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A Performance Analyzer for Task Parallel
Applications based on Execution Time Stretches

An Huynh1,a) Jun Nakashima1,b) Kenjiro Taura1,c)

Abstract: Performance loss in task parallel applications is contributed by 3 factors of thread idleness, par-
allelism overhead and work time stretch. Thread idleness is the time that threads have no work to do and
parallelism overhead is the time that threads spend on extra instructions that would not be necessary in serial
execution. The third factor, work time stretch, refers to the surplus time by which the same application-level
code takes longer in parallel execution than in serial execution. We believe that work time stretch is the most
important factor in future multi-core systems. Therefore, we have developed a profiler that analyzes work
time stretch of task parallel applications. The profiler can clarify the contribution of work time stretch factor
out of the other two, attributing stretched amount to specific code blocks so that programmers can know
which parts of their programs are stretching. It also shows the surplus cache miss count that accompanies
work time stretch.

Keywords: task parallelism, performance analyzer, execution time stretch, application instrumentation, li-
brary instrumentation, cache miss count

1. Introduction

Along with the development of computer system to multi-

core multi-socket architectures, the need for an intuitive,

high-level parallel programming model has risen. Task par-

allelism which is easy to use and very fit with divide-and-

conquer algorithms has been adopted widely.

In task parallelism, a programmer’s job is just to indicate

the works that can be executed in parallel, grouping serial

works into functions which are executed by tasks. Program-

mer can create as many tasks as they want to suit their algo-

rithms. The other burdens of parallelism overhead and load

balance are taken by runtime libraries. Runtime libraries

take care of creating, synchronizing, terminating tasks with

as low overhead as possible, and also does balancing load

between all available cores by migrating tasks from busy

cores to free cores. Most task parallel runtime libraries use

work stealing [1] method which has been proved to be an

efficient and scalable task scheduling strategy. In short, in

work stealing a free core chooses a random victim core, then

go to run queue of that victim, steal a work from that, bring

it back and execute it. If the victim’s run queue is empty, it

would continue choosing other victims until it can succeed

in stealing a work.

Modern task parallel libraries have done well regarding

these parallelism overhead and thread idleness. A good im-

plementation can keep parallelism overhead at least, and a
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suitable scheduling strategy can help achieve near-perfect

load balancing, resulting a perfect scalability with a condi-

tion that applications have been well parallelized with fine-

grained tasks.

However, there is one more factor that is usually unaware

affecting task parallel performance. It is the fact that the

same application-level code takes longer in parallel execu-

tion than in serial execution. We call this work time stretch,

which implies the surplus amount of time that parallel exe-

cution takes compared with serial execution.

Along with the increasing number of cores on shared mem-

ory systems, and the unpredictable migrations of tasks done

by work stealing scheduling strategy, work time stretch will

become more and more important, but harder to analyze in

future multi-core multi-socket systems. Therefore, we have

created a profiler with the aim to analyze work time stretch

factor of task parallel applications by comparing parallel

execution with serial execution. The profiler can observe

any specific code blocks of application and report that code

block’s stretching amount to users. It can also report counts

of any hardware event that was occurred by that code blocks.

2. Related Work

There have been many works and products regarding per-

formance analyzers. Two popular ones are the TAU perfor-

mance system [2] and Intel VTune Amplifier software [3].

TAU is open source and has a powerful automatic instru-

mentation toolset. VTune Amplifier uses sampling method

and does not need to instrument the executable. However,

these tools analyze and evaluate only one execution of appli-

cation. For example, they can pinpoint the most costly code
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Fig. 1 Profiler Structure

blocks in the application, which consume most of the exe-

cution time. Our approach is different, as we compare the

executions on one and many cores, then we analyze perfor-

mance basing on changes of work time in these 2 executions.

We have implemented our profiler in MassiveThreads [4]

task parallel library which is a good implementation of a

task parallel library (thread creation and destruction cost

only 72 nanoseconds). We use PAPI [5] library to get hard-

ware event counter values, and OTF (Open Trace Format)

[6] library to store profile data in .otf format. OTF format

has good scalability in dealing with huge data which are usu-

ally produced by any profiler. Besides, OTF also integrates

Zlib [7] compression which will help to reduce the data size

stored on disk.

