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Abstract: Detection of salient objects in images has been an active area of research in the computer vision community.
However, existing approaches tend to perform poorly in noisy environments because probability density estimation in-
volved in the evaluation of visual saliency is not reliable. Recently, a novel machine learning approach that directly
estimates the ratio of probability densities was demonstrated to be a promising alternative to density estimation. In
this paper, we propose a salient object detection method based on direct density-ratio estimation, and demonstrate its
usefulness in experiments.
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1. Introduction

Detecting salient objects in images has been extensively inves-
tigated in many computer vision applications such as general ob-
ject detection in web images [2] and over image thumbnails [11],
and computing a joint focus of attention in human robot interac-
tion [12]. Here, a salient object indicates a region in an image
that visually stands out from its surroundings and is likely to at-
tract human attention, as illustrated in Fig. 1. A key property that
makes an object salient is the visual difference from the back-
ground.

Methods of salient object detection can be divided into the
top-down approach based on supervised learning [2], [10] and
the bottom-up approach based on unsupervised learning [3], [6].
So far, various top-down methods have been proposed, for ex-
ample, Alexe et al. [2] combined multi-scale saliency, color con-
trast, edge density, and super-pixels in a Bayesian framework, and
Liu et al. [10] combined multi-scale contrast, center-surround his-
tograms, and color spatial-distributions with conditional random
fields. However, the performance of the top-down approach de-
pends heavily on the quality and quantity of ground truth data
used for supervised learning, and gathering a large number of
high-quality training data is costly. Furthermore, adding a new
object category is not straightforward and human subjectivity of-
ten causes ambiguity.

On the other hand, the bottom-up approach can be easily ap-
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plied in an on-line fashion with no labeling cost. A seminal work
by Itti et al. [6] is based on a feature integration theory in cog-
nitive science [14]. This method identifies salient objects based
on conspicuity maps that are generated from the spatial contrast
of features such as the luminance value, edge intensity, and gra-
dient orientation. While many computational models have been
developed and their applications have been explored based on this
structure [3], [4], [16], fusion of feature channels remains some-
what arbitrary. Furthermore, the performance of the bottom-up
approach depends on the characteristics of image features—if
features are sensitive to environmental and observational noise,
lighting conditions and system-specific noise can cause severe
performance degradation.

The above approaches are mostly motivated biologically. On
the other hand, several recent approaches attempted to model
saliency computationally and mathematically. For example,
Kadir et al. [7] introduced entropy-based saliency, and Hou and
Zhang [5] computed the incremental coding length to measure the
perspective entropy gain. However, entropy-based methods tend
to identify objects with various structures as salient, which is not
always appropriate in practice.

In this paper, we propose a new bottom-up method to detect
salient objects in images that is robust against noise incurred by
various environmental and observational factors. Our approach
is based on the standard structure of cognitive visual attention
models [14], where several feature channels are investigated in
parallel and the conspicuity maps are fused to a single saliency
map. We choose the lightness, edge intensity, and color as feature
channels because they are basic features of the human attention
system [17].

Our saliency computation consists of two steps: First, we sam-
ple low-dimensional features such as intensities and colors in dif-
ferent scales. Then, in the second step, the center-surround con-
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Fig. 1 Examples of salient objects in images [10].

trast is evaluated with a machine learning technique. More specif-
ically, two probability densities of visual feature occurrences are
considered for a center region and a surround region, and a di-
vergence between these densities is evaluated by the state-of-the-
art machine learning method called direct density-ratio estima-

tion [13]: The ratio of probability densities is directly estimated
without separate estimation of each density. Because density es-
timation is known to be a hard task [15], avoiding density esti-
mation and directly estimating the density ratio would be more
promising.

Through experiments, we demonstrate that the proposed
method allows robust computation of visual saliency in various
scales and tends to outperform the method that directly estimates
probability density for low-dimensional features [7].

2. Problem Formulation

In this section, we formulate our salient object detection prob-
lem based on density ratios.

Let x be a low-dimensional feature (e.g., lightness, color, and
edge) extracted from an image. Our task is to detect whether there
exists a salient object from the low-dimensional feature. A naive
approach to this problem would be to first estimate the center and
surround probability density functions for low-dimensional fea-
tures separately, and then to evaluate the difference between cen-
ter and surround regions by comparing the estimated probability
density functions.

