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Survival Analysis by Penalized Regression and Matrix
Factorization
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Abstract: To find a suitable model to simulate follow-ups is needed because every disease has its unique survival pat-
tern. DNA microarray is a useful technique to detect thousands of gene expressions at once, and is usually employed
to classify different types of cancer. In this technical report, we propose combination methods of penalized regression
models and nonnegative matrix factorization (NMF) for predicting survival. We examined L1- (lasso), L2- (ridge), and
L1-L2 combined (elastic net) penalized regression for diffuse large B-cell lymphoma (DLBCL) patients’ microarray
data, and found L1-L2 combined method predicts survival best with the smallest logrank p-value. Moreover, 80% of
selected genes have been reported to correlate with carcinogenesis or lymphoma. Through NMF we found that DL-
BCL patients can be divided into four groups clearly, and it implies that DLBCL may have four subtypes which have
a little different survival patterns. Next, we excluded some patients who were indicated hard to classify by NMF, and
executed three penalized regression models again. We found the performance of survival prediction has been improved
with lower logrank p-values. Therefore, we conclude that after pre-selection of patients by NMF, penalized regression
models can predict DLBCL patients’ survival successfully.

1. Introduction
In the field of survival analysis, researchers have been inter-

ested in when patients’ death will occur after some therapies [1].
Many methods to analyze survival data, e.g. Kaplan-Meier curve,
logrank test, Cox proportional hazards model, have been devel-
oped. We often have information about patients’ survival status
and survival time. However, censored data cannot offer complete
information, that is, the survival time of live patient is only par-
tially known. Because of such censored data, survival analysis
becomes more complicated than other studies.

The Kaplan-Meier curve is the most popular illustration of sur-
vival pattern, and it only considers the survival time data of dead
patients (excluding the censored data). By Kaplan-Meier curve,
we can estimate the survival rate at different survival time. The
logrank test is a useful method to compare the survival distribu-
tions, where we can consider the logrank test as a modified chi-
squared test. The Cox proportional hazards model is the most
famous regression model in survival analysis. Its main concept
is to analyze the relationships between multiple covariates and
survival time. The covariates may be internal factors such as
patients’ age, sex, or gene expression, whereas external factors
may include environmental influences like smoke, food, or life
style. Since survival time is most likely not normally distributed,
we cannot directly use original multiple regression to simulate
regression models. The survival patterns usually display as ex-
ponential or Weibull distributions. In addition, the survival data
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have the “censored” problem, therefore we need a special regres-
sion method, like Cox regression model, to perform survival anal-
ysis. We will discuss it in detail in Section 2.

There is some research in linking gene expression profiles to
survival data, such as predictions of therapy outcome in kidney
[2], lung [3] and breast cancer [4]. The traditional procedures are
utilizing Cox regression model to select significant genes [5] or
separating patients into different risk levels by hierarchical clus-
tering [2]. Because of high dimension of microarray data, some
researchers introduce partial least squares [6] or least angle re-
gression [7] to reduce the dimension. An optimized set of guide-
lines has been published to utilize penalized regression dealing
with gene expression data [8]. Sparse kernel methods also have
been employed as survival SVM and IVM and could get better re-
sults than Cox regression [9]. Some researchers apply Bayesian
approach to add flexibility accounting for nonlinear relationships
between survival time and gene expression level [10]. Unlike fo-
cusing on the problem of high dimension within microarray data,
selecting patients whose survival patterns are extremely different
also can improve survival prediction performance [11]. Here, we
examine to use microarray data to predict survival by combining
two kinds of methods [12]: (1) penalized regression models and
(2) nonnegative matrix factorization.

