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1. Introduction
In 1997, von Matt proposed an algorithm, based on

Rutishauser’s qd algorithm [1], called orthogonal qd algorithm
with shifts (oqds algorithm) for computing the singular values
of bidiagonal matrices in which all the transformations consist
of Givens rotations [2]. It is shown that the oqds algorithm is
also applicable to general triangular matrices [3].

In this paper, we shall consider the application of the oqds
algorithm to lower tridiagonal matrices. It allows us to use
lower-tridiagonalization as pre-processing instead of bidiago-
nalization. The lower-tridiagonalization is less computational
complexity than the bidiagonalization. Further, we can adopt
BLAS Level 2.5 routines with efficient cache reuse which
are faster than BLAS Level 2 routines for implementation
of the lower-tridiagonalization. The oqds algorithm for lower
tridiagonal matrices thus enables us to reduce the total compu-
tation time to obtain the singular values of general triangular
matrices.

For practical use, we should design good shift strategies
for convergence acceleration and good convergence criteria
for accurate computation. However, appropriate shift strate-
gies and convergence criteria for lower tridiagonal matrices
have not been proposed yet. In this paper, we propose a
shift strategy consisting of the generalized Newton shift and
associated two methods, Laguerre shift and Kato-Temple shift,
and the well known Gerschgorin shift. Moreover, we design
new convergence criteria for deflation and splitting required
for the implementation of the oqds algorithm. By the criteria,
we can do the convergence test for lower tridiagonal matrices.
At the end, we show some results of numerical experiments
to compare the oqds algorithms for bidiagonal matrices and
for lower tridiagonal matrices.

2. Orthogonal QD Algorithm for Lower
Tridiagonal Matrix

Let

L =



α1
β1 α2
γ1 β2 α3

. . .
. . .

. . .

γn−2 βn−1 αn


(1)

be an n-by-n lower tridiagonal matrix. One step of Cholesky
LR method [4] with shift σ2 transforms the lower tridiagonal

matrix L into the upper tridiagonal matrix U by

LT L − σ2I = UT U. (2)

Then, we set L := UT . By repeating this procedure iteratively,
the diagonal elements of the matrix L converge to the singular
values of the matrix L and the non-diagonal elements get into
zero. The formulation of this algorithm (also containing shift
method) for lower didiagonal matrices is called orthogonal
qd algorithm with shifts (oqds algorithm). In this paper, we
expand this algorithm for lower tridiagonal matrices.

3. Shift Strategy
In the implicit Cholesky decomposition, proper choice of

the shift value σ significantly accelerates convergence of the
oqds algorithm. The shift value σ must be smaller than the
minimum singular value of the matrix L to keep the positive-
definiteness of UT U. Therefore, we need a method to estimate
the lower bound of the minimum singular value of the lower
tridiagonal matrix L or the minimum eigenvalue of LT L.

In this section, we discuss four types of lower bounds of
the minimum singular value or eigenvalue and design shift
method using them.

3.1 Gerschgorin Shift
Theorem 3.1 (Gerschgorin [5]). For an n-by-n matrix A =(
ai j

)
, let us define

Ri :=
∑
k,i

|aik |. (3)

Then, for any eigenvalue λ of A, there exists an integer i such
as

|λ − aii| ≤ Ri. (4)

If the matrix A is positive-definite symmetric, min (aii − Ri)
gives a lower bound of the eigenvalues since all the eigenval-
ues of A are positive real number.

3.2 Generalized Newton shift
For a positive-definite symmetric matrix A and an arbitrary

positive integer p, the value of (Tr(A−p))−1/p is a lower bound
of the eigenvalues of A. Then, finding the value of Tr{(LT L)−p},
we get a lower bound of the singular values of L. We consider
a method of computing the value of Tr{(LT L)−p} in this
subsection.
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Let L̄ be an n-by-n lower tridiagonal matrix,

L̄ =



ᾱ1
β̄1 ᾱ2
γ̄1 β̄2 ᾱ3

. . .
. . .

