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Abstract: Image recognition in client server system has a problem of data traffic. However, reducing data traffic gives
rise to worsening of performance. Therefore, we represent binary codes as high dimensional local features in client
side, and represent real vectors in server side. As a result, we can suppress the worsening of the performance, but it
problems of an increase in the computational cost of the distance computation and a different scale of norm between
feature vectors. Therefore, to solve the first problem, we optimize the scale factor so as to absorb the scale difference
of Euclidean norm. For second problem, we compute efficiently the Euclidean distance by decomposing the real vector
into weight factors and binary basis vectors. As a result, the proposed method achieves the keypoint matching with
high-speed and high-precision even if the data traffic was reduced.
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1. Introduction

Advances in object recognition technology and mobile device
technology have enabled the realization of object recognition ap-
plications operating in partnership with client server systems. In
such applications, a user captures the image of an object with a
mobile device and the image or features computed from the im-
age are then sent to a server. On the server, the image is rec-
ognized from its features and meta-information about the image
are returned to the user. Many such systems operate using lo-
cal features [4], [13], [15], as typified by scale-invariant feature
transform (SIFT) [12], which delivers an excellent performance
in object recognition.

In practice, extracting local descriptors on a client-side and
then sending them to a server is problematic, since the data size of
local descriptors is too large to transfer through the Internet. For
example, the SIFT feature is a 128-dimensional vector that con-
sumes 128 bytes when represented as a 1-byte unsigned integer
array. Since an image has anywhere from a few hundred to a few
thousand SIFT features, the total memory consumption reaches
a few hundred KBytes per image. This has created a need to re-
duce the volume of data traffic sent from the client to the server
in consideration of the network load.

Chandrasekhar et al. suggested that the volume of data traf-
fic can be reduced by having the client send compressed local
descriptors instead of compressed images [6]. Memory-efficient
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descriptors have been proposed that represent a feature as a bi-
nary code, a sequence of binary values {—1,1}*, that can be
compactly stored in the main memory. BRIEF [5] and its exten-
sions [2], [10], [14] generate a binary code by using L pixel pairs
chosen from inside a nearby region around a keypoint, which pro-
duces an L bits binary sequence. One drawback to these methods
is that they produce relatively longer binary codes with lengths
ranging from 256 to 512 bits.

While these approaches directly compute a binary code by
comparing pixel intensities around a keypoint, binary hash-
ing [1], [3], [7], [9], [11], [16] converts a local descriptor rep-
resented as a real vector into a much shorter binary code by using
a hashing function. In this approach, a feature vector x € R? is
mapped into a short binary code b € {~1, 1} by using a binary
hashing function b = sgn(f(WTx)), where D is a dimension, L is
the bit length of the binary code, and W € RP* is a weight ma-
trix. W and f(-)*? characterize each binary hashing. In general,
the binary representation the degrades the matching performance
along with decreasing bit length L. Generating a short yet infor-
mative feature description remains an open problem.

1.1 Overview of Our Approach

In this paper, we focus on the fact that the server-side has
more sufficient memory and computation power compared to the
client-side. Although local descriptors must be compressed on
the client-side due to the narrow bandwidth of the Internet, fea-
ture vector compression on the server-side is not always neces-
sary. Therefore, we propose asymmetric feature representation
for descriptor matching. Our method is characterized by the fol-

#1

In this paper, as with Ref. [7], a binary code is expressed by {—1, 1} in-
stead of {0, 1} in order to simplify the mathematical expressions.

*2 In many cases [1], [3], [7], [11], £(-) is an identity function.
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lowing three factors.

(1) Asymmetric feature representation
In our approach, local descriptors are computed on the
client-side and converted into short binary codes, and the
server stores local descriptors as real vectors. Although the
binary hashing function causes quantization errors due to the
computation of the sgn(-) function, which binarizes a real
value into {1, —1}, such errors only occur on the client-side.
As aresult, performance degradation is suppressed while the
volume of data traffic is reduced.

(2) Defining distances between binary codes and real vectors
Since the feature space of the real vectors is different from
that of the binary codes, they cannot be directly compared.
We propose a simple method to scale one feature space to fit
the other feature space that enables the computation of dis-
tances between such asymmetrically represented features.

