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Abstract: This paper presents two acceleration techniques of fault simulation for analyzing soft error propagation in
sequential circuits. One is an exact technique and the other is a heuristic technique. Since these techniques are indepen-
dent on how the logic functions of circuits are evaluated, they can be combined with other techniques which accelerate
evaluations of the logic functions of circuits, such as event-driven simulation, single pattern parallel fault propaga-
tion (SPPFP). Experimental results show that applying the exact technique makes a fault simulator with event-driven
simulation and SPPFP 30–143 times faster. A fault simulator with the exact technique finished for several large-scale
circuits in 4.6 hours or less, while a fault simulator without the exact technique could not finish for such circuits in
72 hours. Furthermore, applying the heuristic technique makes a fault simulator with the exact technique about 7–17
times faster with only 0.5–2.2% estimation error.
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1. Introduction

Collisions of neutrons into silicon atoms in circuits may cause
an abnormal pulse at the output of a logic gate or an incorrect
bit flip of a value held in a flip-flop (FF). These phenomena are
called Single Event Fault (SEF). An SEF may cause incorrect
values of FFs at the next clock edge. For example, an SEF occur-
ring at a logic gate and being propagated into FFs makes incor-
rect values of FFs. Incorrect values of FFs are called sequential
transient error (STE) in this paper. An STE may cause incor-
rect values at primary outputs. Incorrect values at primary out-
puts are called failure of circuit. Applying SEF mitigation tech-
niques [1], [8] generally cause overhead of delay, area or power.
Analyzing SEF-tolerance of a circuit and identifying vulnerable
parts in the circuit are important to mitigate SEF-induced failure
with small overhead.

Analysis of STE propagation is one of the important keys for
analyzing SEF-tolerance of a circuit and identifying vulnerable
parts in the circuit. The goal of the analysis is to estimate occur-
rence probability of failure under the condition of an STE occur-
rence. Three kinds of approaches have been studied in the past.
The first approach is analyzing the behavior of a finite state ma-
chine stochastically with representing the state transitions of the
finite state machine as a Markov chain model [4]. The method [4]
is exact if occurrences of input vectors have no temporal corre-
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lation. The time complexity of the method [4], however, is expo-
nential to the number of primary inputs and FFs. The second ap-
proach is analyzing circuit behavior during a certain clock cycles
after STE occurrence using time expansion model [6], [7]. The
time complexity of the second approach is also exponential to the
number of primary inputs and FFs. The methods [6], [7] use Bi-
nary Decision Diagrams (BDDs) for efficient analysis. Memory
size of a BDD is, however, often larger than several billion bytes
if a circuit has more than 40 primary inputs or FFs. Thus, these
methods [4], [6], [7] are not practical for large-scale circuits. The
last approach is based on fault simulation with a given sequence
of input vectors [3]. Since the time complexity is polynomial to
circuit size multiplied by the length of a given sequence of in-
put vectors, the last approach is applicable to large-scale circuits.
Thus, the last approach is practical if a sequence of input vectors
is provided.

The problem of fault simulation for analyzing STE propaga-
tion is run-time. Fault simulation for analyzing STE propagation
is different from that for permanent faults in the following points.
• An SEF never change the logic function of a circuit, while a

permanent fault changes it.
• If an STE does not affect values of FFs at the next clock edge,

simulation for the following clock cycles is unnecessary. On
the other hand, simulation for every clock cycle is necessary
for a permanent fault, since a permanent fault changes the
logic function of a circuit.

• Let S and T be the size of a given circuit and the number
of clock cycles. An SEF is distinguished from other SEFs
which occur at different clock cycles on the same location.
Thus, the number of STEs can be proportional to S×T , while
the number of permanent faults is proportional to S .
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The time complexity of fault simulation for one STE is propor-
tional to S × T , Therefore, time complexity of a naive fault sim-
ulation for all the STEs is proportional to S 2 × T 2. That is not
practical for a large-scale circuit with large number of clock cy-
cles.

This paper presents acceleration techniques for fault simula-
tion. There are two points for improving a naive fault simulation.
• Several different STEs at a clock cycle often lead to same

STEs at the next clock cycle. Since SEFs do not change the
function of a circuit, simulation results for the same STEs
are guaranteed to be the same. Therefore, individually sim-
ulating each of the same STEs is inefficient.