Furthermore, we choose the disease – diffuse large B-cell
lymphoma (DLBCL) to analyze, because this disease has diag-
nostic discrepancies if only based on clinical morphology [13].
DLBCL is the most common subtype of non-Hodgkin’s lym-
phoma, and accounts for approximately 40% in adults. The
DLBCL patients can be cured by chemotherapy with only 35
to 40 percent. The dataset [14] can be downloaded from
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http://llmpp.nih.gov/DLBCL. It contains a total of 240 patients
with untreated DLBCL, and all of the patients have no previous
history of lymphoma. The median follow-up is 2.8 years for to-
tal patients and 7.3 years for survived patients. During this study
138 patients (57%) unfortunately died. The tumor samples of
DLBCL patients are collected and tested by DNA microarray ex-
periment. The cDNA clones on the Lymphochip microarray are
composed of genes that are considered to express in lymphoid
cells, and some genes that are thought or confirmed to play a role
in cancer or immune function. Each microarray datum of each
patient comprises 7395 different genes, but some genes of some
patients have too weak fluorescent signals (compared with dot’s
surrounding) and are denoted as missing values. There are only
434 genes without missing values among total 240 patients. The
Cy5/Cy3 ratios are log-transformed by base 2 and stored in a ta-
ble to construct gene expression profiles.

2. Methods
2.1 Cox proportional hazards model

The Cox proportional hazards model is constructed by Cox
[15] and widely used in the analysis of survival data. The Cox re-
gression model demonstrates that the hazard function h(t), which
means the risk of death at time t for an individual with gene ex-
pression profiles is given by

h(t|x) = h0(t) exp

 p∑
i=1

βixi

 = h0(t) exp (βTx), (1)

where h0(t) is the baseline hazard, and β = (β1, · · · , βp)T is the
column vector of regression parameters and βT means its trans-
pose. x = (x1, · · · , xp)T denotes the gene expression levels of
p genes. The term h0(t) is the hazard when all gene expression
levels are equal to zero. Or we can think the Cox proportional
hazards model as another form:

log
h(t|x)
h0(t)

= βTx. (2)

In Cox regression model, there is no assumption about the prob-
ability distribution of the hazard. It just assumes that the ratio
of hazard functions of different observations does not depend on
time [1]. The other assumption is that there is a log-linear rela-
tionship between covariates (gene expression levels) and hazard
function. Finally we can presume the Cox proportional hazards
model as a modified “simple” linear regression model. Like other
statistical methods using likelihood function to estimate parame-
ters from a dataset, in Cox proportional hazards model, the Cox
partial likelihood is also derived by Cox [15] as follows:

L(β) =
∏
r∈D

exp (βTx(r))∑
j∈Rr

exp (βTx( j))
, (3)

where D is the set of indices of patient death and Rr denotes the
set of indices of the individuals at risk for death at time tr [7].
For many applications of likelihood function, the term that takes
logarithm of likelihood is more convenient than the original like-
lihood function. Thus, taking the logarithm of the Cox partial
likelihood, we have the following log partial likelihood:

l(β) =
∑
r∈D

βTx(r) − log

∑
j∈Rr

exp (βTx( j))


 . (4)

Next, we follow the normal maximum likelihood estimation
method to calculate unknown parameters. Our goal is to estimate
the regression coefficients β, so we can maximize the log partial
likelihood function over β.

2.2 Lasso, ridge and other penalized regression
In usual cases that the patient size n is bigger than covariate

number p, we can compute β by maximizing the log partial likeli-
hood. However, some research has indicated that the Cox propor-
tional hazards model cannot be applied directly to predict survival
time when p ≫ n (e.g. in microarray case) [7], [16]. It is because
of high-dimensional space of the predictors and high collinear-
ity of some genes. When we use microarray data to do survival
analysis, the dataset always composes thousands of gene expres-
sion data. The huge gene numbers make the prediction model a
very high dimensional and cause the difficulty of computing. The
second problem usually happens in biological research, because
the expression levels of some genes are highly correlated. These
genes may belong to the same biological pathway or play similar
roles in different reactions. To solve these problems, we apply
several kinds of penalized regression methods.