. . .

γ̄n−2 β̄n−1 ᾱn


(5)

determined from L with shift s by

L̄L̄T = LLT − sI. (6)

The relationships among elements are given by

ᾱ2
i + β̄

2
i−1 + γ̄

2
i−2 = α

2
i + β

2
i−1 + γ

2
i−2 − s, (7)

β̄i−2γ̄i−2 + ᾱi−1β̄i−1 = βi−2γi−2 + αi−1βi−1, (8)

ᾱi−2γ̄i−2 = αi−2γi−2. (9)

Differentiating equations (7)–(9) with respect to s, we obtain

2ᾱiᾱ
′
i + 2β̄i−1β̄

′
i−1 + 2γ̄i−2γ̄

′
i−2 = −1, (10)

β̄′i−2γ̄i−2 + β̄i−2γ̄
′
i−2 + ᾱ

′
i−1β̄i−1 + ᾱi−1β̄

′
i−1 = 0, (11)

ᾱ′i−2γ̄i−2 + ᾱi−2γ̄
′
i−2 = 0. (12)

Note that the αi, βi, γi are independent of s but the ᾱi, β̄i, γ̄i

are not. Differentiating once more, we get

2ᾱ′2i + 2ᾱiᾱ
′′
i + 2β̄′2i−1

+ 2β̄i−1β̄
′′
i−1 + 2γ̄′2i−2 + 2γ̄i−2γ̄

′′
i−2 = 0, (13)

ᾱ′′i−2γ̄i−2 + 2ᾱ′i−2γ̄
′
i−2 + ᾱi−2γ̄

′′
i−2 = 0, (14)

β̄′′i−2γ̄i−2 + 2β̄′i−2γ̄
′
i−2 + β̄i−2γ̄

′′
i−2

+ ᾱ′′i−1β̄i−1 + 2ᾱ′i−1β̄
′
i−1 + ᾱi−1β̄

′′
i−1 = 0. (15)

Let us write the eigenvalues of the matrix LLT by
λ1, λ2, · · · , λn. Then, the characteristic polynomial of the ma-
trix L̄L̄T

f (s) = det(LLT − sI)
= (λ1 − s)(λ2 − s) · · · (λn − s), (16)

because of the triangularity of the matrix L, is expressed by

f (s) = ᾱ1ᾱ2 · · · ᾱn. (17)

Let us define

g(s) := − f ′(s)
f (s)

= −2
ᾱ′1
ᾱ1
− 2
ᾱ′2
ᾱ2
− · · · − 2

ᾱ′n
ᾱn
, (18)

h(s) := g′(s)

= −2
ᾱ′′1 ᾱ1 − ᾱ′21
ᾱ2

1

− · · · − 2
ᾱ′′n ᾱn − ᾱ′2n
ᾱ2

n
(19)

so that g(0) = Tr{(LT L)−1} and h(0) = Tr{(LT L)−2}. Each ᾱi

tends to αi as s → 0. Hence, we can calculate the value
of ᾱ′i , β̄

′
i , γ̄

′
i , ᾱ

′′
i , β̄′′i , γ̄′′i at s = 0 from αi, βi, γi by

using (10)–(15), and then g(0) and h(0) by (18) and (19).

It is clear by the definition of g(0) and h(0) that the values
are always nonnegative without numerical error (in infinite-
precision arithmetic). This procedure is a expansion of the
method obtaining the traces for didiagonal matrices introduced
as a part of Algebraic shift in [3].

3.3 Laguerre Shift
If we already have the value of Tr{(LLT )−1} and Tr{(LLT )−2},

we could improve the sharpness of the shift by O(1) operation.
Laguerre shift is one of the methods to improve the shift value.

Theorem 3.2 (Laguerre [7]). For an n-by-n positive-definite
symmetric penta-diagonal matrix B = LLT , let θ be the
following value:

θ :=
n

Tr
(
B−1) + √(n − 1)

(
nTr
(
B−2) − Tr

(
B−1)2) .

