
IPSJ Transactions on System LSI Design Methodology Vol.6 122–126 (Aug. 2013)

[DOI: 10.2197/ipsjtsldm.6.122]

Short Paper

Quantitative Evaluation of Resource Sharing in High-level
Synthesis Using Realistic Benchmarks

Yuko Hara-Azumi1,a) ToshinobuMatsuba3,†1 Hiroyuki Tomiyama2

Shinya Honda3 Hiroaki Takada3

Received: November 28, 2012, Revised: March 8, 2013,
Accepted: April 26, 2013, Released: August 5, 2013

Abstract: For FPGA-based designs generated through high-level synthesis (HLS), effects of resource shar-
ing/unsharing on clock frequency, execution time, and area are quantitatively evaluated for several practically large
benchmarks on multiple FPGA devices. Through experiments, we observed five important findings about resource
sharing/unsharing, which are contrary to conventional wisdom or have not been sufficiently handled. These five find-
ings will be useful for the further development and advance of the practical HLS technology.

Keywords: high-level synthesis, multiplexer, resource sharing

1. Introduction

For increasing the productivity of embedded systems, circuit
designs through high-level synthesis (HLS) and the use of FP-
GAs as alternative devices of conventional circuits (i.e., ASICs)
have been both getting prevalent these days. In HLS, whether or
not resources (i.e., functional units (FUs) and registers) are shared
affects both performance (i.e., clock frequency and execution cy-
cles) and area of synthesized circuits [1]. For example, in gen-
eral, resource sharing saves area but may degrade clock frequency
due to multiplexer (MUX) insertion, whereas unsharing improves
clock frequency but suffers area overhead, especially when using
a number of large FUs. These effects are particularly large for
FPGA-based designs. It is a well-known fact, but these effects
have not been quantitatively evaluated using large benchmarks,
because of which even today, strategies for resource sharing are
still rough and impractical. For example, for the sake of circuit
area reduction, a number of works have presented heuristics on
resource sharing (e.g., Refs. [2], [3]), based on which other op-
timizations (e.g., Ref. [4]) have been also studied. Such existing
works are based on a traditional premise that resource sharing can
reduce area. However, unfortunately, they may not achieve area
reduction as they expected, due to the observations we will show
later in this paper.

This paper, to the best of our knowledge, presents a first
attempt to quantitatively evaluate effects of resource shar-
ing/unsharing on clock frequency, execution time, and area
of HLS-generated FPGA-based designs using several realistic
benchmarks. This evaluation is done for one 4-input LUT-based

1 Nara Institute of Science and Technology, Ikoma, Nara 630–0192, Japan
2 Ritsumeikan University, Kusatsu, Shiga 525–8577, Japan
3 Nagoya University, Nagoya, Aichi 464–8603, Japan
†1 Presently with TOYO Corporation
a) yuko.hara.azumi@ieee.org

FPGA and two 6-input LUT-based FPGAs in order to see the ten-
dency of the effects of resource sharing/unsharing on different
FPGA devices. Experimental results brought us the following
useful findings; (1) FU unsharing is more effective for clock im-
provement than register unsharing. Interestingly, unsharing reg-
isters only may rather degrade the clock frequency; (2) For newer
FPGA devices, unsharing results in more clock improvement; (3)
When unsharing FUs, smaller effects of further clock improve-
ment by register unsharing may be expected for newer FPGA de-
vices, especially for larger designs; (4) Not only FU unsharing
but also register unsharing can increase the potential of improv-
ing the operational-level parallelism (i.e., execution cycle reduc-
tion); and (5) For some benchmarks, unsharing FUs and/or reg-
isters countintuitively leads to not only clock improvement but
also area reduction, which was by up to 57%. These findings are
expected to contribute to the further development and advance of
the HLS technology.

