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Abstract: Face recognition is a multi-class classification problem that has long attracted many researchers in the
community of image analysis. We consider using the Mahalanobis distance for the task. Classically, the inverse of
a covariance matrix has been chosen as the Mahalanobis matrix, a parameter of the Mahalanobis distance. Mod-
ern studies often employ machine learning algorithms called metric learning to determine the Mahalanobis matrix so
that the distance is more discriminative, although they resort to eigen-decomposition requiring heavy computation.
This paper presents a new metric learning algorithm that finds discriminative Mahalanobis matrices efficiently without
eigen-decomposition, and shows promising experimental results on real-world face-image datasets.
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1. Introduction

The problem of face recognition has continued to be tackled
by many researchers in the field of image analysis, pattern recog-
nition, and psychology, supported by a variety of applications
such as biometric verification, surveillance, and database inves-
tigation [1], [5]. A face recognition system is an integration of
various technologies including sensing devices, image process-
ing, and pattern recognition. Among those technologies, pattern
recognition is the most necessary technique and controls the per-
formance of the overall face recognition system. This paper con-
tributes to the stage of pattern recognition that identifies an un-
known person from a still cropped image of the frontal face.

Many face recognition methods linearize a face image into
a vector, to pose a statistical multiclass classification problem.
Several attempts including PCA [1], [5], FDA [1], Mahalanobis
distance [7] and their variants have been performed for the face
recognition task. Our work focuses on the nearest neighbor
approach which not only performs classification, but also pro-
vides useful information about how the input image is classi-
fied by showing its nearest neighbors. This property is suit-
able for interactive systems such as image search. This study
employs Mahalanobis distance to improve classification accu-
racy (See Fig. 1). The Mahalanobis distance is expressed as
Dmaha(x,m; W) = (x−m)�W(x−m) that computes a deviation of
an input vector x from a specified point m, with a Mahalanobis

matrix W.
Classically, the parameter m is set to the mean vector in the

class, and W is to the inverse of the covariance matrix modified
to address the small sample size problem. A single Mahalanobis
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matrix common to all classes is sometimes used by taking the
inverse of the covariance matrix averaged over classes. In both
the ways, the parameters are determined only with positive data,
wit negative data, or data in the other classes discarded. Such
approaches are called generative learning, which is a contrast-
ing manner of so-called discriminative learning exploiting neg-
ative data to improve the classification boundaries. A classical
statistical analysis, Fisher discriminant analysis, is a well-known
example of discriminative learning, that yields different predic-
tion results except for the binary classification case. Due to the
enormous number of classes and the limitation of computational
resources, generative learning approaches were often employed
in the 1990s.

The advent of binary classifiers, such as the support vector ma-
chine (SVM), renewed the understanding of the importance of
exploiting negative data, and bore a sequence of studies that de-
veloped learning machines to find the Mahalanobis matrices in a
discriminative learning fashion [2], [3], [6], [7]. The learning of
Mahalanobis matrices became metric learning. The learned Ma-
halanobis matrices are often presumed to be used subsequently
in the nearest neighbor classifier. In this setting, metric learn-
ing methods determine W with many triplets, R1, . . . ,RK , each of
which is given by Rk = (xik , x jk , xlk ) ∈ Rn×3, ∀k = 1, . . . ,K, and
xik and x jk belong to different classes, but xlk belongs to the same
class as that of xik , so that

Dmaha(xik , x jk ; W) ≥ Dmaha(xik , xlk ; W) + ε.

∀k = 1, . . . ,K, where ε is a small positive constant. In
other words, differences below ε between two distances,
Dmaha(xik , x jk ; W) and Dmaha(xik , xlk ; W), are penalized as a loss

function in their learning algorithms. This approach is called the
relative distance penalization.

