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Abstract: The knowledge of metabolic components and their interactions is essential for modeling metabolic networks. This 

study develops the database for predicting metabolic flux distributions under different conditions and investigates the mechanism 

of how the flux distributions for various networks are accurately predicted. Two different sizes of metabolic networks, 

small-scale and medium-scale network, are tested to predict the flux distribution of Escherichia coli (E.coli) and Saccharomyces 

cerevisiae (S.cerevisiae). 
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1. Introduction     

 Through many studies on microbes including E.coli, 

thousands of original literatures are published to produce lots of 

knowledge on metabolic systems. In understanding their 

functions, a metabolic network map becomes feasible to 

visualize the interaction among many biochemical reactions. 

 A metabolism can be regarded as a network interaction that 

generates energy (e.g.: ATP) and other building molecules for a 

cell to grow and produce metabolite compounds [1]. This 

involves integration of genome-scale knowledge at different 

levels, from genes to proteins and fluxes, as it may provide the 

fundamental mechanism of how individual components in the 

network system interact and affect the overall cell [2]. 

 A network model denoted in a set of chemical reactions 

affect the prediction accuracy [1] and is further used to represent 

the qualitative information such as stoichiometry and 

elementary modes (EM) calculation. 

 This study aims to develop a database that will be used to 

predict the flux distributions under different conditions. In 

preparing a reliable dataset, various network models is 

implemented to investigate how these models accurately predict 

their flux distributions. In this study, two different sizes of 

metabolic network i.e. small scale and medium scale network 

are tested on several dataset of Escherichia coli (E.coli) and 

Saccharomyces cerevisiae (S. cerevisiae), by using Genetic 

Modification of Flux (GMF) [3, 4]. 

2. Method 

2.1 The Metabolic Network model preparation 

  The network models are derived from the original 

publications, as shown in Table 1. The reversibility of each 

model is also set based on the original publication. The 

metabolic network is defined as: 

 Small scale model: 

 The metabolic networks for E.coli and S.cerevisiae are 

reconstructed and analyzed by CADLIVE 2.75 [9] and 

CellNetAnalyzer (CNA) [8]. The reactions and metabolites are 

available in [4, 6]. The reactions of biomass formation are cited 

from references for E.coli [10] and S.cerevisiae are from [11].  

 E.coli small scale model is accomplished by most frequently 

encountered pathways: Glycolysis (14 reactions), pentose 
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phosphate (8 reactions), Entner-Doudoroff (ED) (2 reactions), 

TCA Cycle (12 reactions), Pyruvate (4 reactions), Respiration 

(13 reactions). This model comprises of 53 reactions number. 

 S.cerevisiae small scale model: Glycolysis (8 reactions), 

pentose phosphate (8 reactions), TCA Cycle (10 reactions), 

Pyruvate metabolism (10 reactions), Serine Biosynthesis (3 

reactions), Glycerol (2 reactions), Respiration (2 reactions). The 

network comprises of 43 reactions number. 

 Medium scale model: 

 The detail network model is available in [7]. The metabolic 

network models of E. coli are revised from the model registered 

in CNA. There are 149 reactions and 30,579 EMs in E.coli 

metabolic network. While 106 reactions and 136,086 EMs in S. 

cerevisiae the metabolic network, including central carbon 

metabolism with amino acid syntheses.  

  E.coli medium-scale model is accomplished by: Glycolysis 

(17 reactions), pentose phosphate (8 reactions), 

Entner-Doudoroff (ED) (2 reactions), TCA Cycle (13 reactions), 

Pyruvate (5 reactions), Respiration (10 reactions), Serine 

Biosynthesis (6 reactions), Cysteine Biosynthesis (2 reactions), 

Glutamate Biosynthesis (3), Branched Chain Amino Acid 

Biosynthesis (13), Arginine Biosynthesis (10), Threonine, 

Lysine, Methionine Biosynthesis (10), Aromatic Amino Acids 

(17), Histidine Biosynthesis (9), Valine, Leucine and Isoleucine 

Biosynthesis (2), Purine (3), Methylglyoxal (4), Alanne, 

Asparatate and Glutamate (1), Glycogen Biosynthesis (2), 

UDP-N-acetyl-D-glucosamine biosynthesis (2), 

UDP-D-glucuronate biosynthesis (1), CMP-KDO Biosynthesis 

(1), CDP-diacylglycerol (1), D-Glutamine and D-Glutamate (7). 