All of the penalized regression models are based on the Cox
proportional hazards model. The idea is to add a regularization
term in the Cox partial likelihood function and control the over-
fitting. There are two popular kinds of penalized regression meth-
ods. The first one is L1-penalized regression, it is also called the
least absolute shrinkage and selection operator (lasso) estimation,
which was first proposed by Tibshirani [17]. Because of some
constraints in lasso’s principles, it tends to convert some coef-
ficients to zero finally. According to this special characteristic,
the lasso estimation is often applied in parameter shrinkage to
build simpler models. The second penalized regression method
is L2-penalized regression, which is usually called ridge regres-
sion [18]. Unlike lasso estimation, ridge regression conserves all
parameters to construct prediction models.

To add regularization term into the Cox regression model, the
log partial likelihood function will be rewritten as follows. L1-
penalized (lasso) log partial likelihood is given by

l(β) −
p∑

j=1

λ|β j|, (5)

and L2-penalized (ridge) log partial likelihood is written by

l(β) −
p∑

j=1

λβ2
j , (6)

where λ is a tuning parameter and p is the number of genes. There
is another simple penalized likelihood method combined with L1-
and L2-penalized regression. It is named the elastic net and its log
partial likelihood is

l(β) −
p∑

j=1

(
λ1|β j| + λ2β

2
j

)
, (7)

where λ1 and λ2 are corresponding tuning parameters of L1 and
L2 penalties, respectively. We can find that the elastic net method
just adds L1 and L2 penalties together to create a new regulariza-
tion term. The elastic net performs feature selection and parame-
ter estimation as the lasso regression. However, by adding the L2
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penalty it distributes weight to more variables, hence the elastic
net may select more parameters than the lasso regression [19].

In order to select variables, we first randomly divided 240 pa-
tients into training group (160 patients) and testing group (80
patients). Although the whole microarray datum contains 7395
genes for each patient, we primarily used the 434 complete genes
(without missing values among all patients) to build penalized
regression models. We initially established L1-, L2-, and L1-L2

combined penalized regression models by training data. In this
technical report, we set λ = 10 in lasso regression model and
λ = 20 in ridge regression model. In L1-L2 combined penalized
regression model, we set λ1 = 10 and λ2 = 20. Then, we got
21 nonzero coefficients in lasso regression model and 27 ones in
elastic net model. In other words, we selected 21 and 27 impor-
tant genes.

2.3 Nonnegative matrix factorization
The nonnegative matrix factorization (NMF) method has been

introduced first to decompose images, and its goal is to factorize
a matrix into two nonnegative matrices [20]. In NMF, it makes
the constraint about nonnegativity of matrices. It is because not
only most data in the real world are nonnegative, but also we can
only explain their meanings in nonnegative way [21]. The other
characteristic of NMF is the additive property, that is, the NMF
model does not allow subtraction. This special signature makes
NMF illustrate quantitatively each component. Or we can say
NMF is a part-based representation method. While zero value
represents the absence of some components or events, the posi-
tive value may denote the presence of the same ones. Our goal
is to factorize the matrix V into two nonnegative matrices, W and
H:

V ≈ WH. (8)

The sizes of the matrices W and H are n × k and k × m, respec-
tively. The rank k is usually chosen to be smaller than n and m, so
that W and H are smaller than the original matrix V . The NMF
method starts by randomly initializing nonnegative matrices W
and H. Similar the values of V and WH are, the distance between
V and WH approaches approximately to zero.

It has been indicated that NMF is very useful when analyzing
data have multiple attributes, and these attributes are often am-
biguous and hard to predict. Because of this property, NMF has
been applied much in text data mining. The same word may have
other different meanings just depending on the different locations
in the sentence or document. It resembles the biological data so
that the same gene may play different roles in different biological
pathways. To deal with the gene complexity of multiple func-
tions, NMF method has been exploited to process the biomedical
data such as microarray data [22].