The authors in [8] have identified the contributions of the

3 factors (overhead, idlness and work time stretch) in the

performance loss of applications in BOTS [9] suite. They

demonstrated that work time stretch accounted for a dom-

inant part and proposed a locality-based scheduler which

can mitigate this factor. While, our profiler can help iden-

tify work time stretch in all kinds of applications. We also

go a step further that is indicating that increase in cache

miss count is the reason causing work time stretch.

3. Profiler Design

The profiler includes 3 parts of instrumentation, measure-

ment and post-process. Instrumentation’s role is to put pro-

filer’s measurement functions to appropriate positions in li-

brary’s code or application’s code, so that measurement sys-

tem can know occurences of events at runtime and carry out

its job of collecting and storing profile data. The last part,

post-process, investigates profile data stored by measure-

ment system and extracts useful information. Fig. 1 shows

a general view about this profiler’s design.

The profiler provides 2 kinds of instrumentations. One is

library instrumentation and another one is application in-

strumentation. While library instrumentation can be done

by profiler’s developers, application instrumentation needs

to be conducted by profiler’s users.

1 void ∗ p r o f i l e r t a s k b e g i n ( parent node ,
spawn index ) ;

2 char p r o f i l e r t a s k s p awn ( node ptr ) ;
3 void p r o f i l e r t a s k s y n c ( node ptr , . . . ) ;
4 void p r o f i l e r t a s k e n d ( node ptr ) ;
5 void p r o f i l e r t a s k r e s ume ( node ptr ) ;
6 void p r o f i l e r t a s k p a u s e ( node ptr ) ;

Fig. 2 App Instrumentation API

3.1 Library instrumentation

Library instrumentation is the instrumentation of mea-

surement code done in task parallel libraries. When users

run their application along with an instrumented library,

the profiler’s measurement system running behind-the-scene

silently observes and collects profile data basing on the in-

strumentation codes that have been injected in the library.

By this way, users don’t need to change anything in their

application code.

We have done this instrumentation in MassiveThreads li-

brary.

3.2 Application instrumentation

On the other hand, in application instrumentation we put

measurement code to application code directly. This helps

measurement system to have easy access to application code-

level information, such as file name, function name, line

number. Because this kind of instrumentation is relatively

independent to runtime library, it is possible to use even

with libraries which the profiler does not support.

Besides, in divide-and-conquer programming model, it is

not always the case that applications call task creation for

each recursive call. For example, imagining a binary task

tree model in which each task spawns 2 child tasks, it is not

rare that programmers write the code as such that each task

calls library’s task-creating function only for the first child,

and it executes the second child task by itself. This helps re-

ducing the number of tasks to be created, cutting tasks that

do not do any real work, but just waits for synchronization.

However, by doing this the library becomes unaware of the

second child. Hence, task tree structure from the library’s

point of view becomes different from that of programmer’s

point of view. Of course, this will make profile data less

meaningful to users.

Fortunately, this is not a problem with application instru-

mentation. By doing appropriate code insertions, users can

make measurement system consider the second recursive call

as a normal task spawning.

Application instrumentation provides a more flexible

method, but with a tradeoff that users need to insert in-

strumentation codes by themself.

App instrumentation API

Application instrumentation API is shown in Fig. 2.

Its usage rule is quite simple: put profiler task begin()

at the beginning of functions, put profiler task spawn()

right before any recursive call (both calls that spawn a

real task, or is just purely a function call), put pro-

filer task sync() right after any synchronization instruc-
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Fig. 3 Measurement System

tion, put profiler task end() at the end of functions. pro-

filer task resume() and profiler task pause() are used to in-

strument at right after a spawn and right before a sync re-

spectively. These two functions can be abbreviated if the

code block right after a spawn and/or right before a sync is

too small or has nothing to measure.

It is also necessary to extend function arguments with

two new arguments. One is a pointer returned by pro-

filer task begin(), and one is a spawn index returned by pro-

filer task spawn().