• An STE which does not cause failure and does not affect any
FF at the next clock cycle is called as ‘masked’. Empirically,
an STE which remains through many clock cycles after an
SEF occurrence is rarely masked. Thus, such an STE may be
considered as failure without simulating the following clock
cycles.

Based on the above points, the following acceleration techniques
are proposed.
• Exact technique - a simple technique to collapse overlap-

ping STEs at a clock cycle into one STE. Employing this
technique has no loss of accuracy, since simulation results
for the same STEs are guaranteed to be the same. This tech-
nique seems to be trivial, however, impacts of this technique
have not been demonstrated quantitatively in the past. This
technique cannot be applied to fault simulations for perma-
nent faults, since a permanent fault changes the function of
a circuit depending on the location of the fault.

• Heuristic technique - a technique to terminate simulation for
a set of STEs where enough masked STEs are found. At
first, in simulation for each clock cycle, the set of STEs is
partitioned into subsets with respect to each SEF occurrence
clock. The total number N of STEs which do not cause fail-
ure is adequately guessed for each subset. Then, if the cur-
rent number of masked STEs in a subset exceeds a certain
rate of N, then simulation for all the other STEs in the sub-
set are terminated, and they are considered as failure. Since
STEs which cause failure never estimated as not failure with
this technique, a pessimistic analysis is guaranteed.

Since these techniques are independent on how the logic function
of a circuit is evaluated, they can be combined with other tech-
niques which accelerate evaluations of the logic functions of cir-
cuits, such as event-driven simulation and SPPFP [2], [3], [9]. Ex-
perimental results show that applying the exact technique makes
a fault simulator with event-driven simulation and SPPFP about
30–143 times faster. A fault simulator with the exact technique
finished for several large-scale circuits in about 4.6 hours or less,
while a fault simulator without the exact technique could not
finish for such circuits in 72 hours. Furthermore, applying the
heuristic technique makes a fault simulator with the exact tech-
nique about 7–17 times faster with only 0.5–2.2% overestimates
on the rate of STEs which cause failures. Since the analysis with
the heuristic technique is slightly pessimistic, the heuristic tech-
nique is useful to judge whether required soft error tolerance have
been achieved or not quickly.

The rest of this paper is organized as follows. Section 2 gives
an definitions and a problem formulation. Section 3 shows a naive
fault simulation algorithm. Section 4 shows the proposed acceler-
ation techniques. Section 5 shows experimental results. Finally,
section 6 concludes this paper.

2. Preliminaries

Let G = (V, E) denote a graph which represents the relation of
connection for a sequential circuit. A node in V corresponds to a
primary input, a primary output, a logic gate, or an FF. Let PI,
PO, LG, FF denote the set of all the primary inputs, the set of all
the primary outputs, the set of all the logic gates and the set of all
the FFs, respectively. If and only if the output of v is an input of
w, an edge (v, w) is in E. A fanin of a node v is an immediate pre-
decessor of v. The set of all the fanins of v is defined by FI(v) =
{u | ∃(u, v) ∈ E}. A Boolean function which represents the out-
put value of v ∈ LG corresponding to values of FI(v) is called
local function of v, denoted by LFv : B|FI(v)| → B. A Boolean
function which represents the output value of v corresponding to
values of primary inputs and FFs is called global function of v,
denoted by GFv : B|PI| × B|FF| → B. The global function of
node v ∈ LG is equivalent to LFv(GFv0 ,GFv1 , ...,GFvn ), where
FI(v) = {v0, v1, ..., vn}.

An input vector is a bit vector which represents values of all
the primary inputs. The m th value of an input vector represents
the value of the m th primary input. An input sequence is a se-
quence of input vectors. The i th input vector of an input sequence
IS is denoted by IS i. The length of an input sequence IS is de-
noted by | IS |. An output vector is a bit vector which represents
values of all the primary outputs. An FF vector is a bit vector
which represents values of all the FFs. Let FVi be an FF vector
at the i th clock, which means that the m th FF latches the m th
value of FVi at the i th clock edge. Then, i + 1 th output vector
OVi+1 for each i ∈ {0, 1, ..., | IS | −1} is defined with the following
expression, where PO = {o0, ..., om}.