In microarray case, we first consider the gene expression ma-
trix A, which is composed by N genes in M patients. In other
words, the size of matrix A is N × M. Then, we want to factorize
matrix A into two matrices with nonnegative entries, A ≈ WH. It
means to find a small number of genes (which are called meta-
genes) to represent the whole gene expression pattern of patients
[23]. That is, we can approximate the gene expression pattern as

positive linear combinations of these metagenes. Like to find the
essential face components (eyes, nose, and lips) from the entire
face image, we examine to figure out the representative meta-
genes that may provide biological insight into sparse microarray
data. Each column of W of size N × k defines a metagene and
each column of H of size k × M defines the metagene expression
pattern of the corresponding patient, where the i j-th elements wi j

and hi j represent the coefficient of gene i in metagene j and the
expression level of metagene i in patient j, respectively.

Since we can set any rank k to group patients into k clusters,
the key point is to find k that can partition patients into mean-
ingful clusters. To solve this problem, we apply the method of
consensus clustering [23]. The different initial matrices of W and
H on each run may cause different clustering forms of patients.
However, if rank k is strong enough, we may expect that patient
assignment to clusters would vary little from run to run. For each
run, the patient assignment can be defined by a connectivity ma-
trix C. The size of matrix C is M × M, and with entry ci j = 1
if patient i and patient j belong to the same cluster. Whereas en-
try ci j = 0 if patient i and patient j belong to different clusters.
Then, we compute the average connectivity matrix C over 100
runs and denote it as the consensus matrix C̄. All the entries of
C̄ may range from 0 to 1 and reflect the probability that patient
i and patient j are assigned to the same cluster. We can reorder
all patients by their assignment probability, and then construct a
new consensus clustering matrix by heat map presentation col-
oring from 0 (deep blue, patients in different groups) to 1 (dark
red, patients in the same group). Through heat map result, we can
evaluate the validity of any setting rank k.

The gene expression levels in microarray are displayed as
Cy5/Cy3 log-2 ratios, and these values are distributed dispers-
edly as positives or negatives. Additionally, there are only 434
genes without missing values among total 240 patients. Since
the missing values are caused by the too weak fluorescent signals
to detect, we may think these values are approximately equal to
zero. So, we refilled all the missing values in the gene expression
profiles as zero [24]. Next procedure is to transform all of the
ratios into nonnegative values, therefore we used each ratio as an
exponent by base 2 [22].

2.4 Lasso regression after NMF selection
According to the consensus clustering results by NMF, we

found some patients cannot be clustered into the same group over
all 100 runs. We may suggest these patients will become noise
in the following computing. Therefore, we excluded the patients
whose value in C̄ is smaller than 0.9. We finally excluded 15
patients from training group and 7 patients from testing group.
Next, we built L1-, L2- and L1-L2 combined penalized regression
models again.

To compare the prediction performance of three penalized re-
gression models, we should define the criteria of prediction as-
sessment initially. However, there are no determinate criteria
that have been stipulated for survival analysis [25]. Furthermore,
many comparative studies of survival prediction have indicated
that different criteria may influence the conclusion about evalu-
ations of different prediction models [16], [26]. We chose one
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simple evaluation criteria that has been reported in many survival
studies. A common way to assess the effect of one prediction
model is to check whether or not the assignments of patients,
such as “high-risk” group or “low-risk” group, are correct. In
clinical, patients always concern about whether or not he is at
risk for death after some therapies.

Let β̂train denote the vector of estimated regression coefficients
obtained from training data. For each patient i in the testing
group, this estimate is then used together with its vector of gene
expression values x(i) to derive a prognostic index ηi for the pa-
tient, given by ηi = β̂T

trainx
(i) [26]. Then, we found the median

of the prognostic indices of 80 patients. If the prognostic index
is bigger than the median the patient is assigned to the high risk
group, whereas smaller than the median the patient is assigned
to the low risk group. We can compare the results of L1- (lasso),
L2- (ridge), and L1-L2 combined (elastic net) penalized regression
model by the Kaplan-Meier curve.