The profiler considers begin, sync, resume as the begin-

nings of code blocks, and spawn, pause, end as the ends of

code blocks.

Beside measuring measurement metrics that are associ-

ated with code blocks, the profiler’s target is also to record

spawn and sync events. Then basing on these data the

profiler can generate a DAG graph that illustrates the rela-

tionship between not only tasks but also code blocks inside

tasks.

3.3 Measurement system

Profiler’s measurement system runs along with the execu-

tion of application. It gets time and collects other hardware

event counters at points where measurement codes were in-

serted. It stores these data in memory as long as the data

amount is not so large that memory thrashing may occur. If

memory state gets bad, or execution has finished, it writes

data from memory to file.

We pay attention to where to place time getting instruc-

tions (and other hardware counter getting instructions). It

means that we put them at the end of measurement func-

tions which measure the start point of code blocks, and at

the beginning of measurement functions which measure the

stop point of code blocks, so that the overhead of instru-

mentation functions is not included into measured data.

Fig. 3 describes the structure of data that measurement

system stores in memory.

The structure includes 2 lists of node list and record list.

Each node holds information related to a particular task.

The term task here means a recursive call of function in

application instrumentation, and a task created in runtime

system in library instrumentation. Information held by node

are usually file name, function name, task level, tree path,

etc. Especially, tree path is the most important. It is used

to identify and distinguish a specific task from others. tree

path is a string of continuous spawn indices seperated by

underscore along which the current task has been created.

Each record holds data measured at a measurement point.

Besides, record also holds pointer to the node of the task

that it belongs to.

Records are deleted after they have been written to file.

Nodes are deleted only when they have no record referring

to them anymore and the task that it represents has finished.

Each worker thread (core) maintains 2 copies of this struc-

ture. One for library instrumentation and one for applica-

tion instrumentation.

3.4 Post-process

Post-process’ role is to analyze profile data, extract useful

information and show it to users.

Profile data stored in OTF format by measurement sys-

tem are a series of data (time, hardware event count) which

are associated with points of time. Post-process first reads

this series of point data from OTF format, pairing appro-

priately two adjacent point data to form an interval data.

An interval data represents one execution of a code

block, it holds measurement metrics such as execution time

of that code block, cache miss count that occurred in that

execution of that code block. Besides, interval data also in-

clude information that help to trace back the positions of

code blocks in application source code, such as source file

name, function name, the beginning and ending line num-

bers of code blocks. One code block can be executed many

times by many different tasks at many different task levels

(task’s depth). Therefore, in order to locate the right task

where a code block was executed interval data also holds

level and tree path of the task that has executed the code

block.

In short, post-process transforms a series of point data

to a series of interval data, and puts that series of interval

data into an SQLite [10] database (Fig. 4) so that users can

easily query necessary aggregated information. For exam-

ple, users may want to get the sum execution time of all

tasks in a particular level, or all tasks below a specific task

(sub-tree). These requests can be done with ease using SQL

queries.

One more feature of the profiler is that it can generate

DAG graphs using dot language [11] which represent task

tree structure along with its spawn-sync scenario. Fig. 5

shows a spawn-sync scenario example.

This task first spawns 3 child tasks (0, 1, and 2). Next

it synchronizes task 0 and task 1, leaving task 2 running.

Then it spawns task 3 and task 4. There are now 3 child
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Fig. 4 Execution interval database

1 void some funct ion ( )
2 {
3 . .
4 spawn task (0 )
5 spawn task (1 )
6 . .
7 spawn task (2 )
8 . .
9 sync ta sk s (0 , 1 )

10 . . . .
11 spawn task (3 )
12 . . . .
13 spawn task (4 )
14 . . . .
15 sync ta sk s (2 , 4 )
16 . . . . . .
17 sync ta sk s (3 )
18 . . . . . . . .
19 }

Fig. 5 Spawn-sync scenario example

tasks (2, 3, 4) that are still running. Then it synchronizes

task 2 and task 4. After that it continues to synchronize the

last task 3.