However, since non-parametric density estimation is known to
be a hard problem [15], this naive approach to salient object de-
tection may not be effective in practice. Instead, directly esti-
mating the ratio of probability densities without going through
density estimation was shown to be more promising [13]. Mo-
tivated by this line of research, we develop a saliency detection
algorithm based on the relative density ratio for low-dimensional

feature x:

w(x) =
pc(x)

βpc(x) + (1 − β)ps(x)
, (1)

where pc(x) and ps(x) are the probability density functions for
center and surround low-dimensional features, respectively. β
(0 ≤ β < 1) is the relative parameter that controls the “smooth-
ness” of the density ratio; β = 0 corresponds to the plain den-
sity ratio pc(x)/ps(x) and the relative density ratio tends to be
smoother as β gets larger. See Ref. [18] for a theoretical back-
ground for this relative parameter.

We use the relative Pearson divergence from pc(x) to ps(x) [9],
[18] as our saliency score S :

S =
1
2

∫
(w(x) − 1)2 (βpc(x) + (1 − β)ps(x)) dx,

which is always non-negative and zero if and only if pc = ps. Fig-
ure 2 illustrates the relation between visual saliency in an image
and the relative density ratio for low-dimensional features (e.g.,
color). The visual saliency of the center-surround region in the
left-hand side of Fig. 2 is high, yielding the saliency score S to
be large. On the other hand, the visual saliency of the center-
surround region in the right-hand side of Fig. 2 is low, resulting
in a small saliency score S .

In practice, it may be difficult to determine the size of center-
surround regions to properly detect salient objects without any
prior knowledge. In this paper, we mitigate this difficulty by
considering a hierarchy of center-surround regions, as illustrated
in Fig. 3. This hierarchical structure makes it possible to detect
salient objects in different scales from micro to macro levels. We
further consider multiple types of low-dimensional features such
as lightness, color, and edge, which are linearly combined as

H∑
h=1

(
S l

h + S c
h + S e

h

)
,
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Fig. 2 Relation between visual saliency in an image and probability density ratios for low-dimensional
features (e.g., color).

Fig. 3 Center-surround region and down sampling.

Fig. 4 Schematic overview of our saliency detection system.

where S l
h, S c

h, and S e
h are the scores of lightness, color, and edge

in the h-th hierarchy, respectively. Finally, we build a saliency
map by calculating the saliency score exhaustively at all position
in the image. The above formulation is summarized in Fig. 4,
which illustrates the schematic overview of our saliency detec-

tion system.
The remaining question in the proposed procedure is how to

evaluate the relative Pearson divergence S from data, which is
discussed in the next section.

3. Direct Approximation of Pearson Diver-
gence

In this section, we show how the relative Pearson divergence is
evaluated from data.

3.1 Approximation of Relative Pearson Divergence by Rela-
tive Density-ratio Estimation

Suppose we are given a set of Nc samples extracted from a
center region (see Fig. 5) that are drawn independently from a
probability distribution Pc with density pc:

Xc =
{
xc

i | xc
i ∈ �d

}Nc

i=1

i.i.d
∼ Pc.

We also suppose that another set of Ns samples extracted from a
surround region (see Fig. 6) that are drawn independently from
(possibly) another probability distribution Ps with density ps:

Xs =
{
xs

j | xs
j ∈ �d

}Ns

j=1

i.i.d
∼ Ps.

From the samples Xc and Xs, we estimate the relative density
ratio defined by Eq. (1). Let ŵ(x) be an estimate of the relative
density ratio. Then the Pearson divergence can be approximated
as

Ŝ = − β
2Nc

Nc∑
i=1

w(xc
i )2 − 1 − β

2Ns

Ns∑
j=1

w(xs
j)

2 +
1

Nc

Nc∑
i=1

w(xc
i ) − 1

2
.

Below, we explain how the relative density ratio can be directly
estimated without going through density estimation.

3.2 Unconstrained Least-squares Approach to Relative
Density-ratio Estimation

Here, we review a density-ratio estimation method called
relative unconstrained least-squares importance fitting (RuL-
SIF) [18].