OVi+1 = (GFo0 (IS i, FVi), ...,GFom (IS i, FVi))

Similarly, i + 1 th FF vector FVi+1 for each i ∈ {0, 1, ..., | IS | −1}
is defined with the following expression, where FF = { f0, ..., fn}.

FVi+1 = (GF f0 (IS i, FVi), ...,GF fn (IS i, FVi)) (1)

An STE denotes a pair of an FF vector and a clock*1. “STE
(FVF , j) is injected” means that FFs latch the values in FVF at
the j th clock edge, no matter how FVF is different from FVj

in Eq. (1). j is called the injection clock of STE (FVF , j). Let
OVF

i (e) and FVF
i (e) denote the output vector and the FF vector at

i th clock where an STE e is injected, respectively. Then, an STE
e is called to be failure if and only if the following function Fail

is true.

Fail(e,G, IS , FV0) =

(∃i ∈ {1, ..., | IS |},OVi � OVF
i (e))

∨(FV|IS | � FVF
|IS |(e)) (2)

*1 STE is briefly defined in Section 1, however, the definition is not mathe-
matical. STE is mathematically redefined here.
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The problem of fault simulation for STEs is computing Fail for
given G, FV0, IS and a set of STEs ES et. Figure 1 shows a
model of fault simulation where STE (FVF

1 , 1) is injected. An FF
vector at the first clock of the lower circuit is changed from FV1 to
FVF

1 . Then, OVF
2 ,OVF

3 and FVF
3 are computed and respectively

compared to OV2,OV3 and FV3.

3. Naive fault simulation

NaiveFaultSimulation in Fig. 2 denotes a pseudo code of a
naive fault simulation algorithm. Both FVS et and FVS et′ de-

Fig. 1 A model of fault simulation for STE (FVF
1 , 1) where |IS | = 3.

NaiveFaultSimulation((V, E), IS , FV0, ES et){
1: FVS et; //declare a set of pairs(an FF vector, an STE)
2: FVS et′; //declare a set of pairs(an FF vector, an STE)
3: MES et; //declare a set of STEs
4: foreach i from 0 to | IS | −1{
5: Compute OVi+1 and FVi+1;
6: FVS et ← FVS et ∪ {(FVF

i , e) | e ∈ ES et(i)};
7: foreach (FVF

i , e) ∈ FVS et{
8: Compute OVF

i+1 and FVF
i+1;

9: bool f inish← Judge({e},OVi+1, FVi+1,

OVF
i+1, FVF

i+1, i + 1, IS ,MES et);
10: if ( f inish = f alse)

FVS et′ ← {(FVF
i+1, e)} ∪ FVS et′;

11: }
12: FVS et ← FVS et′;
13: FVS et′ ← φ;
14: }
15: return MES et;
}

bool Judge(Er,OV, FV,OVF , FVF , i, IS ,MES et){
16: if ((OV = OVF)∧(FV = FVF)){
17: MES et ← MES et ∪ Er;
18: return true;

// the STEs in Er are masked
19: }
20: else if ((OV � OVF) ∨ ((i =| IS |)∧ (FV � FVF))){
21: return true;

// the STEs in Er cause failure
22: }
23: return f alse;
}
Fig. 2 A pseudo code of a naive fault simulation algorithm for analyzing

incorrect FF vectors.

note a set of pairs of an FF vector and an STE. If STE e is
injected and if the FF vector at the i th clock is FVF

i , (FVF
i , e)

is stored in FVS et. MES et is a set which holds masked STEs.
ES et(i) in line 6 represents the set of all the STEs whose injec-
tion clock is i. Judge in line 9 computes whether e can be judged
as failure or masked at the i + 1 th clock. If and only if e can be
judged as failure or masked with the expression 2, Judge returns
true. If Judge returns f alse, the pair of the FF vector at i + 1
th clock and e is added to FVS et′ in line 10. NaiveFaultSimula-
tion returns MES et. If and only if e is not included in MES et,
Fail(e,G, IS , FV0) is true.

Both the time complexity of line 5 and that of line 8 are
O(| V |). The time complexity of line 9 is O(| PO | + | FF |).
| FVS et | for each i ∈ {0, ..., | IS | −1} is equal to i· | V | in the
worst case. Thus, the time complexity from line 5 to line 13 is
O(| IS | · | V |2). Based on the above, the time complexity of
NaiveFaultSimulation is O(| IS |2 · | V |2).