In this paper, we present a new metric learning algorithm aimed
at tuning a nearest neighbor classifier for face recognition. Our
algorithm is based on an implementation of the popular software
liblinear developed by the libsvm team. The liblinear
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(a) Euclidean metric

(b) Malalanobis metric

Fig. 1 Projections onto two-dimensional principal subspace with different
metrics. Plots in (a) are of the Euclidean metric, and plots in (b) are
obtained using the metric aquired with our metric learning algorithm,
BDRM. Overlaps among classes are reduced dramatically by metric
learning.

software solves the linear L2-SVM problem minimizing

J(w) = r(w) +C
K∑

k=1

(1 − 〈w, yk xk〉)2
+

as described in Hsieh et al.’s paper [4]. Therein, C > 0 is a con-
stant called the regularization parameter, and (xk, yk) ∈ Rn × {±1}
is the k-th training data. The first term r(w) is called the reg-
ularization function, and, in the case of SVM, it is defined as
the square of the L2-norm: r(w) ≡ 1

2 ‖w‖2. We generalize the
regularization function to Bregman divergences, and extend their
optimization algorithm for the generalized regularization func-
tion. We refer to the generalized algorithm as a Bregman diver-

gence regularized machine (BDRM). We developed the new met-
ric learning algorithm as an instance of BDRM. The framework
of BDRM inherits the property of the linear convergence of Hsieh
et al.’s algorithm [4], and so does our metric learning algorithm.

Remarkably, for obtaining the optimal Mahalanobis ma-
trix, our metric learning algorithm is exempted from eigen-
decomposition, which is computationally expensive but nec-
essary for most of existing metric learning methods [2], [6],
[7]. That property theoretically guarantees to cut down, to
O(n2K log(1/ε)), the total computational cost for obtaining an ε-
accurate solution *1 of the optimal Mahalanobis matrix.

*1 The two variables, ε and ε, are distinct in this paper.

2. Related Work

Importantly, Mahalanobis matrices must be positive definite.
Metric learning algorithms typically follow the modern machine
learning techniques by finding a Mahalanobis matrix that min-
imizes the sum of a regularization function and a loss function
over the positive definite cone [2], [6], [7]. To ensure this con-
straint, many methods [6], [7] project, in every iteration, the n× n

symmetric matrix onto the positive definite cone, which requires
the eigen-decomposition to be computationally intensive, O(n3),
where n is the number of features.

Davis et al. developed a break-through algorithm, ITML [2],
that addresses the issue of the expensive computational cost for
keeping the positive definiteness. ITML employs the Bregman di-
vergences for a regularization function as well as a loss function.
They discovered a surprising fact that each iteration of the suc-
cessive projection algorithm can be performed in O(n2) compu-
tation, if LogDet divergence is chosen as a Bregman divergence,
yet the positive definiteness of W and the linear convergence of
the iterative algorithm are still guaranteed.

A major difference of ITML from the other metric learning
methods [6], [7] is that users have to give, in advance, two con-
stant parameters that represent the lower bound b� for distances
between examples in different classes, and the upper bound bu

for distances between examples in same classes. The loss func-
tion is formulated with the LogDet divergence to evaluate how the
pre-defined two bounds are violated, instead of using the relative
distance penalization.

A contribution of this paper is to demonstrate that a metric
learning algorithm using the relative distance penalization can be
constructed, yet possessing theoretical guarantee of keeping the
computational cost of each iteration O(n2) and still ensuring the
positive definiteness of the Mahalanobis matrix W without requir-
ing two user-defined bounds, b� and bu.

3. Bregman Divergence Regularized Machine

In this section, we present a new framework for learning
machines named BDRM. Bregman divergence is a class of a
large number of functions including the squared Euclidean dis-
tance, Itakura-Saito distance, KL-divergence etc. Bregman di-
vergence is defined with a seed function ϕ which is assumed to
be continuously-differentiable, real-valued and strictly convex. A
Bregman divergence Dϕ : domϕ × ri(domϕ) → [0,+∞) is con-
structed with ϕ as

Dϕ(x; y) ≡ ϕ(x) − ϕ(y) − 〈x − y,∇ϕ(y)〉
where domϕ is ϕ’s domain, and ri(domϕ) is the relative interior
of domϕ. We consider the following class of learning machines:

min Dϕ(w;w0) +
1
2

K∑

k=1

ckξ
2
k , w ∈ domϕ

subject to ∀k 〈ak,w〉 ≥ εk − ξk, ξk ≥ 0,

where w0 ∈ ri(domϕ), c = [c1, . . . , cK]� > 0K ,

ε = [ε1, . . . , εK]� ≥ 0K , ∀k, ak ∈ Rn \ {0n}.

