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Abstract: We propose a method of unsupervised event detection from a video that compares probability distributions
of past and current video sequence data in a sequential and hierarchical way. Because estimation of probability dis-
tributions is known to be difficult, naively comparing probability distributions via probability distribution estimation
tends to be unreliable in practice. To cope with this problem, we use the state-of-the-art machine learning technique
called density ratio estimation: The ratio of probability densities is directly estimated without density estimation, and
thus probability distributions can be compared in a reliable way. Through experiments on a walking scene and a tennis
match, we demonstrate the usefulness of the proposed approach.
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1. Introduction

Analysis of events and human actions from videos is useful in
various applications such as content-based video retrieval, visual
surveillance, and human-computer interaction. For this reason,
event detection and human action recognition have gathered a
great deal of attention recently *1 [2], [17]. However, because of a
wide variety of backgrounds, contexts, and events, these tasks are
known to be highly challenging [12]. Furthermore, considerable
variations in clothes, sizes, or postures of people, illumination
conditions, occlusion conditions, and camera angels could make
the tasks even more difficult.

Most event detection methods first extract primitive features
from video sequences such as optical flow based features [15],
[27], spatio-temporal features [4], [9], [10], [11], [15], [17], [18],
[22], or static features including appearance, shape, and spatial
relations among local features [7], [23]. Some approaches further
utilize more sophisticated codebook representation [1], [16], [26]
that is effective for describing and discriminating between var-
ious event categories. In particular, the bag-of-words represen-
tation of spatio-temporal points-of-interest has received consid-
erable attention [1], [12], [16], [28]. Then these features are fed
into learning machines such as hidden Markov models [5], [24],
Bayesian networks [3], kernel methods [4], [23], [28], and tree-
structured classifiers [15] to recognize events and actions.

A standard approach involves supervised training of a classifier
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on a huge amount of video data with ground truth annotations [6].
However, because gathering annotated data is costly, it is often
difficult to gather an enough amount of annotated data in practice.
To cope with this problem, unsupervised approaches have also
been actively explored recently for learning human action cate-
gories [15], [19] and for detecting abnormal behavior [27]. How-
ever, achieving higher accuracy by the unsupervised approach is
still highly challenging.

In this paper, we propose a new unsupervised detection method
of semantic event categories that compares probability distribu-
tions of past and current video data. However, estimation of prob-
ability distributions is known to be difficult [21], and thus distri-
bution comparison via probability distribution estimation tends to
be unreliable in practice. To cope with this problem, we use the
state-of-the-art machine learning technique called density ratio

estimation [20], which avoids distribution estimation and directly
estimates the ratio of probability densities. Thus, distribution
comparison via density ratio estimation is more reliable than the
naive approach based on probability distribution estimation [8].
We sequentially compare the probability distributions of past and
current sequence data in various time scales described by spatio-
temporal features (more specifically, we use the cubic higher-

order local auto-correlation; CHLAC [10]). The usefulness of
the proposed method is demonstrated through experiments on a
walking scene and a tennis match.

The remainder of this paper is structured as follows. In Sec-
tion 2, we describe our event detection method based on density
ratio estimation. In Section 3, we report experimental results on
real-world video sequences. Finally, we conclude by summariz-
ing our contributions in Section 4.

*1 In this paper, we regard “events” as changes of human activities that are
observed as visual contents.
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2. Problem Formulation and Proposed Ap-
proach

In this section, we formulate the event detection problem based
on density ratio estimation, and describe our proposed approach.

2.1 Problem Formulation
Let x(t) be a spatio-temporal feature vector at time t (we use

251-dimensional CHLAC features [10] in our experiments; see
Section 3.1 for details). Our task is to detect whether there ex-
ists a change point between two consecutive time intervals called
the train and test intervals (see Fig. 1, where M and N denote the
numbers of frames in the train and test intervals, respectively).

Let ptr(x) and pte(x) be the probability density functions of the
train and test time-series features, respectively. A naive approach
to evaluating the difference between train and test intervals would
be to first estimate the train and test probability density func-
tions separately from the train and test time-series data, and then
compare the estimated probability densities. However, since non-
parametric density estimation is known to be a hard problem [21],
this naive approach may not be effective in practice. Instead, di-
rectly estimating the ratio of probability densities without going
through density estimation was shown to be more promising [20].