3. Results
3.1 Important genes selected out by lasso regression

We have described in Section 2 that there are 21 genes selected
out by lasso regression model, and 27 genes selected out by elas-
tic net model. Moreover, the 21 genes are overall included in
the 27 genes. It implies that these 21 genes may play impor-
tant roles in patients’ survival. To understand these genes more
comprehensively, we investigated their biological functions and
discriminated whether or not they are involved in carcinogenesis.
We found that there are 10 genes have been reported to relate to
some cancers, and 5 genes of them are indicated to influence the
DLBCL patients’ survival [14]. Two genes are tumor suppres-
sor gene or oncogene and hint them playing noticeable roles in
carcinogenesis. On the other hand, there are 9 genes that have bi-
ological functions concerned to fundamental immune functions,
such as MHC class II or antigen processing. We may infer that
genes with these special biological functions will cause DLBCL
pathogenesis and even effect patients’ survival eventually. Unfor-
tunately, the biological functions of two genes within 21 genes
have not been known clearly. However, total 17 genes among 21
genes (about 80 percent) are correlated to carcinogenesis or im-
portant immune functions. It makes us believe that the L1- and
L1-L2 combined penalized regression models may select out sig-
nificant genes associated to the DLBCL patients’ survival.

3.2 Divide DLBCL into four subgroups by NMF
We initially used 434 gene expression profiles (without missing

values) to run matrix factorization 100 times for rank k = 2, . . . , 5
and got the consensus matrix. We found that the clustering pat-
tern is better when rank k = 3 or 4, and is the worst when rank
k = 5. It suggests that 3- or 4-grouping of DLBCL patients may
have some biological meaning, so we next plotted the Kaplan-
Meier curve of two-divided, three-divided and four-divided re-
sults to compare their survival distributions. Using logrank test,
we also calculated the p-value of each result and got 0.927, 0.13
and 0.00365 from rank k = 2 to 4. We found that only when
rank k = 4 the survival curves separate significantly among four
patient groups (the p-value is smaller than 0.05), meaning that

Fig. 1 Consensus clustering results using 7395 genes for rank k = 4.

the four-division of DLBCL patients has some biological impli-
cations that may generate different survival patterns of patients.

Since the survival curves did not separate significantly in two-
division and three-division results, we changed to use all of the
7395 genes (missing values approximated to zero) to analyze
again. Similarly after running 100 nonnegative matrix factoriza-
tions, the heat map of the consensus matrix for rank k = 4 is
shown in Fig. 1. We found that the clustering pattern is good
when rank k = 2, 3 or 4, and is the worst when rank k = 5. How-
ever, comparing with the results of 434 genes generally, all clus-
tering results of 7395 genes are much better. Next, we plotted
likewise the Kaplan-Meier curve of two-divided, three-divided
and four-divided results, and compared their survival distribu-
tions. By using logrank test again, we measured each p-value of
survival curves, which yielded 0.766, 0.0484 and 0.00946 from
rank k = 2 to 4. We discovered that the p-values of not only rank
k = 4 but also k = 3 are smaller than 0.05. It implies that the
survival patterns can be distinguished significantly when DLBCL
patients are divided into 3 or 4 groups.

3.3 Survival prediction of lasso model is improved by pre-
selection of NMF

We compared the survival predictions of L1- (lasso), L2-
(ridge), and L1-L2 combined (elastic net) penalized regression
model by the Kaplan-Meier curve. Using logrank test, we also
calculated the p-value of each model and got 0.139, 0.352 and
0.0364, respectively. In all three models, the patients’ survival
rates of low risk group are always higher than the survival rates
of high risk group. We found that only in L1-L2 combined penal-
ized regression model the survival curves separate significantly
between high risk group and low risk group (the p-value is smaller
than 0.05), meaning that the elastic net model successfully pre-
dicts follow-ups with high risk or low risk of death.

After exclusion of noise patients by NMF, we tested L1-, L2-
and L1-L2 combined penalized regression models again. Simi-
larly plotting the Kaplan-Meier curve in Fig. 2, we yielded the p-
values as 0.0208, 0.209 and 0.043 by logrank test. The p-values of
L1- and L2- penalized regression models became smaller, whereas
bigger in L1-L2 combined model. However, the survival distribu-
tions in L1-L2 combined penalized regression model are still sig-
nificant between high risk and low risk groups. Consequently, we
may conclude that the prediction performance can be improved
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(c) lasso+ridge

Fig. 2 The Kaplan-Meier curve results of three penalized regression mod-
els, lasso, ridge, and elastic net, for low and high risk groups, respec-
tively, after pre-selection of NMF.