S.cerevisiae medium-scale model comprises of: Glycolysis 

(11), pentose phosphate (8), TCA Cycle (13), Pyruvate 

metabolism (51), Respiration (6), Serine Biosynthesis (3), 

Pentose and glucuronate interconversions (12), Glycerol (2). 

2.2  Data preparation 

A number of E. coli and S. cerevisiae original publications are 

collected and pre-processed as in Table 1.  

TABLE 1. Data collection from original publication 

Enzyme   

Number of files  

Enzyme   

Number of files 

Small 

Scale 

Model 

Medium 

Scale 

Model 

 

Small 

Scale 

Model 

Medium 

Scale 

Model 

pykF 1 1  pck 3 3 

gnd 1 1  lpdA 1 1 

pgi 1 1  S. cerevisiae 3 3 
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ppc 1 1  B. Subtilis 1 1 

zwf 3 3  anaerobic 10 10 

sucA 1 1  aerobic 1 1 

    Total 31 31 

2.3 Genetic Modification of Flux (GMF) 

The network models are tested by Genetic Modification of 

Flux (GMF) [3] [4], elementary modes based algorithm. GMF is 

a combination of two algorithms; modified CEF (mCEF) and 

Enzyme Control Flux (ECF). The main purpose of this 

algorithm is to predict the flux distribution of genetically 

modifed mutants. To estimate the elementary mode coefficients 

(EMC), Maximum Entropy Principle (MEP) objective function 

is applied to GMF. The data and network prepared above is used 

to calculate EMs by CNA that embedded in GMF application. 

Figure 1 shows the GMF algorithm. 

 

 

 

Figure 1.  

The GMF algorithm

  

3. Result and Discussion 

 We compared the performance of both models. Table 2 shows 

the prediction error of each dataset. The prediction error is 

evaluated by: 

Prediction error = √
1

𝑛
 ∑ (𝑣𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑖 −  𝑣𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙𝑖

)
2𝑛

𝑖=1     (i) 

TABLE 2. The prediction error of the employed models 

Model Condition 

Prediction error 

Small scale 

Model 

Medium scale 

model 

E.coli (pykF 

knockout) 

Batch: 5H 6.61 3.14 

Batch: 6H 3.73 0.97 

Batch: 7H 2.54 0.93 

S. cerevisiae 𝜇: 0.15h
-1

 20.17 1.07 

𝜇: 0.30h
-1

 4.27 2.04 

𝜇: 0.40h
-1 8.84 3.66 

 Table 2 summarized the performance of six (6) dataset of 

E.coli and S.Cerevisiae. The table shows a significant 

improvement of prediction performance when the data are tested 

on medium scale network model. 

 The medium scale network makes the prediction better than 

the small scale network. This result is consistent to a study 

conducted by [1] on highly connected nodes and lesser 

connectivity. The study found that, the highly connected nodes 

are more likely to receive a new connection than lesser 

connectivity. The highly connected nodes models also described 

able to make the key prediction because it is closely simulating 

the origin life.  

 In this study, small scale and medium scale network models 

are compared. On the initial analysis, it is shows that the 

involvement of amino acid reactions in medium scale network is 

more than in the small scale network. In addition, the co-factors 

involvement, i.e. nicotinamide-adenine dinucleotide (NADH) 

and nicotinamide-adenine dinucleotide phosphate (NADPH) are 

reduced in small scale network as compared to the large scale 

network.  Furthermore, the information on growth and 

non-growth-dependent adenosine-5’-disphosphate (ATP) is 

relatively neglected in small scale network than the medium 

scale network. 

4. Conclusion 

  A number of datasets that are originally collected from 

publications are pre-processed. These datasets are further 

investigated for the mechanism on how flux distributions are 

accurately predicted for various networks. Small and medium 

scale metabolic networks are tested to the E.coli pykF knockout 

mutant and S.cerevisiae using the GMF algorithm with MEP 

objection function. The prediction performance is improved 

when the medium scale network models is applied to the 

datasets.  
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