Motivated by this line of research, we develop an event detec-
tion algorithm based on the relative density ratio [25] for spatio-
temporal feature x:

w(x) =
ptr(x)

βptr(x) + (1 − β)pte(x)
, (1)

where ptr(x) and pte(x) are the probability density functions for
train and test spatio-temporal features, respectively. β (0 ≤ β <
1) is the relative parameter that controls the “smoothness” of
the density ratio; β = 0 corresponds to the plain density ratio
ptr(x)/pte(x) and the relative density ratio tends to be smoother
as β gets larger. See [25] for a theoretical background for this
relative parameter. Based on the relative density ratio, we define
our anomaly score as the relative Pearson divergence from ptr(x)
to pte(x) [13], [25]:

1
2

∫ (
w(x) − 1

)2(
βptr(x) + (1 − β)pte(x)

)
dx,

which is always non-negative and zero if and only if ptr = pte.
In practice, it may be difficult to determine the size of train and

test intervals to properly detect events without any prior knowl-
edge. In this paper, we mitigate this difficulty by considering a
hierarchy of train and test intervals, as illustrated in Fig. 2. This
hierarchical structure makes it possible to detect events in differ-
ent time scales from micro to macro levels. Let S h be the anomaly
score in the h-th hierarchy. Then the final anomaly score S is de-
fined by

Fig. 1 Definition of train and test intervals.

S = max
h

S h.

The remaining question in the proposed procedure is how to
accurately evaluate the relative Pearson divergence from data,
which is explained below.

2.2 Approximation of Relative Pearson Divergence by Rela-
tive Density-ratio Estimation

Suppose that we are given a set of Ntr samples extracted from a
train interval drawn independently from a probability distribution
Ptr with density ptr:

Xtr =
{
xtr

i | xtr
i ∈ �d

}Ntr

i=1

i.i.d
∼ Ptr.

We also suppose that another set of Nte samples extracted from a
test interval drawn independently from another probability distri-
bution Pte with density pte is available:

Xte =
{
xte

j | xte
j ∈ �d

}Nte

j=1

i.i.d
∼ Pte.

From the samples Xtr and Xte, we approximate the Pearson di-
vergence. If an estimator of the relative density ratio, ŵ(x), is
available, the Pearson divergence can be approximated as

− β
2Ntr

Ntr∑
i=1

ŵ (xtr
i )2 − 1 − β

2Nte

Nte∑
j=1

ŵ (xte
j )2 +

1
Ntr

Ntr∑
i=1

ŵ (xtr
i ) − 1

2
.

Below, we explain an estimation method of relative density ra-
tios called relative unconstrained least-squares importance fit-

ting (RuLSIF) [25].
Let us model the relative density ratio function w (x) by the

following kernel model:

w̃ (x) =
Ntr∑
i=1

αiK(x, xtr
i ) = α′k(x),

where

α = (α1, α2, . . . , αNtr )
′

are parameters to be learned from data samples, •′ denotes the
transpose of a matrix or a vector, and

k (x) =
(
K(x, xtr

1 ),K(x, xtr
2 ), . . . ,K(x, xtr

Ntr
)
)′

Fig. 2 Definition of train and test intervals in a hierarchy.
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are kernel basis functions. A popular choice of the kernel is the
Gaussian function:

K(x, y) = exp

(
− ||x − y||

2

2σ2

)
, (2)

where σ > 0 is the Gaussian width.
We determine the parameter α in the model w̃(x) so that the

following squared-error J0 is minimized:

J0 =
1
2

∫ (
w̃ (x) − w (x)

)2(
βptr(x) + (1 − β)pte(x)

)
dx

=
β

2

∫
w̃ (x)2 ptr(x) dx +

1 − β
2

∫
w̃(x)2 pte(x)dx

−
∫
w̃ (x)ptr(x) dx + Const.

Let us denote the first three terms by J. Since J contains the
expectation over unknown densities pte(x) and ptr(x), we approx-
imate the expectations by empirical averages. Then we obtain

Ĵ(α) =
1
2
α′Ĥα − α′ ĥ,

where Ĥ is the Ntr × Ntr matrix defined by

Ĥ =
β

Ntr

Ntr∑
i=1

k(xtr
i )k(xtr

i )′ +
1 − β
Nte

Nte∑
j=1

k(xte
j )k(xte

j )′,

and ĥ is the Ntr-dimensional vector defined by

ĥ =
1

Ntr

Ntr∑
i=1

k(xtr
i ).