Let us model the relative density ratio function w(x) by the fol-
lowing kernel model:

w̃(x) =
Nc∑
i=1

αiK(x, xc
i ) = α′k(x),
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where

α = (α1, α2, . . . , αNc )
′

are parameters to be learned from data samples, •′ denotes the
transpose of a matrix or a vector, and

k(x) =
(
K(x, xc

1),K(x, xc
2), . . . ,K(x, xc

Nc
)
)′

are kernel basis functions. A popular choice of the kernel is the
Gaussian function:

K(x, y) = exp

(
− ||x − y||

2

2σ2

)
, (2)

where σ > 0 is the Gaussian width.
We determine the parameter α in the model w̃(x) so that the

following squared-error J0 is minimized:

Fig. 5 Low-dimensional feature samples randomly extracted from a center
region.

Fig. 6 Low-dimensional feature samples randomly extracted from a sur-
round region.

(a) Lightness (b) Edge

(c) Color (d) Combination

Fig. 7 Precision-recall curves.

J0 =
1
2

∫ (
w̃(x) − w(x)

)2
(βpc(x) + (1 − β)ps(x)) dx

=
β

2

∫
w̃(x)2 pc(x)dx +

1 − β
2

∫
w̃(x)2 ps(x)dx

−
∫
w̃(x)pc(x)dx + Const.

Let us denote the first three terms by J. Since J contains the
expectation over unknown densities ps(x) and pc(x), we approx-
imate the expectations by empirical averages. Then we obtain

Ĵ(α) =
1
2
α′Ĥα − α′ ĥ,

where Ĥ is the Nc × Nc matrix defined by

Ĥ =
β

Nc

Nc∑
i=1

k(xc
i )k(xc

i )′ +
1 − β

Ns

Ns∑
j=1

k(xs
j)k(xs

j)
′,

and ĥ is the Nc-dimensional vector defined by

ĥ =
1

Nc

Nc∑
i=1

k(xc
i ).

By including a regularization term, the RuLSIF optimization
problem is formulated as

α̂ = argmin
α

[
1
2
α′Ĥα − α′ ĥ + λ

2
α′α

]
,

where α′α/2 is a regularizer and λ (≥ 0) is the regularization pa-
rameter that controls the strength of regularization. By taking the
derivative of the above objective function with respect to the pa-
rameter α and equating it to zero, we can analytically obtain the
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Fig. 8 Experimental results on the MSRA dataset. Top rows: Original images. Middle rows: Saliency
maps obtained by the proposed method. Bottom rows: Saliency maps obtained by the K&B
method. The number below each image is the maximum F-score.

solution α̂ as

α̂ = (Ĥ + λI)−1 ĥ,

where I denotes the identity matrix. Finally, a density ratio esti-
mator ŵ(x) is given by

ŵ(x) = α̂′k(x).

Thanks to the simple analytic-form expression, RuLSIF is com-
putationally more efficient than alternative density-ratio estima-
tors which involve non-linear optimization [13].

c© 2013 Information Processing Society of Japan 82



IPSJ Transactions on Mathematical Modeling and Its Applications Vol.6 No.2 78–85 (Aug. 2013)

Fig. 9 Examples where the proposed methods do not perform well. The proposed method is not suitable
for finding elongated salient regions with the current implementation.

3.3 Model Selection by Cross-validation
The practical performance of RuLSIF depends on the choice of

the kernel function (e.g., the kernel width σ in the case of Gaus-
sian kernel Eq. (2)) and the regularization parameter λ. Model
selection of RuLSIF is possible based on cross-validation with
respect to the error criterion J.

More specifically, each of the sample sets Xc = {xc
i }Nc

i=1 and
Xs = {xs

j}Ns
j=1 is divided into L disjoint sets {Xl

c}Ll=1 and {Xl
s}Ll=1.

Then an RuLSIF solution w̃l(x) is obtained using Xc\Xl
c and

Xs\Xl
s (i.e., all samples without Xl

c and Xl
s), and its J-value for

the hold-out samples Xl
c and Xl

s is computed as

Ĵ l
CV=

β

2|Xl
c|

∑
xc∈Xl

c

w̃l(xc)2+
1 − β
2|Xl

s|
∑

xs∈Xl
s

w̃l(xs)
2− 1

|Xl
c|

∑
xc∈Xl

c

w̃l(xc),

where |X| denotes the number of elements in the set X. This pro-
cedure is repeated for l = 1, . . . , L, and the average of Ĵ l

CV over
all l is computed as

ĴCV =
1
L

L∑
l=1

Ĵ l
CV.