(3) Fast implementation for computing distances
It has already been reported that by decomposing a real vec-
tor into a few scholar weight factors and a few binary basis
vectors, the Euclidean distance between the binary code and
the real vector can be computed extremely quickly [8]. We
propose a decomposition method based on alternative opti-
mization strategies that can approximate the real vector with
fewer basis vectors than Ref. [8].

2. Asymmetric Representation and Distance

2.1 Euclidean Distance between Binary Code and Real Vec-
tor

The binary hashing consists of two steps. First, an input vec-
tor x € RP*3 is converted into a short real vector y € RZ by
y = f(WTx). Second, a binary code b € {1, 1} is computed
by b = sgn(f(WTx)). In our framework, any conventional binary
hashing method is available for use. The f(-) and the W follow
the definitions of conventional binary hashing methods.

As shown in Ref.[7], the sgn(-) function used in the bi-
nary hashing can cause quantization errors that may degrade the
matching performance. Therefore, in our approach, while local
descriptors computed on the client-side are converted into short
binary codes b, the server stores local descriptors as real vectors
y. As aresult, since quantization errors only occur on the client-
side, performance degradation is suppressed while the volume of
data traffic is reduced.

However, since the scale of each feature space is different, they
cannot be directly compared. The Euclidean norms of binary
code and real vectors when L is set to 32 are shown in Table 1
for several binary hashing methods. The Euclidean norm of a bi-
nary code b is a constant value VL because the elements of the
binary code only take two integer values {—1, 1}. In contrast, the
Euclidean norm of a real vector depends on the binary hashing
method. This difference may significantly degrade the matching
performance.

2.2 Optimization of Scale Factor
To solve this problem, we propose a simple method to scale one

*3 Before the local features are converted, they are mean-centered by using

an average descriptor which is computed from training samples.
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Table 1 Euclidean norm and scale factor in each binary hashing method.

Binary hashing | Average Euclidean norm | Scale factor
Binry code 5.66 -
RP[1] 4.22 1.09
VSRP[11] 1.32 3.41
SH[16] 2.46 1.86
ITQ[7] 0.65 6.17
10 10
8 8
=6 =6
z z
04 = 04
2 : 2
%z 4 6 8 10 %2 4 6 8 10
D(B.,Y) D(B, aY)

(a) Non-optimized (b) Optimized

Fig. 1 Effect of optimizing scale factor. D(-,-) is Euclidean distance.

feature space to fit the other feature space and enable the compu-
tation of distances between such asymmetrically represented fea-
tures. We introduce the optimization of scale factor « to absorb
the scale difference between feature spaces. The optimization is
done using a cost function:

J(@) = B - Y7, (1

where B € {—1, 1}**V is a matrix of binary code corresponding
to N keypoints obtained from training images. The matrix of real
vectors Y € RPN is similar.

Table 1 shows the optimized scale factors for each binary hash-
ing method. The smaller the Euclidean norm of the real vector,
the larger the scale factor becomes.

The effect of the optimization of the scale factor is shown in
Fig.1. We used the ITQ binary hashing method. Without opti-
mization (Fig. 1 (a)), the distribution of the Euclidean distance be-
tween the binary code and real vectors was biased compared with
the distribution of the Euclidean distance between real vectors.
This is because the Euclidean norm of a real vector is very small
compared to that of a binary code. With optimization (Fig. 1 (b)),
the Euclidean distances were about the same. For brevity pur-
poses, Yo = ay is used hereafter.

3. Fast Computation of Euclidean Distance by
Introducing a Decomposition Method

3.1 Real Vector Decomposition

In this section, we consider the efficient computation of
squared Euclidean distance between the binary code b and the
real vector y,. This computation can be expanded as

db,y,) = [Ib-y.ll
= b"b - 2b"y, +yly,. )

The first term of Eq. (2) is the dot product between binary codes
in the client. This becomes a constant value because all of the
elements in b take only two values {1, —1}. The third term is the
dot product between real vectors stored in the server that can be
calculated in advance. The problem here is computing the sec-
ond term: it cannot be calculated in advance, so it requires a large
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number of floating-point computations.
To overcome this problem, Hare et al. [8] proposed decompos-
ing the real vector y, into k weight factors and k binary basis

vectors as

Yo ~ Mc, (3)
where ¢ = (c1,c2,-++ ,cx)T € R is the weight factor and M =
(m;,my, - ,my} € {-1, 1}"** is the binary matrix composed of

k binary basis vectors m; € {—1, 1}~.
Letting Eq. (3) into the second term of Eq. (2), we obtain

k
bTYU ~ bTMC = Z cibTm,-. (4)
i=1
The computations b"m; that appeared in Eq.(4) are extremely
fast because this is equivalent to computing the Hamming dis-
tance between b and m;, as

b'm; =L—- 2HammingDistance(b, m;) )

Since the Hamming distance can be computed efficiently using a
bitwise XOR followed by a bit-count, Eq. (4) can also be com-
puted very fast.