There are several acceleration techniques [2], [3], [9] which
can be applied to the computation of line 8. In the experiments
of this paper, SPPFP has employed to simulate 64 FF vectors
in FVS et simultaneously. Event-driven simulation has also em-
ployed [9]. These techniques don’t affect the time complexity of
this algorithm.

4. Acceleration Techniques for Fault Simula-
tion

4.1 An Exact Technique with Eliminating Overlaps of FF
Vectors

This section presents a simple technique to collapse overlap-
ping same FF vectors induced by different STEs into one FF vec-
tor. If an FF vector FVF

i induced by one STE is identical to other
FF vectors induced by other STEs, the simulation results of the
following clocks are also the same, since the function of a circuit
is the same for any STE. Thus, one time of simulation for FVF

i is
enough for such STEs. Figure 3 shows an example where over-
lapping FF vectors are collapsed with a hash table. The key of
the hash table is FF vector, and the value of the hash table is set
of the corresponding STEs. This technique accelerates fault sim-
ulation with reducing the number of times of simulations without
any loss of accuracy.

EfficientFaultSimulation in Fig. 4 denotes a pseudo code of a
fault simulation algorithm with eliminating overlaps of FF vec-
tors. Judge in EfficientFaultSimulation is the same with that
shown in Fig. 2. HashMap denotes a hash table whose key is
an FF vector and whose value is a set of STEs. HashMap(FV)

Fig. 3 An example of a hash table used in the exact technique.
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EfficientFaultSimulation((V, E), IS , FV0, ES et){
//declare a set of pairs(an FF vector, a set of STEs)

1: FVS et;
//declare a hash table of (an FF vector, a set of STEs)

2: HashMap;
3: MES et; //declare a set of STEs
4: foreach i from 0 to | IS | −1{
5: Compute OVi+1 and FVi+1;
6: foreach (FVF

i , Er) ∈ FVS et{
7: Compute OVF

i+1 and FVF
i+1;

8: bool f inish← Judge(Er,OVi+1, FVi+1,

OVF
i+1, FVF

i+1, i + 1, IS ,MES et);
9: if ( f inish = f alse)

SetNextVec(FVF
i+1, Er,HashMap);

10: }
11: if (i �| IS | −1) {
12: foreach (FVF , i + 1) ∈ ES et(i + 1) {
13: SetNextVec(FVF , {(FVF , i + 1)},HashMap)
14: }
15: }
16: FVS et ← φ;
17: FVS et ← a set of entries in HashMap;
18: Make HashMap empty;
19: }
20: return MES et;
}

SetNextVec(FVF , Er, HashMap){
21: if (FVF has not registered in HashMap)

Register (FVF , Er) to HashMap;
22: else

HashMap(FVF)← HashMap(FVF) ∪ Er;
}
Fig. 4 A pseudo code of fault simulation with eliminating overlaps of FF

vectors.

denotes the reference to a set of STEs which corresponds to a
key FV . If FVF has not registered on HashTable in SetNextVec,
(FVF , Er) is registered on HashTable. Otherwise, each STE in
Er is added to HashTable(FVF

i ). The time complexity of Ef-
fcientFaultSimulation is the same with that of NaiveFaultSim-
ulation, however, EfficientFaultSimulation can be faster since
| FVS et | is significantly reduced.

4.2 A Heuristic Technique with Terminating Simulation
An STE which remains through many clock cycles after an

SEF occurs is rarely masked. Thus, such an STE is considered
as failure without simulating the following clock cycles. This
section presents a heuristic technique to terminate simulation for
a set of STEs where enough masked STEs are found.

Let S ubES et be a subset of ES et. Terminate(S ubES et,
FVS et) in Fig. 5 is a procedure which removes all the STEs in
S ubES et from FVS et. Inserting procedure Terminate(S ubES et,
FVS et) at between line 5 and line 6 in Fig. 4 makes simu-
lations for STEs in S ubES et terminate, which may reduce |
FVS et | in line 6 in Fig. 4. Reducing | FVS et | at line 6

Terminate(S ubES et, FVS et){
1: foreach (FVF , Er) ∈ FVS et{
2: foreach e ∈ Er{
3: if (e ∈ S ubES et)
4: Er ← Er − {e};
5: }
6: if (Er = φ)
7: FVS et ← FVS et − {(FVF , Er)};
8: }
}

Fig. 5 A pseudo code of a part of terminating simulation.