By including a regularization term, the RuLSIF optimization
problem is formulated as

α̂ = argmin
α

[
1
2
α′Ĥα − α′ ĥ + λ

2
α′α

]
,

where α′α/2 is a regularizer and λ (≥ 0) is the regularization pa-
rameter that controls the strength of regularization. By taking the
derivative of the above objective function with respect to the pa-
rameter α and equating it to zero, we can analytically obtain the
solution α̂ as

α̂ = (Ĥ + λI)−1 ĥ,

where I denotes the identity matrix. Finally, a density ratio esti-
mator ŵ(x) is given by

ŵ(x) = α̂′k(x).

Thanks to the simple analytic-form expression, RuLSIF is com-
putationally efficient.

2.3 Model Selection by Cross-validation
The practical performance of RuLSIF depends on the choice of

the kernel function (e.g., the kernel width σ in the case of Gaus-
sian kernel Eq. (2)) and the regularization parameter λ. Model
selection of RuLSIF is possible based on cross-validation with
respect to the error criterion J.

More specifically, each of the sample sets Xtr = {xtr
i }Ntr

i=1 and

Xte = {xte
j }Nte

j=1 is divided into L disjoint sets {Xl
tr}Ll=1 and {Xl

tr}Ll=1.
Then a RuLSIF solution w̃l(x) is obtained using Xtr\Xl

tr and
Xte\Xl

te (i.e., all samples without Xl
tr and Xl

te), and its J-value
for the hold-out samples Xl

tr and Xl
te is computed as

Ĵl
CV =

β

2|Xl
tr|

∑
xtr∈Xl

tr

w̃l(xtr)
2 +

1 − β
2|Xl

te|
∑

xte∈Xl
te

w̃l(xte)2

− 1

|Xl
tr|

∑
xtr∈Xl

tr

w̃l(xtr),

where |X| denotes the number of elements in the set X. This pro-
cedure is repeated for l = 1, . . . , L, and the average of Ĵl

CV over
all l is computed as

ĴCV =
1
L

L∑
l=1

Ĵl
CV.

Finally, the model (the kernel width σ and the regularization pa-
rameter λ in the current setup) that minimizes Ĵl

CV is chosen as
the most suitable one.

3. Experiments

In this section, we show two experimental studies on a walk-
ing scene and a tennis match to evaluate the performance of the
proposed method. Through all experiments, we set the relative
parameter at β = 0.1.

3.1 Cubic Higher-order Local Auto-correlation
In our experiments, we adopt the spatio-temporal fea-

tures called the cubic higher-order local auto-correlation

(CHLAC) [10], which and whose extension [14] have been suc-
cessfully used in action recognition. CHLAC directly handles
three-dimensional data, and it possesses useful properties such as
additivity, shift invariance, and robustness to noise [10].

Fig. 3 Example of a mask pattern. (0) L = 0. (1) L = 1 for a1 =

(−1,−1,−1). Mutually shifted mask patterns are eliminated.

Fig. 4 Hierarchical structure of time scales for train and test sequences.
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Fig. 5 An ordinary walking scene.

Fig. 6 A person tumbles while other people are walking.

Fig. 7 Anomaly score obtained by the proposed method and the ground
truths for the walking scene.

Fig. 8 Enlargement of Fig. 7 from the beginning to 500th frames.

Let f (r) be three-way data with r = (x, y, z), and the L-th order
auto-correlation function is defined as

xL(a1, . . . , aL) =
∫

f (r) f (r + a1) · · · f (r + aL)dr, (3)

where al (l = 1, . . . , L) are called the displacement vectors. In
Eq. (3), displacement vector al is limited to a 3 × 3 × 3 local re-
gion around r and the number of displacement vectors, L, is set
to be less than or equal to 2.

Because the value of xL(a1, . . . , aL) remains the same as long
as the patterns of (r, a1, . . . , aL) are identical in the point config-
uration, we eliminate such redundant features (see Fig. 3). Tak-
ing inter-frame difference and thresholding, we convert input im-

Fig. 9 Anomaly score obtained by the subspace method and the ground
truths for the walking scene.