(1)

L2-SVM is shown to be an instance of these learning machines by
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Algorithm 1 General BDRM.
1: u := ∇ϕ(w0); α := 0K ;

2: for t = 1, 2, . . . do

3: for k = 1, . . . ,K do

4: uk = u − αk ak;

5: if 〈ak ,∇ϕ∗(uk)〉 ≥ εk then

6: αk = 0;

7: else

8: Find positive αk satisfying a nonlinear equation

〈ak ,∇ϕ∗(uk − αk ak)〉 = εk − αk/ck. (2)

9: end if

10: u := uk + αk ak;

11: end for

12: end for

setting ϕ(w) = 1
2 ‖w‖2, w0 = 0n, ak = yk xk, c = C1K , and ε =

1K . Hsieh et al. [4] dualize the optimization problem to solve the
primal problem by maximizing the dual objective function with
respect to dual variables. Introducing dual variables, α ∈ RK

+ , the
dual function of Eq. (1) is given by:

g(α) = inf
w,ξ

L(w, ξ,α)

where L(w,α) is the Lagrangean function written as:

L(w, ξ,α)

= Dϕ(w;w0) +
1
2

K∑

k=1

ckξ
2
k +

K∑

k=1

αk(εk − 〈ak,w〉 − ξk).

Note that the non-negativeness of slack variables ξk is ensured
even without Lagrangean multipliers for the constraints. Follow-
ing their approach, we employ the coordinate ascent method for
maximization of the dual problem, and we obtain Algorithm 1.
Here, ϕ∗(·) denotes the convex conjugate of ϕ(·).

This algorithm inherits a favorable property of Hsieh et al.’s
algorithm, linear convergence, because Algorithm 1 still exactly
performs a linearly converged coordinate ascent method exactly.
If g(α)+ ε ≥ g(α∗), where α∗ is the optimal solution, the solution
α is said to be ε-accurate. Thanks to the linear convergence, an
ε-accurate solution is obtained in O(log(1/ε)) iterations. Another
point that determines the total time complexity is how fast each
iteration works. Since Step 4 and Step 10 need only O(n) com-
putation, the time complexity of each iteration depends on the
computation of ∇ϕ∗ for Step 5 and Step 8. Hence, if the Breg-
man divergence is chosen so ∇ϕ∗ can be computed quickly, the
algorithm works efficiently even in a large scale scenario.

4. Metric Learning as a BDRM

This section employs the framework of BDRM to devise a new
metric learning algorithm without a time-consuming step of pro-
jection onto the positive definite cone. We here consider a mul-
ticlass classification setting. First of all, we pick many triplets
R1, . . . ,RK from training data where each triplet contains three
examples Rk = (xik , x jk , xlk ) where xik and x jk are in different
classes, but xlk is in the same class as that of xik . We have de-
noted the number of triplets by K. The acquired Mahalanobis
distance is used in the prediction stage using a nearest neighbor
classifier. Ideally, we wish to obtain a Mahalanobis matrix W

such that Dmaha(xik , x jk ; W) ≥ Dmaha(xik , xlk ; W) + ε, where ε is
a small positive constant. In our experiments described later, we
form the Rk’s as follows: For each class, take every pair of exam-
ples, i and l, in the class; then, for each pair (i, l), find five nearest
neighbors of i according to the Euclidean distance; finally, form
a triplet as Rk = (i, j, l) for each pair (i, l) and each of its nearest
neighbors j.

We use a regularization function to avoid over-fitting. Follow-
ing ITML, we employ LogDet divergence defined by

Dld(W; W0) = tr
(
WW−1

0

)
− log det WW−1

0 − n

as a regularization function. The LogDet divergence is con-
structed by defining the seed function as ϕld(W) = − log det W
whose derivative is given by ∇ϕld(W) = −W−1. Usually, we set
W0 = In to restrain a Mahalanobis metric far from the Euclidean
metric, but different choices of W0 are also useful for some spe-
cial settings such as transfer learning. Furthermore, to ensure
the feasibility of the learning problem, we introduce slack vari-
ables ξk.