Then, the θ is a lower bound of the eigenvalues of B which is
greater than Tr(B−1)−1 and Tr(B−2)−1/2.

If the value nTr
(
B−2
)
−Tr
(
B−1
)2

is negative, Laguerre shift
is useless. In that case, we adopt the generalized Newton shift.

3.4 Kato-Temple Shift
There is another lowerbound, Kato-temple shift.

Theorem 3.3 (Kato-Temple [8]). For an n-by-n symmetric
matrix An, let An−1 denote the submatrix of An obtained by
deleting the last row and column. For any lower bound λ∗

of the eigenvalues of An−1, and for any x ∈ Rn, ∥x∥ = 1, let
ρ = xT Ax. Then, if ρ < λ∗ , the value

ρ − ∥Anx − ρx∥2
λ∗ − ρ ≤ λmin (An)

gives a lower bound of the eigenvalues of An.

We choose x = (0, . . . , 0, 1)T . The method requires λ∗ which
is a lower bound for the submatrix An−1, but the generalized
Newton method enables us to find the lower bound of An−1
in computation of the lower bound of An. Consequently, we
obtain one more improved shift value by O(1) operation. The
procedure of the proposed shift composed by the generalized
Newton, Laguerre and Kato-Temple is shown in Algorithm 1.
We adopt the largest value of them.

4. Convergence Criteria
It is nontrivial how to assess a series of matrices generated

by the iterative process of the oqds algorithm converges
sufficiently.Besides, in the implementation of this algorithm,
deflation and splitting are required for activating the shift
method. In this section, we consider the situation that deflation
or splitting is available where the values of subdiagonal and
second-subdiagonal elements are so small.

Let us write

L̂ := L − βkek+1ek
T
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Algorithm 1 Proposed shift (algshift(L))
α′1 := −1/(2α1)
β′1 := −α′1β1/α1
γ′1 := −α′1γ1/α1
α′2 := (−β1β

′
1 − 0.5)/α2

β′2 := −(γ′1β1 + γ1γ
′
1 + α

′
2β2)/α2

α′3 := −(1 + 2 × γ1γ
′
1 + 2β2β

′
2)/(2α3)

α′′1 := −α′1
2/α1

β′′1 := −(α′′1 β1 + 2α′1β
′
1)/α1

γ′′1 := −(α′′1 γ1 + 2α′1γ
′
1)/α1

α′′2 := −(β′1
2 + β1β

′′
1 + α

′
2

2)/α2
β′′2 := −(γ′′1 β1 + 2γ′1β

′
1 + γ1β

′′
1 + α

′′
2 β2 + 2α′2β

′
2)/α2

α′′3 := −(γ′1
2 + γ1γ

′′
1 + β

′
2

2 + β2β
′′
2 + α

′
3

2)/α3
for i = 4 to N do
γ′i−2 := −α′i−2γi−2/αi−2
β′i−1 := −(β′i−2γi−2 + βi−2γ

′
i−2 + α

′
i−1βi−1)/αi−1

α′i := −(1 + 2βi−1β
′
i−1 + 2γi−2γ

′
i−2)/(2αi)

γ′′i−2 := −(α′′i−2γi−2 + 2α′i−2γ
′
i−2)/αi−2

β′′i−1 := −(β′′i−2γi−2 + 2β′i−2γ
′
i−2

+βi−2γ
′′
i−2 + α

′′
i−1βi−1 + 2α′i−1β

′
i−1)/αi−1

α′′i := −(α′i
2 + β′i−1

2 + βi−1β
′′
i−1 + γ

′
i−2

2 + γi−2γ
′′
i−2)/αi

end for
tr1 := 0
for i = 1 to N − 1 do

tr1 := tr1 − (2α′i/αi)
end for
tr2 := 0
for i = 1 to N − 1 do

tr2 := tr2 − 2(α′′i αi − α′i
2)/α2

i
end for
λ∗ := 1/sqrt(tr2)
tmp := n × tr2 − tr12

if tmp > 0 then
λ∗ := max(λ∗, n/(tr1 +

√
(n − 1) × tmp))