Post-process divides a task into many parts by sync tasks

instructions, each part is mapped to one separate node in

DAG graph. In this case, the above task is divided into 4

nodes, the first node contains 4 code blocks of

• before spawn task(0)

• between spawn task(0) and spawn task(1)

• between spawn task(1) and spawn task(2)

• between spawn task(2) and sync task(0,1)

On graph, a node can display any information, for ex-

ample, aggregate execution time of all code blocks that it

contains.

Fig. 6 shows a pseudo-DAG graph corresponding to the

above code.

4. Case Study: Matrix Multiplication

Application

We have used this profiler to evaluate our matrix multi-

plication (mm) application. Experimental environment set-

tings is shown in Table 1.

This mm application multiplies 2 matrices of size 3200

which are generated with random values (A × B = C). It

uses divide-and-conquer algorithm. At each computation

step, it divides data into 2 halves, and call one child task to

Fig. 6 Spawn-Sync DAG graph

Table 1 Experiment environment

CPU
AMP Opteron 8354 (Barcelona) 2.2GHz

4 cores × 8 sockets = 32 cores
Memory 32GB × 4 = 128GB

Cache
L1: Data:64KB/core, Instruction:64KB/core

L2: 512KB/core
L3: 2MB/socket

OS Linux 2.6.32(Debian GNU/Linux)

void gemm r ( . . . )
{

. . .
spawn task ( . . . )
spawn task ( . . . )
s ync ta sk s ( )
. . .

}

Fig. 7 Original recursive function gemm r()

calculate each half. Specificly, it may divide matrix A ver-

tically and multiply each half of A with B, otherwise it may

divide matrix B horizontally and multiply A with each half

of B. Therefore, task tree model of this application would

look like a binary tree at which each tree node has 2 child

nodes. A pseudo-code of its recursive function is shown in

Fig. 7.

Fig. 8 shows the scalability of this application. We can

see that mm scales almost perfect at small numbers of cores.

However, its scalability gets exhausted gradually from 16

cores when number of cores gets larger.

The reason of this degradation is what we want to know

with this profiler. What makes a perfect performance on

several cores degrade significantly when it comes to large

number of cores?

We used the profiler’s application instrumentation API

to instrument this mm application. The instrumented code

looks like in Fig. 9.

With problem size 3200, mm spawns tasks recursively un-

til level 20, while level 0 has only one task which is the orig-

inal running program. Leaf tasks, which do the real compu-

tation instead of dividing problem size and spawning tasks,
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Fig. 8 Scalability of mm (n=3200) on minnie machine

void gemm r ( . . . , void ∗parent node , i n t
spawn index )

{
void ∗node = p r o f i l e r t a s k b e g i n ( parent node ,

spawn index )
. . .
i n t i d 1 = p r o f i l e r t a s k s p awn ( node )
spawn task ( . . . , node , i d 1 )
i n t i d 2 = p r o f i l e r t a s k s p awn ( node )
spawn task ( . . . , node , i d 2 )
sync ta sk s ( )
p r o f i l e r t a s k s y n c ( node , id1 , id2 )
. . .
p r o f i l e r t a s k e n d ( node )

}

Fig. 9 Instrumented recursive function gemm r()

gather the most at level 19 and level 20.

We run mm on both 1 core and 32 cores with the pro-

filer, setting the profiler to measure one hardware event of

L3 cache miss. After running, the profiler generates some

DAG graphs and a database containing all execution inter-

vals of all tasks of mm application on 1-core and 32-core

executions.

Because the number of tasks is very large, especially on

high levels of task depth, it is not possible to always pro-

duce a DAG graph that contains all tasks. The profiler’s

DAG graph generator can be modified with user-specified

level limitation.

Fig. 10 and Fig. 11 show such DAG graph where task

level is limited at 3. All nodes with the same color belong

to tasks at the same level. Each task has 2 nodes. The

first node contains only one interval which is the code block

from the beginning to the first spawn in gemm r() function.

The second node also contains only one interval which is

the code block from after sync to the end. The task with

gold color is the only task at level 1, which is the first call

to recursive function gemm r. Tasks of level 2 are in cyan

color and tasks of level 3 are in orange color. Original task

(level 0) is not drawn in the graph. The values on nodes are

the sum execution time of all intervals belong to that node.