Fig. 6 | MES et(i, ES et) | normalized by | MES et(2000, ES et) | for various
values of i.

would cause speed-up of fault simulation since the operation from
line 7 to line 9 in Fig. 4 may be executed less times. Inserting
Terminate(S ubES et, FVS et), however, may cause loss of accu-
racy. Inserting Terminate(S ubES et, FVS et) makes all the STEs
in S ubES et be not included in MES et, which means that they
are judged as failure. If S ubES et includes STE e which is go-
ing to be masked, Terminate(S ubES et, FVS et) makes e be in-
correctly judged as failure. Since any STE which causes failure
never judged as not failure with Terminate(S ubES et, FVS et), the
simulation results of inserting Terminate(S ubES et, FVS et) are
guaranteed to be pessimistic. If | S ubES et | is large and almost
all the STEs in S ubES et cause failure, such S ubES et is expected
to make large speed-up with keeping high accuracy.

Let MES et(i, ES et) be the set of STEs which are in Eset and
masked during i clock cycles after the injection clock. Figure 6
shows | MES et(i, ES et) | normalized by | MES et(2000, ES et) |
on large benchmark circuits in ITC’99 benchmark set. This fig-
ure shows that the slope of | MES et(i, ES et) | is monotonically
decreased for increasing i. Let assume the slope of a tangent
of | MES et(i, ES et) | is approximated with | MES et(i, ES et) −
MES et(i − 1, ES et) |. Then, the number of all the STEs masked
during | IS | clocks is estimated with the following N(i, ES et) at
i th clock.

N(i, ES et) =| MES et(i, ES et) − MES et(i − 1, ES et) | ·
(| IS | −i)+ | MES et(i, ES et) |

Figure 7 shows an example of a curve of ES et(i, ES et) and
N(500, ES et). If the slope of | MES et(i, ES et) | is assumed to
be monotonically decreased, N(i, ES et) is guaranteed to be larger
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Fig. 7 An example of | MES et(i, ES et) | and N(500, ES et).

TerminateSimulation(i, P, ES et, FVS et){
1: foreach j ∈ {0, ..., i − 1} {
2: if (| MES et(i − j, ES et( j)) |≥ N(i − j, ES et( j)) · P)
3: Terminate(ES et( j) − MES et(i − j, ES et( j)), FVS et);
4: }
}

Fig. 8 A pseudo code of Terminating Simulation.

than | MES et(| IS |, ES et) |.
A pseudo code of the proposed heuristic technique is shown in

Fig. 8. A parameter P where 0 ≤ P ≤ 1 is given to this technique.
TerminateSimulation(i, P, ES et, EVS et) is inserted between line
5 and line 6 in Fig. 4. The termination is executed with respect
to each set of STEs which have the same injection clock. If
| MES et(i − j, ES et( j)) | is larger than N(i − j, ES et( j)) · P,
then MES et(i − j, ES et( j)) is considered to be large enough.
Then, simulation for STEs in ES et( j) − MES et(i − j, ES et( j))
are terminated, and the STEs are judged as failure. The decision
e ∈ S ubES et of line 3 in Fig. 5 can be done simply with checking
whether the injection clock of e is equal to j at line 3 in Fig. 8.

5. Experiments

5.1 Settings
Experimental results to evaluate the proposed techniques are

shown in this section. The following algorithms are implemented
on programs using C + + program language.
• BA (basic) : A fault simulator shown in Section 3.
• EF (efficient) : A fault simulator with the proposed exact

technique shown in Section 4.1.
• BA AP (approximate BA) : A fault simulator shown in Sec-

tion 3 with the heuristic technique shown in Section 4.2.
• EF AP (approximate EF) : A fault simulator with the pro-

posed exact technique shown in Section 4.1 and the heuristic
technique shown in Section 4.2.

Event-driven simulation and SPPFP [9] are used in BA, EF,
BA AP and EF AP. The accuracy of BA AP and that of EF AP

is evaluated with estimation error on failure rate FR which is de-
fined with the following expression.