Introducing the decomposition method provides one more ad-
vantage. The server only has to store ¢, M, and yly, instead of
Y- This reduces memory usage in the server substantially.

3.2 Decomposition Algorithms

The rest of this section discusses the decomposition algorithms
used to obtain M and ¢. Hare et al. [8] proposed a greedy algo-
rithm that sequentially determines pairs of ¢; and m; one after
another. In contrast to this, we propose a decomposition method
based on an alternative optimization strategy that can approxi-
mate y, with fewer weights ¢; and basis vectors m; than Hare’s
greedy optimization.

In our approach, M and c¢ are determined by minimizing the
following cost function:

J(e,M) = [ly, — Mclf3. (6)

Our decomposition algorithm is shown in Algorithm 1. Since it
is difficult to optimize M and c at the same time, we do so al-
ternately. If the basis vector M is fixed, the weight factor ¢ can
be optimized by using the least squares method. In contrast, if
c is fixed, the basis vector M can be optimized by an exhaustive
search. Thanks to the constraint that the binary basis vector M
only takes two integer values {1, —1}, the i th row in the matrix
M takes 2% combinations. Therefore, all of the 2¢ combinations
can be exhaustively tested if k is small enough. We initialize M
and ¢ by random values and alternately update them until con-
vergence. To avoid falling to a local minimum, several different
initial values are tested.

In contrast to Hare’s method, our method determines & pairs of
¢; and m; simultaneously. Therefore, the difference between the
two methods appears in the approximate performance. It is obvi-
ous from Fig. 2 that our method can approximate y, using fewer
basis vectors m; than Hare’s method.
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Algorithm 1 Decomposition.
fori=1:1do
Set ¢ and M to random values.

for j=1:cdo
(1) Minimize J(¢, M) by fixing M and updating c.
This optimization can be done by least squares method.
(2) Minimize J(¢, M) by fixing ¢ and updating M.
This optimization can be done by exhaustive search.
(3) Exit loop if converged.
end for
end for
Select the best ¢ and M that minimize J(c, M).

/ Hare’ s method

1,000

800

600 Proposed method

400

Error (J(c, M))

200

0

Number of bases k

Fig. 2 Comparison of the proposed method with Hare’s method [8].

4. Experiments

We evaluated the performance of the asymmetric feature repre-
sentation proposed in this paper by testing to find corresponding
points between two images.

4.1 Dataset for Evaluating Keypoint Matching

We prepared seven issues of the IEEE Spectrum magazine and
captured them from six viewpoints. Let 1; denote an image in the
database, where i is the magazine index (1 < i < 7), and j is
the viewpoint index (1 < j < 6). Assuming that the magazines
are planar, we prepared a homography matrix H! _,; between I
and I in advance, which gives ground truth correspondences be-
tween the image pairs. We used Ijl. ~ I; for training to compute
the weight matrix W if necessary, and used I}‘ ~ 117. for testing.

Keypoint matching performance can be evaluated by using the
image pairs I, I;., and their homography matrix H o For each
keypoint obtained from the 7}, the first and second nearest neigh-
bors were searched from the keypoints extracted from the I; Let
d, and d, denote the distances to the first and second nearest
neighbors, respectively. If the ratio of the distances d;/d, was
less than a pre-defined threshold 7, the query keypoint in /' ’1 and
the first nearest neighbor in I} were regarded as corresponding
points. If the first nearest neighbor was located within /(T + 1)

pixels from the true location derived from Hli—q’ such a keypoint
pair is regarded as inlier. We computed the average number of

matches over test image pairs and the rate of a correct matching.