However, green nodes represent aggregate values of all tasks

below level 3.

Fig. 10 is the graph of serial execution on 1 core. And

Fig. 11 is of the parallel execution on 32 core. By comparing

these 2 graphs, we can grasp how much application’s work
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time has stretched.

Beside execution time, the profiler can also replace values

on nodes to any other measured data. For example, Fig. 12

and Fig. 13 are such DAG graphs with L3 cache miss count

shown on nodes. By comparing these 2 graphs, we can also

understand that cache miss count increases along with work

time stretch.

The database generated by the profiler contains two tables

corresponding to 1 and 32-core executions.

Because mm application has only one recursive function,

fields file name and function name are the same for all

records, “mm.cc” and “gemm r” respectively. Fields begin-
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SELECT sum( time ) FROM in t e r v a l c 1 WHERE l e v e l
=18;

Fig. 14 Simple query

Table 2 Work time of tasks at level 18, 19, 20 on 1 and 32 cores

Level 18 Level 19 Level 20
1 core 42908416 6409045248 1527187456
32 cores 50275072 9717456640 2637724928
(unit: nanosecond)

Table 3 L3 cache miss count of tasks at level 18, 19, 20 on 1 and
32 cores

Level 18 Level 19 Level 20
1 core 10764 8833358 7272947
32 cores 667502 76261509 23482007

Table 4 Comparing increased time and increased cache miss
count

Level 18 Level 19 Level 20
R1 Increased time 7366656 3308411392 1110537472
R2 Increased CM 656738 67428151 16209060
R3 R2 × 373ns 244963274 25150700323 6045979380
R4 R3/R1 33.2 7.6 5.4

ning line number and ending line number (also beginning

instrument code and ending instrument code) are either one

of the four instrumented positions shown in Fig. 9, except

the second spawn because it does not form any interval.

Let’s try querying the total execution time of all tasks

at level 18, 19 and 20 from the database (Fig. 14). Query

result is shown in Table 2.

We can see that execution time of tasks at level 18, 19,

20 have stretched for 17.2% 51.6% and 72.7% respectively.

Fig. 3 shows the corresponding cache miss counts of tasks

at level 18, 19 and 20.

In order to evaluate a bit more quantitatively about work

time stretch and corresponding increase in cache miss count,

we have measured the cost that one L3 cache miss takes (it

is memory latency). Measurement result is 373 nanoseconds

on our experiment machine. So by multiplying the increased

amount of cache miss count with this latency we can acquire

the time cost induced by L3 cache miss count increase (Ta-

ble 4).

Surprisingly, the time cost calculated from cache miss

count is many times larger than the real time stretch, 7.6

times and 5.4 times for level 19 and 20 respectively. Ac-

tually, this result expresses the parallelism in dealing with

cache miss of computer processor. It is that one processor

core can occur and wait for multiple cache misses at the same

time, which is sometimes called outstanding cache miss.

5. Conclusion and Future Work

We have built a profiler that identifies work time stretch

factor in task parallel applications. The profiler uses two

kinds of instrumentations, library-level instrumentation and

application-level instrumentation. to extract work time from

applications’ execution. It then compares work time of serial

execution and parallel execution to identify the stretches.

Beside work time, it also measures and compares other hard-

ware event counters as an effort to find the cause of work

time stretch.

The profiler provides insights of what code blocks stretch,

how many hardware event counts increase. This may help

programmers to find a way to improve their task parallel

algorithm. Or either it may prove that we need a bet-

ter scheduling strategy instead of the random manner of

work stealing which potentially induces many surplus cache

misses.

The profiler is now quite limited at analyzing measure-

ment result. We will continue working to find better ways

to express useful information to users. Currently we have

known that work time stretch caused by cache miss count

increase. Then what causes cache miss count to increase?

This question requires us to go deeper in analyzing the task

parallel executions.

We also intend to apply this profiler to analyze other ap-

plications like sorting and ExaFMM.
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