FR(ES et,MES et) =
| ES et − MES et |

| ES et |
A set of STEs ES et is generated with an analysis of combina-

Fig. 9 Failure rate for various length of input sequences.

tional circuits. In the analysis of combinational circuits, an SEF
is assumed to occur for every pair of a logic gate and a clock. An
STE is generated with respect to each given SEF, simulating the
propagation of the SEF effects in the combinational circuit. Only
logic masking effects are considered on the simulation, which
means that electrical masking effects and temporal masking ef-
fects [5] are ignored.

The benchmark circuits are the 14 largest sequential circuits in
ITC’99 benchmark set. The CPU of the computing machine is
Intel Xeon 2.67 GHz, and the memory size is 12 GB.

Input sequences with sufficient lengths are generally required
to analyze soft error propagation appropriately. If the lengths of
input sequences are not sufficient, the results are more likely to be
biased by individual input vector. Longer input sequences, how-
ever, cause longer run time. Figure 9 shows failure rates com-
puted with the exact algorithms, BA or EF, for various length of
input sequences. b15, b15 1, b21, b21 1, b22 and b22 1 shown in
the figure are the names of several benchmark circuits. Since each
curve for the other benchmark circuits has similar form to one of
them, the curves for the other circuits are omitted to avoid conges-
tion. The figure shows that the failure rates are nearly stable for
input sequences whose length is 1,750 or more. The experiments
in this paper employ input sequences for 2,000 clock cycles in
order to compute accurate failure rate with short run time.

5.2 Results
Table 1 shows experimental results of BA and EF, where a ran-

domly generated input sequence for 2,000 clock cycles is given
for each circuit. “# of FF vectors” shows the number of FF vec-
tors which have been simulated. It corresponds to |FVS et| in line
7 of Fig. 2 or line 6 of Fig. 4. The results show that EF runs about
30–143 times faster than BA. The overhead of employing hash ta-
ble in EF accounts for fifth part of total run time at the most. The
proposed algorithm significantly reduces the number of FF vec-
tors using hash tables, which causes drastic speed-up. While BA

could not finish each simulation of b17, b17 1, b18, b18 1, b19
and b19 1 in 260,000 seconds, EF finished each simulation in
only 16,607 seconds or less. EF runs 55.8 times faster than BA

on average. These results show that the proposed exact technique
accelerates fault simulation significantly.

Figures 10 and 11 shows the run-time of EF for various num-
ber of clock cycles, where the input sequences are randomly gen-
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Table 1 Experimental results of BA and EF.

# of FF vectors Run time (sec.)
Circuit #LG BA EF BA EF BA/EF

Total Total Overhead
b15 11,419 3,750,879,446 9,320,005 27,023 387 22 69.8

b15 1 17,107 394,072,3711 11,323,733 24,574 417 25 58.9
b20 26,754 188,862,817 2,070,397 1,239 42 5 29.8

b20 1 18,567 792,964,707 2,363,589 5,771 104 18 55.5
b21 27,246 1,976,928,828 4,942,362 15,110 257 46 58.8

b21 1 18,679 1,748,519,100 6,759,436 12,534 229 42 54.7
b22 39,679 363,413,902 3,091,915 3,662 82 10 44.6

b22 1 28,136 202,093,396 2,864,929 1,842 58 7 31.8
b17 49,489 n/a 36,268,185 >260,000 2,328 431 >111.7

b17 1 51,795 n/a 17,201,835 >260,000 1,815 364 >143.2
b18 95,029 n/a 38,925,238 >260,000 5,588 1,122 >46.5

b18 1 89,681 n/a 46,462,600 >260,000 6,025 1,204 >43.2
b19 191,775 n/a 77,639,758 >260,000 14,906 2,756 >17.4

b19 1 181,592 n/a 88,332,371 >260,000 16,607 2,974 >15.7
Mean 55.8

Fig. 10 Run-time of EF for various lengths of input sequence with large
circuits.

Fig. 11 Run-time of EF for various lengths of input sequence with small
circuits.

erated. These results show that the run-times for b20, b20 1, b21,
b21 1, b22 and b22 1 increase slightly with the grouth of lengths
of input sequences. They are less than 300 seconds even for 2,000
clock cycles. On the other hand, the run-times of b15, b15 1,
b17, b17 1, b18, b18 1, b19 and b19 1 increase rapidly with the
growth of lengths of input sequences. This results show that there
are circuits where further speed-up may be needed, such as b15,
b15 1, b17, b17 1, b18, b18 1, b19 and b19 1.