4.2 Comparing Symmetric and Asymmetric Representation
We compared three kinds of feature representation:
e Binary code vs. Binary code: BC-BC
This is a conventional symmetric representation.
e Binary code vs. Real vector: BC-RV without optimizing a
This is the asymmetric representation proposed in this paper.
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Fig.3 Comparison with state-of-the-art methods.

Table 2 Computational time [ns].

Table 3 Memory usage in server [MB] (We assume that 1,000 keypoints are detected from an image).

Bits | BC-BC BC-RV BC-RV No. of keypoints 32 bits 64 bits 128 bits
(No dec.) (Dec.) (No. of images) Dec. No dec. Dec. No dec. Dec. No dec.
32 14.2 4335 54.5 IM (1K) 26.7 122.1 38.1 244.1 61.0 4883
64 27.6 852.3 105.7 10M (10K) 267.0 1,220.7 381.5 2,441.4 610.4 4,882.8
128 61.9 1683.2 177.5 100 M (100 K) 2,670.3 12,207.0 | 3,814.7 | 24,414.1 6,103.5 | 48,828.1
The scaling factor « is fixed to 1. ! p —e— No decomposition
e Binary code vs. Real vector: BC-RV with optimizing a 09
. .. . .. == Hare's method (k=1)
The scaling factor @ was optimized by using training sam-
o 0.8 —e— Hare's method (k=2)
ples. E, D —o— Hare's method (k= 3)
Four binary hashing functions were tested: Random Projection %0‘7 —e— Hare's method (k4)
(RP) [1], Very Sparse Random Projection (VSRP) [11], Spectral S 06 X N
. . . . = &= Proposed method (k= 1)
Hashing (SH) E16], and Iterative Quantization (ITQ)[7]. Each 05 — e Proposed method (2]
method uses different W and f(-). We used SIFT [12] as local o ‘ ‘ ‘ — — Proposed method (=3)
descriptors. "o 500 1000 1500 2000 2500 3000

The results are shown in Fig. 3. The asymmetric representation
with optimizing « clearly outperformed the conventional sym-
metric representation when the shorter binary codes were used.
This means that the proposed method can improve the match-
ing performance when short binary codes are used to reduce the
network traffic. The scaling factor @ played an important role
when ITQ and VSRP were used as the binary hashing function.
In the case of ITQ and VSRP, the average Euclidean norm of bi-
nary codes in the client-side significantly differed from that of real
vectors in the server-side, as shown in Table 1. This means that
the scaling factor a absorbed such a difference and contributed to
improving the matching performance.

4.3 Effect of Decomposition
We evaluated the effect of decomposition in terms of the
matching rate, the computational time, and the memory usage. In
this experiment, random projections were used as binary hashing
methods. The bit length L was set to 32.
4.3.1
The results of a comparison between our decomposition al-

Matching Performance

gorithm and Hare’s method [8] are shown in Fig.4. When the
number of basis vectors k was set to 1, there was little differ-
ence between our algorithm and Hare’s method. However, when
k > 1, the performance of the proposed method was higher.
While Hare’s method needed four basis vectors to sufficiently ap-
proximate the original real vector y,, our algorithm only required
three, which helped reduce the memory usage and the computa-
tional time of matching.
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No. of matches

Fig.4 Comparison with Hare’s method [8].

4.3.2 Computational Time

We evaluated the computational time of keypoint matching.
We used an Intel Xeon CPU 2.27-GHz processor. The number
of basis vectors k was set to 3. As shown in Table 2, introducing
the decomposition method drastically reduced the computational
time compared to the case without decomposition: the computa-
tion time was eight times faster.
4.3.3 Memory Usage

We compared memory usage with and without decomposing
Yo. The number of basis vectors k was set to 3. Table 3 shows
the results. One example shows that if the server stores 100,000
images and the length of the binary code is set to 32bits, the
memory usage is reduced to about 21%.

5. Conclusion

In this paper, we proposed asymmetric feature representation
for matching local descriptors. Experimental results revealed that
the proposed method helps reduce data traffic while maintaining
the object retrieval performance of a client server system.

Our method consisted of three factors. The first was the asym-
metric feature representation between client- and server-side. The
second was the scale optimization to fit two different feature
spaces. The third was the fast implementation of distance com-
putation based on real-vector decomposition.

The range of application is not limited to object retrieval. We
believe our method can be used not only for computer vision ap-
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plications but also for similar applications such as speech recog-

nition systems.
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