end if
tr1 := tr1 − (2α′N/αN)
tr2 := tr2 − 2(α′′NαN − α′N

2)/α2
N

shi f t := 1/sqrt(tr2)
x := (0, . . . , 0, 1)T

ρ := xT Ln−1x
if ρ < λ∗ then

shi f t := max(shi f t, ρ − ∥Anx − ρx∥2/ (λ∗ − ρ))
end if
tmp := n × tr2 − tr12

if tmp > 0 then
shi f t := max(shi f t, n/(tr1 +

√
(n − 1) × tmp))

end if
return shi f t

which is the matrix equal to L except for zero at (k+1, k)-entry.
Then

LT L = L̂T L̂ + E1, (20)

LLT = L̂L̂T + E2 (21)

hold, where

E1 := β2ekek
T + αk+1βk

(
ekeT

k+1 + ek+1eT
k

)
+βkγk−1

(
ek−1eT

k + ekeT
k−1

)
, (22)

E2 := β2ek+1ek+1
T + αkβk

(
ek−1eT

k + ekeT
k−1

)
+βkγk

(
ek+1eT

k + ekeT
k+1

)
. (23)

Theorem 4.1 (Weyl’s monotonicity theorem [9], [10]). For
an n-by-n positive-definite matrix A, let λi (A) denote the i-th
largest eigenvalue of A. Then, there exist reals ui and vi such
that

λi

(
LT L
)
= λi

(
L̂T L̂
)
+ ui ∥E1∥1 , (24)

λi

(
LLT
)
= λi

(
L̂L̂T
)
+ vi ∥E2∥1 (25)

where |ui| ≤ 1, |vi| ≤ 1.

From the definitions (22) and (23) of E1 and E2, we have

∥E1∥1 = ∥E1∥∞ = |βk | (|αk+1| + |βk | + |γk−1|) , (26)
∥E2∥1 = ∥E2∥∞ = |βk | (|αk | + |βk | + |γk |) . (27)

By Weyl’s monotonicity theorem, we thus get the numerical
deflation or splitting criterion to neglect a subdiagonal element
βk:

σ2 + |βk | (|βk | +min (|αk+1| + |γk−1| , |αk | + |γk |)) ≃ σ2, (28)

where ‘≃’ means that the left-hand side and the right-hand
side are numerically equal. We assume that βk is so small and
negligible provided that (28) holds numerically.

Similarly, we get the numerical criterion for neglecting a
second-subdiagonal element γk. On the setting of

L̂ := L − γkek+2ek
T ,

the perturbation matrices are given by

E′1 := γ2ekek
T + αk+2γk

(
ek+2eT

k + ekeT
k+2

)
+βk+1γk

(
ek+1eT

k + ekeT
k+1

)
,

E′2 := γ2ek+2ek+2
T + αkγk

(
ek−2eT

k + ekeT
k−2

)
+βkγk

(
ek−1eT

k + ekeT
k−1

)
.

Then, by evaluating the 1- and ∞-norms of these matrices,
we obtain the criterion for neglecting a second-subdiagonal
element γk as follows:

σ2 + |γk | (|γk | +min (|αk+2| + |βk+1| , |αk | + |βk |)) ≃ σ2. (29)

For the matrices in iteration, we perform deflation and splitting
as follows:

1) If βn−1 and γn−2 in the last row satisfy the criteria (28)
and (29), then we deflate the matrix by deleting the last
row and column.