Fig. 10 Enlargement of Fig. 9 from the beginning to 500th frames.

Fig. 11 Precision-recall curves.
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Fig. 12 A tennis match video.

Fig. 13 A ball person is running in the court.

Fig. 14 A player bounces a ball before his service.

Fig. 15 A player makes a forehand smashing shot.

Fig. 16 A player makes a backhand smashing shot.
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age data into motion-image sequences composed of binary data.
We use 251 mask patterns, so our CHLAC feature vector is 251-
dimensional.

As shown in Fig. 4, we compute CHLAC features in train
and test intervals for (M0,N0) = (10, 10), (M1,N1) = (20, 20),
(M2,N2) = (30, 30), (M3,N3) = (40, 40), and (M4,N4) =
(50, 50).

3.2 Detection of Abnormal Actions in Walking Scene
In the first set of experiments, we use our in-house video se-

quences that record walking scenes. While people are walking
(Fig. 5), typical abnormal actions are that people are hit each
other and/or tumble (Fig. 6).

We compare the performance of the proposed method with that
of a baseline approach based on the subspace method [10]. The
subspace method is a supervised approach and we pre-trained the
subspace classifier using video data of 500 frames that have been
manually annotated. On the other hand, the proposed method is
completely unsupervised and no pre-training is necessary.

Figures 7 and 8 show the anomaly scores obtained by the pro-
posed method, while Figs. 9 and 10 show the anomaly scores
obtained by the subspace method. In the graphs, the blue lines
represent the manually annotated ground truths where normal pe-
riods (i.e., walking scene) are indicated by smaller values and
abnormal periods (i.e., tumbling scene) are indicated by larger
values. The scene from the 200th to 300th frames has relatively
small anomaly scores and this corresponds to an ordinary walking
scene. On the other hand, the scene from 300th to 400th frames
has relatively high anomaly scores and this corresponds to a tum-
bling scene (see Fig. 6 for details). Both the proposed and existing
methods successfully detect the onset of this abnormal action and
also distinguish normal actions from abnormal ones.

Figure 11 plots precision-recall curves of abnormal action
recognition. This clearly show that our proposed method out-
performs the subspace method. The superior performance of the
proposed method would be brought by the fact that direct density-
ratio estimation is capable of comparing probability distributions
in a highly robust manner.

Overall, the proposed method, which is an unsupervised
method that does not require any pre-training was shown to com-
pare favorably with the supervised subspace method that requires
manually annotated video data.

3.3 Detection of Various Actions in Tennis Match
Next, we show experimental results on a tennis match video

(see Fig. 12). In this video, various events can be observed, for
example, a ball person is running in the court (Fig. 13), a player
bounces a ball before his service (Fig. 14), and a player makes
smashing shots (Figs. 15 and 16).

Figures 17, 18, 19 show the anomaly score obtained by the
proposed method. The peak between the 150th and 200th frames
corresponds to a ball person’s running in the court (Fig. 13), while
the peak between the 300th and 400th frames corresponds to ball
bouncing (Fig. 14). The peak around the 1000th frame corre-
sponds to the forehand smashing stroke (Fig. 15), while the peak
around the 1100th frame corresponds to the backhand smashing

Fig. 17 Anomaly score obtained by the proposed method for the tennis
match video.

Fig. 18 Enlargement of Fig. 17 from the beginning to 500th frames.

Fig. 19 Enlargement of Fig. 17 between the 800th and 1300th frames.

stroke (Fig. 16).
These results indicate that the proposed method can successful

detect notable events as well as their onset frames.

4. Summary and Conclusions

We proposed a video-based event detection method using di-
rect density-ratio estimation. A similar idea has already been
explored in terms of change detection in time-series [8], [13],
but we newly introduced a multi-scale hierarchy of train and test
intervals—this mitigates the difficulty of finding appropriate time
intervals. We experimentally demonstrated the usefulness of the
proposed method on a walking scene and a tennis match. Be-
cause manually annotating video sequence is highly costly. the
fact that the proposed algorithm does not require any pre-training
based on annotated data is a significant advantage over existing
supervised approaches in practice.
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