Figures 12 and 13 shows estimation error and speed-up of
EF AP for various values of P, where an input sequence for
2,000 clock cycles is randomly generated for each circuit. Let

Fig. 12 Estimation error of EF AP for various values of P.

Fig. 13 speed-up of EF AP for various values of P.

FREF AP and FREX denote FR estimated by EF AP and the exact
FR, respectively. Estimation error in the figure is computed with
(FREF AP − FREX)/FREX . Speed-up in the figure is the run-time
of EF divided by the run-time of EF AP. This results show that
estimation error ranges from 0% to 17%. Speed-up ranges from 7
to 20. Employing 1–5% for P makes drastic speed-up, however,
it might cause unignorable estimation error. On the other hand,
10% or larger values for P keeps considerable speed-up with only
a few percent of estimation error. This results show that 10% for
P seems to be a good value for the benchmark circuits. While
the value is reasonable for all the benchmark circuits in this ex-
periments, the good value of P may vary on a given circuit or
given input sequences. Employing a preprocessing, for example
EF AP for a limited number of randomly sampled errors with
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Table 2 Experimental results of BA AP and EF AP with P = 10%.

Failure rate # of FF vectors Run time (sec.)

Circuit Exact BA AP EF AP BA AP−Exact
Exact

EF AP−Exact
Exact BA AP EF AP BA AP EF AP BA

BA AP
BA

EF AP
EF

EF AP

b15 0.748 0.762 0.762 2.0% 2.0% 61,381,526 1,999,788 162 24 166.5 1116.4 16.0
b15 1 0.734 0.751 0.751 2.2% 2.2% 64,379,977 2,028,259 175 27 140.3 922.2 15.7
b17 0.815 0.823 0.823 1.0% 1.0% 217,551,541 5,548,152 2,205 158 >118 >1645 14.7

b17 1 0.804 0.812 0.812 1.1% 1.1% 201,556,406 5,170,233 1,886 173 >138 >1505 10.5
b18 0.811 0.825 0.825 1.8% 1.8% 269,642,633 9,899,762 5,914 576 >44 >451 9.7

b18 1 0.835 0.840 0.840 0.5% 0.5% 268,239,346 9,961,463 5,787 573 >45 >454 10.5
b19 0.795 0.809 0.809 1.7% 1.7% 750,574,411 20,249,488 34,494 2,085 >8 >125 7.1

b19 1 0.829 0.836 0.836 0.8% 0.8% 768,613,671 20,241,906 34,660 2,071 >8 >126 8.0
Mean 1.4% 1.4% 83.3 793.1 11.5

various values of P, may be useful to explore a good value of P.
Table 2 shows experimental results of BA AP and EF AP with

P = 10%. EX in the table denotes the exact FR. The run-time of
BA and that of EF are omitted since they have already shown in
Table 1. The results show that EF AP with P = 10% runs about
7–17 times faster than EF, and it runs 125–1,645 times faster than
BA. EF AP with P = 10% runs about 12 times faster than EF on
average, and it runs more than 793 times faster than BF on aver-
age. The estimation error on FR ranges only 0.5–2.2% for all the
circuits. This results show that the proposed heuristic technique
can accelerate run-time of a fault simulation with the exact tech-
nique furthermore with slight loss of accuracy. Since the analysis
with the heuristic technique is guaranteed to be pessimistic, the
heuristic technique is useful to judge whether required soft error
tolerance have been achieved or not.

6. Conclusions

This paper presented two acceleration techniques of fault sim-
ulation for analyzing soft error propagation. One is an exact tech-
nique and the other is a heuristic technique. Experimental re-
sults show that applying the exact technique makes a fault simu-
lator with event-driven simulation and SPPFP about 30–143 times
faster. Furthermore, applying the heuristic technique makes a
fault simulator with the exact technique about 7–17 times faster
with only 0.5–2.2% estimation error on failure rate for all the cir-
cuits. Since the analysis with the heuristic technique is slightly
pessimistic, the heuristic technique is useful to judge whether re-
quired soft error tolerance have been achieved or not quickly.
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