2) If βk−1, γk−1 and γk−2 satisfy the criteria (28) and (29),
then we split the matrix into two submatrices formed by
rows and columns 1 to k − 1 and k to n, respectively.
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5. Numerical Experiments
Some numerical experiments were performed for the oqds

algorithms for bidiagonal matrices and for lower tridiagonal
matrices. The singular values of square random matrices were
computed by the oqds algorithm for bidiagonal matrices by
von Matt and by the oqds algorithm for lower tridiagonal
matrices which we propose. It should be noted that: The oqds
for bidiagonal matrices were applied to random bidiagonal
matrices and the proposed oqds algorithm for lower tridiagonal
matrices were applied to random lower tridiagonal matrix.
The numerical experiments were performed on a Linux PC
with Intel Core i7 920 (Nehalem) 2.66GHz and DDR3-1066
12GB memory. Table 1 shows the computation time of each
algorithm. The first row shows the size of matrices. The
second and the third rows show the computation time taken
by the oqds algorithm for bidiagonal matrices and for lower
tridiagonal matrices, respectively.

Table 1
Computation time (seconds)

matrix size 10000 20000 30000
oqds for bidiagonal 11.764 43.243 93.080

proposed oqds for lower tridiagonal 27.089 100.013 210.225

5.1 Discussion
Hence, in order to compute the eigenvalues of matrices

of the same size, the oqds algorithm for lower tridiagonal
matrices is expected to take a longer computation time than the
oqds for bidiagonal matrices. From Table 1, we observe that
the computation time in the former algorithm is not extremely
longer than the latter algorithm: the former is two or three
times slower than the latter.

This observation demonstrates that the oqds algorithm for
lower tridiagonal matrices is practically useful for the general
dense matrices. Commonly, the computation of the singular
values of a dense matrix is twofold:

1) preprocess of reducing into a sparse band matrix.
2) singular computation of the sparse band matrix.

The computation time for preprocess is estimated O(n3) while
for the singular value computation O(n2). Hence, a vast amount
of the computation time is consumed by the preprocess. On
the preprocess for dense matrices, it is reported in [11] that
the reduction into a lower tridiagonal matrix is about 50%
faster than that into bidiagonal matrices. Therefore, the total
time of preprocess into a lower tridiagonal matrix and the
oqds for lower tridiagonal matrices is much faster than the
time of preprocess into bidiagonal matrices and the oqds for
bidiagonal matrices.

6. Conclusions
We proposed the oqds algorithm for lower tridiagonal

matrices. Though computing singular values of lower tridi-
agonal matrices takes longer time than bidiagonal matrices,
preprocess reducing dense matrices into lower tridiagonal
matrices takes less time than into bidiagonal matrices. Not only

simple reduction of computational complexity, we can apply
the BLAS Level 2.5 routines to lower tridiagonalization. The
BLAS Level 2.5 routines are more cache efficient than BLAS
Level 2 routines commonly applied to bidiagonalization. A
cache efficient algorithm saves a number of memory accesses
which waste a big time. The computation time for preprocess
is estimated O(n3) while for the singular value computation
O(n2), hence, a vast amount of the computation time is
consumed by the preprocess. Therefore, if we can compute the
singular values of lower tridiagonal matrices not so longer than
for bidiagonal matrices, it is expected that total computation
time decreases extremely.

For an implementation of this algorithm, we proposed a new
shift strategy consisting of the generalized Newton shift and
associated two methods, Laguerre shift and Kato-Temple shift,
and the well known Gerschgorin shift. Moreover, we design
new convergence criteria for deflation and splitting required
for the implementation of the oqds algorithm. By the criteria,
we can do the convergence test for lower tridiagonal matrices.

As a result, the algorithm computes the singular values of
a lower tridiagonal matrix within O(n2) computation time.
Although it takes about two or three times as long time for
tridiagonal matrices as for bidiagonal matrices, proposed algo-
rithm is expected to be faster than the conventional methods
since the preprocessing requires O(n3) operations and takes
much larger time than the oqds algorithm.

As a future work, we have to perform more experiment to
compare the computation time including preprocessing. Fur-
thermore, exact error analysis should be made and we ought
to check out the accuracy of the algorithm after improving the
implementation and setting proper test matrices which have
known eigenvalues.
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