2. Experimental Setup

In general, MUXs are inserted by FU and register sharing as
displayed in Fig. 1 (b) and Fig. 1 (c), respectively, where circuits
synthesized from a behavioral description in Fig. 1 (a) are de-
picted. These MUXs can be removed by simply unsharing the
resources. As shown in Fig. 2 (b), MUXs may be also inserted
even before registers which are not shared by multiple variables
but assigned to a multi-defined variable like r in Fig. 2 (a). As
described in Fig. 2 (d), such MUXs can be removed by renam-
ing variables so that all assignments are to variables with distinct
names (i.e., Static Single Assignment (SSA) transformation [5]:
Fig. 2 (c)) and by unsharing registers. Some commercial HLS
tools such as eXCite [6] locally perform SSA transformation for
dataflow analysis.

Using our HLS framework described in Fig. 3, which inte-

c© 2013 Information Processing Society of Japan 122



IPSJ Transactions on System LSI Design Methodology Vol.6 122–126 (Aug. 2013)

Fig. 1 MUX insertion by resource sharing: (a) A behavioral description,
(b) FU sharing, and (c) Register sharing.

Fig. 2 MUX insertion by resource unsharing and removal of such
MUXs: (a) A behavioral description with a multi-defined vari-
able r, (b) MUX insertion before unshared register r, (c) An SSA-
transformed behavioral description, and (d) MUX removal.

Fig. 3 Overall synthesis flow.

grates COINS *1 [7] for SSA transformation and eXCite for HLS,
in this paper, the effects of resource sharing/unsharing on clock
frequency, execution time (i.e., the number of execution cycles
× the clock period), and area of synthesized circuits are quan-
titatively evaluated by the following four methods: FU sharing
& register sharing (FU/S+R/S), FU sharing & register unsharing
(FU/S+R/US), FU unsharing & register sharing (FU/US+R/S),
and FU unsharing & register unsharing (FU/US+R/US). For
R/US, different registers were allocated to each instance of vari-
ables and a state. To do so, we have applied SSA transformation
to input C programs during the framework described in Fig. 3 *2.
Eight realistic benchmarks were used: FLOAT ADD (fadd) and
FLOAT MUL (fmul) in Ref. [8], and adpcm, AES Encryption
(aesenc), blowfish, gsm, mips, and sha in Ref. [9]. Table 1 de-
scribes the number of variables for non-SSA and SSA descrip-
tions in columns 2-3 and that of operations in columns 4-7. One
4-input LUT-based FPGA (Virtex-4: xc4vfx100-ff1152-12) and
two 6-input LUT-based FPGAs (Virtex-5: xc5vlx110-ff676-3 and
Virtex-6: xc6vcx195t-ff784-2) [10] were specified as target de-
vices. Logic synthesis and place-and-route were done by Syn-
plify Pro D-2010.03-SP1 and ISE 13.4, respectively. Besides ap-
plying gate-level register retiming, the constraint on clock fre-
quency was automatically set during logic synthesis, so that the
maximum clock frequency can be achieved.

*1 Although eXCite performs SSA transformation for dataflow analysis, we
found that COINS more powerfully performs it than eXCite does.

*2 If variables are assigned in exclusive conditions and used outside of
the conditional statements, such variables were re-converted to a multi-
defined variable, to which the same register was allocated.

Table 1 Characteristics of benchmark programs.

Benchmarks Variables Operations
Non-SSA SSA Add. Mul. Div. Shft. Cmp.

adpcm 270 1,279 286 70 4 182
aesenc 191 436 210 13 14 31
blowfish 126 414 278 27
fadd 186 378 31 13 31
fmul 116 198 23 4 4 20
gsm 155 452 212 53 3 93
mips 37 84 9 4 36
sha 56 240 132 3 37

3. Experimental Results

Against the results of FU/S+R/S, Figs. 4, 5, and 6 describe
clock improvement, execution time improvement, and area over-
head *3, respectively, by those of the remaining three methods,
for each FPGA device. In each figure, results for each bench-
mark and average on the Virtex-4, 5, and 6 FPGAs are shown in
(a), (b), and (c), respetively. In the following subsections, we will
discuss observations and findings obtained from the results.