Then, we obtain the following optimization problem:

min Dld(W; W0) +
C
2

K∑

k=1

ξ2k ,

wrt W ∈ Sn
++, and ξ ∈ RK

subject to ∀k, Dmaha(xik , x jk ; W)

≥ Dmaha(xik , xlk ; W) + ε − ξk

(3)

where W0 � On,C > 0, and ε > 0 are constant, and Sn
++ denotes

a set of n × n strictly positive definite matrices. It can be verified
that this formulation is a BDRM with

w = vec(W), w0 = vec(W0), c = C1K ,

ε = ε1K , and ak = vec(Ak)
(4)

where Ak ≡ (x jk − xik )(x jk − xik )
� − (xlk − xik )(xlk − xik )

�.
Letting Zk ≡

[
x jk , xlk

]
− xik 1

�
2 , Algorithm 1 for this setting is

re-written in Algorithm 2. Derivation is given in Appendix A.1.
The single-variable nonlinear system in Step 10 can be solved by
the Newton-Raphson method, and a sufficiently precise solution
is obtained with around ten iterations.

In case of αk = 0, Step 4 and Step 12 in Algorithm 2 can
be done in time O(n2) just by copying matrices: Yk = W and
W = Yk, respectively. Even if αk > 0, only O(n2) computations
accomplish the two steps as

Yk =W −WZk(Q + α−1
k E)−1Z�k W,

W = Yk − Yk Zk(P − α−1
k E)−1Z�k Yk,

which are derived with the well-known matrix inversion lemma,
where we have defined Q ≡ Z�k WZk and E ≡ diag({+1,−1}).

As a consequence, we are ready to show the main result:
Theorem 1. Algorithm 2 achieves an ε-accurate solution for
problem Eq. (3) in computational time O(n2K log(1/ε)). �

5. Experiments

We tested the proposed method, BDRM, on two face databases,
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Algorithm 2 BDRM for Metric Learning.
1: W =W0; α := 0K ;

2: for t = 1, 2, . . . do

3: for k = 1, . . . ,K do

4: Yk := (W−1 + αk Ak)−1;

5: P := Z�k Yk Zk;

6: if P1,1 − P2,2 ≥ ε then

7: αk := 0;

8: else

9: Inverse P to get pi, j = [P−1]i, j, ∀i,∀ j.

10: Solve the following system to update αk:

(ε − αk/C)((p1,1 − αk)(p2,2 + αk) − p1,2 p2,1)

= p2,2 − p1,1 + 2αk and αk > 0; (5)

11: end if

12: W := (Y−1
k + αk Ak)−1;

13: end for

14: end for

Table 1 Classification accuracies of different metrics.

Euclid Cov FLD BDRM ITML LMNN

Olivetti 0.902 0.942 0.957 0.967 0.952 0.910
AR 0.719 0.893 0.972 0.979 0.973 0.959

Olivetti and AR. The database, Olivetti, contains face images for
40 individuals posing a multiclass classification problem with 40
classes. Ten images are given for each person. The database AR
contains face images for 100 individuals, and 13 images are in-
cluded for each person. For both databases, we picked five images
at random for performance evaluation using 1-nearest neighbor
classifier according to the acquired Mahalanobis distance. The
remaining images are used for training. We performed dimension
reduction by principal component analysis (PCA) to convert each
gray-scale image to a 100-dimensional vector. We use BDRM
with C = 100 and ε = 0.01 to obtain the Mahalanobis matrix W,
where the values of the two parameters were determined through
preliminary experiments. We repeat this procedure three times to
report the average accuracies.

Table 1 shows the accuracies of the multiclass classification
on the two databases. BDRM is the newly proposed method.
We compared BDRM with five existing methods based on the
nearest neighbor classifier: ‘Euclid’, ‘FLD’, ‘Cov’, ‘ITML’, and
‘LMNN’. ‘Euclid’ signifies the method which uses the Euclidean
distance. This method is equivalent to the ‘Eigenface’ method [1],
because all input vectors are projections onto the principal sub-
space. ‘FLD’ is the so-called Fisherface method [1] that uses
the Fisher discriminant analysis to find a discriminative subspace
of the principal subspace. ‘Cov’ takes the average of covari-
ance matrices for all classes, adds a small value to diagonal en-
tries, and sets, to its inverse, a Mahalanobis matrix. ‘ITML’ [2]
and ‘LMNN’ [7] are existing state-of-the-art metric learning al-
gorithms to obtain discriminative Mahalanobis matrices. In each
of six methods, the final prediction is done with the nearest neigh-
bor classifier. The hyper-parameters of those methods are deter-
mined in preliminary experiments. As shown in Table 1, BDRM
achieves much better classification performances compared to
Euclidean distance and covariance-based Mahalanobis distance,
and slightly improves the accuracies from existing metric learn-

Table 2 Classification accuracies of SVM.

