work related to our contribution.

Yang, et al. ' proposed a programming model that identifies safe and unsafe
contexts in a smart home. Using standard ontology, the model builds a context
graph enumerating all possible states, where each state is marked as desirable,
transitional, or impermissible. Since the graph is constructed to quite a higher
level of abstraction, it cannot be applied directly to the safety validation problem
at the implementation level.

Pattara, et al.® proposed a method that verifies the functional properties of
HNS integrated services based on model checking. The method gives an auto-
matic and complete proof if given properties hold against an abstract HNS model
defined in a finite state space. However, properties proven in the formal HNS
model are not necessarily preserved in the HNS implementation, which is the
limitation of the formal verification.

Traditionally, the safety issues have been addressed in safety critical systems®,
such as aerospace systems and nuclear plants. In such a safety critical system,
all components in the system tend to be tightly coupled with each other under a
fixed environment, in order to provide proprietary services. Thus, there is only
local safety. This is quite different from the HNS (or even general ubiquitous
applications), where the combinations of the components vary considerably for
different purposes. So, we consider that our notions of global safety and environ-
ment safety are specific to ubiquitous applications.

The original idea of characterizing safety in the HNS has been published in
our conference paper'?. We have made some significant improvements in this
version: (1) the refinement of the safety definitions, (2) the addition of the imple-

(© 2008 Information Processing Society of Japan

1761 Validating Safety for the Integrated Services of the Home Network System Using JML

mentation details with the JML, and (3) the evaluation with a case study (i.e.,
the new part is after Section 4.3 to the end). We believe that these new results
have substantial value.

7.4 Future Work

We plan to investigate a more systematic way of translating any safety prop-
erty into DbC contracts. We also want to generate efficient test schemas that
cover error-prone scenarios. Safety validation considering the feature interaction
problem is also a challenging issue for our future research.

Acknowledgments This research was partially supported by the Compre-

hensive Development of e-Society Foundation Software program of the Min-
istry of Education, Culture, Sports, Science and Technology, the Ministry of
Education, Science, Sports and Culture, Grant-in-Aid for Young Scientists (B)
(No0.18700062) and Scientific Research (B) (No.17300007), and by JSPS and MAE
under the Japan-France Integrated Action Program (SAKURA).

References

1) du Bousquet, L., Ledru, Y., Maury, O. and Bontron, P.: A case study in JML-based
software validation, Proc. 19th IEEFE International Conferences on Automated Soft-
ware Engineering (ASE’04), Linz, pp.294-297, IEEE Computer Society Press (Sep.
2004).

2) International Electrotechnical Commission, Household and similar electrical ap-
pliances — Safety, IEC 60335-1 (Sep. 2006).

3) Leavens, G.T. and Cheon, Y.: Design by Contract with JML, available from
www.jmlspecs.org (May 2006).

4) Ledru, Y., du Bousquet, L. Maury, O. and Bontron, P.: Filtering TOBIAS com-
binatorial test suites, Proc. International Conferences on Fundamental Approaches
to Software Engineering (ETAPS/FASE’04), LNCS 2984, Springer-Verlag (Mar.
2004).

5) Leelaprute, P., Nakamura, M., Tsuchiya, T., Matsumoto, K. and Kikuno, T.: De-
scribing and Verifying Integrated Services of Home Network Systems, Proc. 12th
Asia-Pacific Software Engineering Conferences (APSEC 2005), pp.549-558 (Dec.
2005).

6) Leveson, N.: Safeware: System Safety and Computers, Addison-Wesley (1995).

7) Meyer, B.: Applying Design by Contract, IEEE Computer, Vol.25, No.10, pp.40-51
(Oct. 1992).

8) Nakamura, M., Tanaka, A., Igaki, H., Tamada, H. and Matsumoto, K.: Adapting
Legacy Home Appliances to Home Network Systems Using Web Services, Proc.

IPSJ Journal Vol. 49 No. 6 1751-1762 (June 2008)

International Conferences on Web Services (ICWS 2006), pp.849-858 (Sep. 2006).

9) Nakamura, M., Igaki, H. and Matsumoto, K.: Feature Interactions in Integrated
Services of Networked Home Appliances — An Object-Oriented Approach, Proc.
International Conferences on Feature Interactions in Telecommunication Networks
and Distributed Systems (ICFI’05), pp.236-251 (July 2005).

10) The Java Modeling Language (JML), available from www.eecs.ucf.edu/ leavens/
JML/.

11) JUnit, Testing Resources for Extreme Programming, available from
www.junit.org/.

12) Yan, B., Nakamura, M., du Bousquet, L. and Matsumoto, K.: Characterizing
Safety of Integrated Services in Home Network System, Proc. 5th International Con-
ferences on Smart homes and health Telematics (ICOST2007), pp.130-140 (June
2007).

13) Yang, H.-1., King, J., Helal, S. and Jansen, E.: A Context-Driven Programming
Model for Pervasive Spaces, Proc. 5th International Conferences on Smart homes
and health Telematics (ICOST2007), pp.31-43 (June 2007).

(Received September 2, 2007)

(Accepted December 4, 2007)
(Original version of this article can be found in the Journal of Information Pro-
cessing Vol.16, pp.38-49.)

Ben Yan received the B.E. degree from Henan University of Sci-
ence and Technology, China, in 1999, and the M.E. degree from
Department of information Science, Okayama University of Sci-
ence, Japan, in 2006. He is currently a Ph.D. student of the
Graduate School of Information Science at Nara Institute of Sci-
ence and Technology, Japan. His research interests include the
V&V of home network systems, and requirements engineering for

safety critical systems. He is a student member of IEICE and IPSJ.

(© 2008 Information Processing Society of Japan

1762 Validating Safety for the Integrated Services of the Home Network System Using JML

Masahide Nakamura received the B.E., M.E., and Ph.D. de-
grees in Information and Computer Sciences from Osaka Univer-
sity, Japan, in 1994, 1996, 1999, respectively. From 1999 to 2000,
he has been a post-doctoral fellow in SITE at the University of
Ottawa, Canada. He joined the Cybermedia Center at Osaka Uni-
versity from 2000 to 2002. From 2002 to 2007, he worked for the
Graduate School of Information Science at Nara Institute of Sci-
ence and Technology, Japan. He is currently an associate professor in the Grad-

uate School of Engineering at Kobe University. His research interests include
the service-oriented architecture, Web services, the feature interaction problem,
V&V techniques and software security. He is a member of IEEE, the ACM and
IEICE.

IPSJ Journal Vol. 49 No. 6 1751-1762 (June 2008)

Lydie du Bousquet received a “Magistere d’Informatique”
and a “Diplome d’Etudes approfondies” from Claude Bernard Uni-
versity, Lyon and Ecole Normale Superieure de Lyon in 1996. She
was awarded a Ph.D. in Computer Science from Joseph Fourier
University, Grenoble, France, in 1999. After one year in a postdoc-
toral position at IRISA, Rennes, France, she became an associated
professor at Joseph Fourier University in 2000. Her main research

interests focus on the validation of safety critical systems (in home networks
systems) with testing approaches.

Ken-ichi Matsumoto received the B.E., M.E., and Ph.D. de-
grees in Information and Computer sciences from Osaka Univer-
sity, Japan, in 1985, 1987, 1990, respectively. Dr. Matsumoto is
currently a professor in the Graduate School of Information Sci-
ence at Nara Institute of Science and Technology, Japan. His re-
search interests include software metrics and measurement frame-
work. He is a senior member of the IEEE, and a member of the

ACM, IPSJ and JSSST.

(© 2008 Information Processing Society of Japan