3.1 Clock Frequency
From Fig. 4, the following four features regarding clock fre-

quency are observed:
(1) FU/S+R/US leads to clock improvement for some designs

and degradation for the others against the baseline. This method
is likely to decrease MUXs before registers but increase MUXs
before FUs since a lot of incoming paths converge from a large
number of registers to the small number of FUs. Because con-
trol logic for MUXs inserted before FUs tend to reside on critical
paths [11], the increase of such MUXs critically affects the clock
frequency, which led to clock degradation by up to 17%.

(2) For all designs, except for fmul *4, FU/US+R/S improves
clock against both the baseline and FU/S+R/US. Generally, paths
from the controller to MUXs inserted before FUs go through
more gates and encourage longer critical path delay rather than
those from data registers to the MUXs. Thus, reduction of the for-
mer paths contributes to more clock improvement in this method
than in FU/S+R/US.

(3) Although FU/US+R/US achieves the highest clock fre-
quency mostly, FU/US+R/S outperforms in some designs. When
using a lot of resources through unsharing, two counter effects
would happen at the same time: clock improvement by removing
all MUXs from critical paths, and clock degradation due to grow-
ing global interconnections (i.e., inter-LUT interconnections)
along with an increase in area. In newer FPGA devices, inter-
LUT interconnections are much longer against intra-LUT inter-
connections. Thus, for clock improvement, FU/US+R/S is prefer-
able for large benchmarks on newer FPGA devices, otherwise
FU/US+R/US. Actually, in Fig. 4, for larger benchmarks such as
adpcm and blowfish on the Virtex-6 FPGA device, FU/US+R/S
achieved higher clock frequency than FU/US+R/US.

(4) In most benchmarks, larger clock improvement is achieved
by FU/US for newer FPGA devices. This is because in newer
FPGA devices, which are based on more CMOS scaling tech-

*3 Negative values mean area reduction.
*4 Because fmul is relatively small, the absolute difference was not so large.

c© 2013 Information Processing Society of Japan 123



IPSJ Transactions on System LSI Design Methodology Vol.6 122–126 (Aug. 2013)

Fig. 4 Clock frequency improvement: (a) Virtex-4, (b) Virtex-5, and (c) Virtex-6.

Fig. 5 Execution time improvement: (a) Virtex-4, (b) Virtex-5, and (c) Virtex-6.

Fig. 6 Area overhead (in terms of Slices): (a) Virtex-4, (b) Virtex-5, and (c) Virtex-6.

nology, global interconnections are more dominant and reducing
them through MUX removal is more effective to improve clock
frequency. This effect is bigger for larger benchmarks, where the
small number of FUs is shared by the large number of operations
(i.e., a lot of MUXs are inserted) when FU/S.

From the aforementioned observations, the following conclu-
sions are derived, for achieving higher clock frequency; a higher
priority for unsharing should be given to FUs more than registers;
FUs should be unshared for newer FPGA devices (e.g., in Virtex-
6 than in Virtex-4); and when unsharing FUs, registers should
be also unshared in older FPGA device (e.g., in Virtex-4 than in
Virtex-6), especially for larger designs.

3.2 Execution Time
As for execution time (i.e., the number of execution cycles ×

the clock period), the following two findings can be obtained from
Fig. 5:

(1) FU/S tends to degrade execution time because limiting the
number of available FU instances may increase the number of
states, which directly affects an increase in execution time.

(2) In most benchmarks and FPGA devices, R/US improves ex-
ecution time compared with its counterpart R/S (i.e., FU/S+R/US
vs. FU/S+R/S, and FU/US+R/US vs. FU/US+R/S). If R/US
achieved higher clock frequency than R/S, its improvement rate

of execution time becomes further bigger, whereas if R/US was
outperformed in clock frequency, the difference between R/S and
R/US in execution time becomes smaller. In these experiments,
register unsharing is performed after SSA transformation, which
increased the chances of behavioral optimizations to encourage
operation-level parallelism, i.e., execution cycle reduction.