(especially in lasso regression model) by previously excluding
some patients who are considered hard to classify in NMF.

4. Discussion
Through three penalized regression methods based on Cox pro-

portional hazards model, we analyzed the microarray data of DL-
BCL patients and tried to predict the patients’ survival. We found
that without pre-selection of NMF L1-L2 combined (elastic net)
penalized regression model yields better prediction performance
than L1- (lasso) and L2- (ridge) penalized regression models be-

cause of the smallest p-value. It seems that the elastic net method
combines the advantages of both lasso and ridge regression meth-
ods. Furthermore, the elastic net method reserves the merit of
lasso regression that can sort out the important genes that may
influence the patients’ survival. To improve the prediction perfor-
mance of L1-L2 combined penalized regression model, different
kinds of combination or modification should be developed.

21 genes were selected by L1- and L1-L2 combined penalized
regression models. Among them, MYC, HLA-DQA1, HLA-
DPA1, HLA-DRB1 and CD22 have been reported to be used in
prediction of DLBCL patients’ survival [14]. Moreover, MYC
has been indicated as an oncogenic transcription factor that reg-
ulates expressions of a great number of genes. CD22 is a B-cell
marker and regulates the signaling pathways within B cell. Re-
cent research shows CD22 is a potential drug target in many can-
cers.

In this technical report, we only utilized gene expression data
as predictors. However, prediction performance may be improved
by adding other covariates such as age, sex and stage [5]. Unfor-
tunately, the DLBCL dataset does not contain detailed informa-
tion about clinical data. Nevertheless not only clinical factors but
also published gene signatures that are employed in some can-
cer prediction chips are proved to increase the predictive strength
[27].

We employed the nonnegative matrix factorization to naturally
cluster DLBCL patients into some groups and then compared
the survival distributions within different groupings. Not only
complete gene expression profiles but also total gene expression
profiles indicate that the patient 4-grouping has some biological
meaning. It implies that the disease DLBCL may have four sub-
types that have a little different survival patterns. Moreover, if
we observe the heat maps of consensus clustering matrix more
carefully, we will find some patients with values near to one but
not equal to one (the orange or yellow color). It means these pa-
tients do not always belong to the same group, and may suggest
that they have unusual gene expression profiles because of special
constitutions or other unknown diseases.

To examine different algorithms for NMF may get different
consensus clustering results. Another useful NMF algorithm
which is called Semi-NMF can handle clustering while input data
contain negative values. Its plug-in for a microarray data analy-
sis tool has even been introduced [24]. Of course, NMF can deal
with other kinds of data different from microarray data. Array
comparative genomic hybridization data are also utilized to ana-
lyze patients’ survival [28].

The DLBCL dataset that we used in this report has been ana-
lyzed by hierarchical clustering before [13], [14]. Although they
claim to cluster DLBCL patients into two or three groups, our
NMF results prefer four groups. It may be because of distinct al-
gorithms within two methods. Nevertheless, the consistent results
are also reported in lung cancer case [22].

An obvious problem in microarray data is the existence of
missing values. To make full use of gene expression profiles,
we should employ some methods to estimate missing values. For
example, a nearest neighbor technique has been employed to ap-
proximate missing values in DLBCL microarray dataset and then
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predict patients’ survival well [7], [29].
There is a growing tendency in research about survival analy-

sis for the last several decades. Many new ideas from different
fields have been introduced to predict survival according to gene
expression profiles. For instance, topology has been employed to
handle the high-dimensional data and uncover the shape charac-
teristic of data [30]. Through survival analysis using advanced
information technologies for kinds of diseases, potential thera-
pies will be developed and patients may expect better outcome in
future.
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