Linear kernel RBF kernel

Olivetti 0.927 0.929
AR 0.956 0.946

Fig. 2 Computational time for metric learning.

ing algorithms. We further compared our method with SVM. The
accuracies of SVMs are summarized in Table 2, arguing that our
method is superior both to SVM with a linear kernel and to SVM
with RBF kernel.

Figure 1 depicting the distributions of projections on the two-
dimensional principal subspace somewhat testifies the high clas-
sification accuracies of our metric learning algorithm. Kernel
PCA with the inner-product defined as K(x, x′) = x�Wx′, where
x, x′ ∈ Rn, produces a principal subspace, and visualizes the
distributions of points from each class in the high-dimensional
space Rn induced by the acquired metric W. We picked data in
five classes of the database AR, and performed Kernel PCA with
Euclidean metric and the learned metric W to project the data
points onto two-dimensional principal subspaces, respectively.
Comparison of two plots in Fig. 1 demonstrates that, whereas
the distributions of each class are heavily overlapped in the Eu-
clidean metric-induced principal subspace (Fig. 1 (a)), the over-
laps among class distributions are reduced dramatically in the W-
metric-induced principal subspace (Fig. 1 (b)).

Figure 2 shows the computational time for learning W using
the face image database AR, varying the number of dimensions
of the subspace obtained by PCA in pre-processing. ITML and
our method takes much smaller time for learning, compared to the
most popular metric learning method, LMNN. ITML was faster
than BDRM because the constraints used for ITML is fewer than
those of BDRM; constraints for ITML are formed from doublets,
whereas constraints for BDRM are from triplets. It suggested that
BDRM bought better classification performances with more con-
straints.

6. Concluding Remarks

In this paper, we presented a new metric learning algorithm
that finds discriminative positive definite Mahalanobis matrices
efficiently without eigen-decomposition, and showed promising
experimental results on real-world face-image datasets.

ITML [2] introduces a loss function based on LogDet diver-
gence that has seldom been employed in other studies in order to
update W in O(n2) computation. Another important fact utilized
by ITML to achieve O(n2) computational time for an update is
the n × n coefficient matrix in a constraint — which corresponds
to Ak in BDRM — derived from a doublet is one-rank. Our study
employs triplets Rk to form constraints that make Ak two-rank,
which disables use of the ITML’s approach. We tackled this is-
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sue by employing Newton method instead of deriving a closed-
form update rule, and found out that the computational time is
still O(n2) even by using Newton method. Thus, this study dis-
closed that the Mahalanobis matrix W can be updated in O(n2)
and achieves an excellent generalization performance, even when
using �2-loss and relative distance penalization, both of which are
accepted widely in many machine learning studies (e.g., Ref. [7]).
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Appendix

A.1 Derivation of Algorithm 2

Here we derive Algorithm 2 from Algorithm 1. To this end,
we first introduce two symmetric matrices Uk and V such that
vec(Uk) = uk and vec(V) = u, respectively. We then show the
following claims by induction:
• Yk = ∇ϕ∗(Uk),
• P1,1 − P2,2 = 〈Ak,∇ϕ∗(Uk)〉,
• Equivalence between Eq. (2) and Eq. (5), and
• W = ∇ϕ∗(V).

We assume the four claims have been maintained until (t, k−1)-th
iteration. Then, we have

Yk = (W−1 + αk Ak)−1 = (−V + αk Ak)−1 = (−Uk)−1

= ∇ϕ∗(Uk).

Since Ak = Zk EZ�k , we get

〈Ak,∇ϕ∗(Uk)〉 =
〈
Zk EZ�k ,Yk

〉
=
〈
E, Z�k Yk Zk

〉
= 〈E, P〉

= P1,1 − P2,2.

Equivalence between Eq. (2) and Eq. (5) can be shown by the
equality between the lefthand sides of the two equations as

〈Ak,∇ϕ∗(Uk − αk Ak)〉 = p2,2 − p1,1 + 2αk

(p1,1 − αk)(p2,2 + αk) − p1,2 p2,1
.

The last claim is derived as

W = (Y−1
k + αk Ak)−1 = (−Uk + αk Ak)−1 = (−V)−1

= ∇ϕ∗(V).

Thus, all the four claims have been shown, establishing the equiv-
alence between Algorithm 1 and Algorithm 2 in the setting of
Eq. (4).
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