From these results, we can say that not only FU unsharing but
also register unsharing can increase the potential of improving the
execution time.

3.3 Circuit Area
Finally, two findings regarding area (i.e., the number of slices

used) can be observed from Fig. 6:
(1) For some benchmarks, circuit area is countintuitively re-

duced by FU/US and/or R/US, i.e., by up to 57% in fmul on
Virtex-4. Because sharing small resources (e.g., adders and reg-
isters) by a number of operations/variables leads to insert a lot
of MUXs, which occupy large portion of the total area in such
benchmarks, unsharing is the effective way for area reduction.
Due to the large MUX area in total, even when unsharing in-
creased the circuit area, the rate of area overhead is smaller than
that of clock improvement.

(2) The area overhead by FU/US increases when R/S, but re-
duces when R/US. This may be explained by the structure of

c© 2013 Information Processing Society of Japan 124



IPSJ Transactions on System LSI Design Methodology Vol.6 122–126 (Aug. 2013)

FPGAs. In FPGAs, a slice contains multiple LUTs and flip-flops
(i.e., registers). If either of FUs and registers only are unshared
and the use of components in slices is unbalanced (i.e., much
more LUTs are used than flip-flops and vice versa), the number
of slices utilized may increase largely.

The above-mentioned observations are contrary to conven-
tional wisdom that clock frequency and area are in a trade-off
relationship - but here, we witnessed that the same strategy of re-
source sharing/unsharing may be good for both clock frequency
and area. This means that efforts which a number of existing
researches have made in order to reduce area by resource shar-
ing may not always work well for area reduction. In summary,
we can say that exploring well-balanced points of resources shar-
ing/unsharing is important for area reduction.

3.4 Discussion
In these experiments, we well-observed the effects of resource

sharing/unsharing on clock frequency, execution time, and cir-
cuit area, on three different FPGA devices which are widely
used. These results will help not only circuit designers to use-
fully utilize HLS tools but also researchers/developers to study
better strategies for resource sharing/unsharing. We believe that
as we learned from the above results, exploring of resources shar-
ing/unsharing (i.e., selective resource sharing), considering be-
havioral features of applications, is essential for both area and
performance improvement.

4. Concluding Remarks

This paper quantitatively evaluated effects of shar-
ing/unsharing FUs and registers on clock frequency, execution
time, and area of HLS-generated circuits through eight practi-
cally large benchmarks and three widely-used commercial FPGA
devices. Through experiments, we revealed some important
insights on resource sharing which have not been well-focused.
We believe these insights will contribute to further advance of
the HLS technology.

Acknowledgments This work is in part supported by
KAKENHI 23300019.

References

[1] Gajski, D.D. et al.: High-Level Synthesis: Introduction to Chip and
System Design, Kluwer Academic Publishers (1992).

[2] Cong, J., Fan, Y. and Xu, J.: Simultaneous Resource Binding and In-
terconnection Optimization Based on a Distributed Register-File Mi-
croarchitecture, TODAES, Vol.14, No.3, Article 35 (May 2009).

[3] Cong, J., Liu, B. and Xu, J.: Coordinated Resource Optimization in
Behavioral Synthesis, Proc. DATE, pp.1267–1272 (2010).

[4] Pilato, C., Ferrandi, F. and Sciuto, D.: A Design Methodology
to Implement Memory Accesses in High-Level Synthesis, Proc.
CODES+ISSS, pp.49–58 (2011).

[5] Aho, A.V. et al.: Compilers: Principles, Techniques, and Tools,
Addison-Wesley Publishing Company (2006).

[6] Y Exploration, Inc. (online), available from 〈http://www.yxi.com/〉
(accessed 2012-11-28).