Finally, the model (the kernel width σ and the regularization pa-
rameter λ in the current setup) that minimizes Ĵ l

CV is chosen as
the most suitable one.

4. Experiments

In this section, we experimentally compare the proposed
method with the method proposed by Kadir and Brady [7]
(K&B) that separately estimates probability densities for low-
dimensional features. We use the MSRA salient object

database [10] for evaluation.
In the K&B method, visual saliency is defined as

H(r) ·W(r), (3)

where H(r) denotes the Shannon entropy in the local region with
size r:

H(r) = −
∫

p(I, r) log p(I, r)dI.

Here, p(I, r) represents the probability density for low-
dimensional feature I (e.g., lightness, edge, and color). W(r) in
Eq. (3) is the magnitude of low-dimensional feature I defined by

W(r) =
r2

2r − 1

∫ ∣∣∣∣∣∂p(I, r)
∂r

∣∣∣∣∣ dI.

Figure 1 shows some images in the database *1 and ground-
truth saliency maps. In the proposed RuLSIF-based method, we
fix the parameters at Nc = 50, Ns = 50, and β = 0.1. The sizes
of center and surround regions are set to 0.2 and 0.3 of the entire
image, and the hierarchy of center-surround regions (see Fig. 3)
is constructed by decreasing the size by factor 1/

√
2 with depth

H = 8.
The quality of an obtained saliency map is evaluated according

to Achanta et al. [1]: A binary map is constructed from an ob-
tained saliency map by varying a threshold on the intensity val-
ues in [0, 255]. Then each of these 256 maps is compared with
the ground-truth binary map and the precision and recall scores
are computed.

We compare precision-recall curves for each low-dimensional
feature (lightness, edge, and color) and also for the combined fea-
ture in Fig. 7. The graphs show that our method tends to outper-
form the K&B method for all low-dimensional feature channels
and it more clearly outperforms the K&B method for the com-
bined feature.

Figure 8 shows examples of saliency maps obtained by the
proposed approach and the K&B method; below each image, the
maximum F-score (i.e., the maximum of the harmonic mean of
precision and recall) is described. Overall, the proposed method
gives much better results both in visual quality and the F-score.

The processing time necessary for building a conspicuity map
of size 300 by 200 [pixels] was about 879 [msec] on a PC with
Intel Core2 Duo 2.53 [GHz] and 2.0 [GB] memory. Although
this is about 5 times slower than the processing time of the K&B
method, our naive implementation may be further improved, e.g.,

*1 As pointed out in Liu et al. [10], saliency detection for images with large
objects is too easy. Here, we choose 200 images from the database that
contain small objects of size less than 20% of the image size.
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Fig. 10 Precision-recall curves for the lightness channel for several different
relative parameters β.

by introducing a coarse-to-fine strategy and parallel computation.
A potential weakness of the proposed method is that if a salient

object is highly elongated, its shape cannot be extracted sharply
(see Fig. 9). This weakness is caused by our search strategy that
density ratios between spherical regions are estimated. Thus, this
weakness may be overcome by considering elongated regions in
the saliency search, in exchange for an increase in the computa-
tional cost.

Figure 10 depict examples of precision-recall curve of the
lightness channel when the relative parameter β in Eq. (1) is
changed. The graph shows that the behavior of the proposed al-
gorithm is highly stable with respect to the changes in β, which is
a desirable property in practice.

5. Conclusions

We presented a new approach to computing visual saliency
based on direct density-ratio estimation. Direct density-ratio esti-
mation is an emerging machine learning technique that allows us
to systematically avoid density estimation, which is known to be
a hard task. Based on an estimated density ratio, we determined
the contrast of the center and the surround feature distributions
for lightness, edge, and color channels. Through experiments, we
demonstrated that our proposed approach outperforms the K&B
method which is based on probability density estimation.

We experimentally found that the proposed method cannot
sharply identify a salient object if its shape is elongated, which
is due to our search strategy that density ratios between spher-

ical regions are estimated. If elongated regions are used for
saliency search, this problem can be overcome in principle. Thus,
this weakness of the proposed method is not an essential limi-
tation. However, naively employing various elongated regions
in saliency search increases the computation cost significantly.
Thus, we will develop a computationally efficient way to handle
this problem in our future work.

Another important future work is to perform larger-scale and
more systematic experiments, including comparison with super-
vised methods.
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