[7] Abe, S., Hagiya, M. and Nakata, I.: A Retargetable Code Generator
for the Generic Intermediate Language in COINS, IPSJ Journal: Pro-
gramming, Vol.46, No.SIG 14 (PRO 27), pp.12–29 (Oct. 2005).

[8] Hauser, J.: SoftFloat (online), available from 〈http://www.jhauser.us/
arithmetic/SoftFloat.html〉 (accessed 2012-11-28).

[9] Hara, Y. et al.: Proposal and quantitative analysis of the CHStone
benchmark program suite for practical C-based high-level synthesis,
JIP, Vol.17, pp.242–254 (Oct. 2009).

[10] Xilinx (online), available from 〈http://www.xilinx.com〉 (accessed
2012-11-28).

[11] Lee, S. and Choi, K.: High-Level Synthesis with Distributed Con-
troller for Fast Timing Closure, Proc. ICCAD, pp.193–199 (2011).

Yuko Hara-Azumi received her Ph.D.
degree in computer science from Nagoya
University in 2010. From 2010 to 2012,
she was a JSPS postdoctoral research fel-
low at Ritsumeikan University. Since
2012, she has been with the Graduate
School of Information Science, Nara In-
stitute of Science and Technology, where

she is currently an assistant professor. Her research interests in-
clude system-level design automation for embedded/dependable
systems. She currently serves as organizing and program com-
mittees of several premier conferences including ICCAD, ASP-
DAC, and so on. She is a member of IEEE, IEICE and IPSJ.

Toshinobu Matsuba received his master
degree in computer science from Nagoya
University in 2010. From 2010, he is with
TOYO Corporation.

Hiroyuki Tomiyama received his Ph.D.
degree in computer science from Kyushu
University in 1999. From 1999 to 2001,
he was a visiting postdoctoral researcher
with the Center of Embedded Computer
Systems, University of California, Irvine.
From 2001 to 2003, he was a researcher
at the Institute of Systems & Information

Technologies/KYUSHU. In 2003, he joined the Graduate School
of Information Science, Nagoya University, as an assistant pro-
fessor, and became an associate professor in 2004. In 2010, he
joined the College of Science and Engineering, Ritsumeikan Uni-
versity as a full professor. His research interests include design
automation, architectures and compilers for embedded systems
and systems-on-chip. He currently serves as editor-in-chief for
IPSJ Transactions on SLDM. He has also served on the orga-
nizing and program committees of several premier conferences
including ICCAD, DAC, DATE, ASP-DAC, CODES+ISSS, and
so on. He is a member of ACM, IEEE and IEICE.

c© 2013 Information Processing Society of Japan 125



IPSJ Transactions on System LSI Design Methodology Vol.6 122–126 (Aug. 2013)

Shinya Honda received his Ph.D. degree
in the Department of Electronic and Infor-
mation Engineering, Toyohashi Univer-
sity of Technology in 2005. From 2004 to
2006, he was a researcher at the Nagoya
University Extension Course for Embed-
ded Software Specialists. In 2006, he
joined the Center for Embedded Comput-

ing Systems, Nagoya University, as an assistant professor, where
he is now an associate professor. His research interests include
system-level design automation and real-time operating systems.
He received the best paper award from IPSJ in 2003. He is a
member of ACM, IPSJ, IEICE, and JSSST.

Hiroaki Takada is a professor at the De-
partment of Information Engineering, the
Graduate School of Information Science,
Nagoya University. He received his Ph.D.
degree in information science from the
University of Tokyo in 1996. He was
a research associate at the University of
Tokyo from 1989 to 1997, and was an as-

sistant professor and then an associate professor at Toyohashi
University of Technology from 1997 to 2003. His research in-
terests include real-time operating systems, real-time scheduling
theory, and embedded system design. He is a member of ACM,
IEEE, IPSJ, IEICE, and JSSST.

(Recommended by Associate Editor: Qiang Zhu)

c© 2013 Information Processing Society of Japan 126


