
IPSJ SIG Technical Report

XML Documents Searching Combining Structure and
Keywords Similarities

Apichaya Auvattanasombat1,2,a) YousukeWatanabe1,b) Haruo Yokota1,c)

Abstract: In recent years, XML has been increasingly become an emerging standard and widely used in many appli-
cations. For example, office documents which are more and more popular used at this time, are also stored in multiple
parts of XML archive formats. It is known that the structure and content of XML files play different roles depending
on kind of documents. Therefore, achievement similarity search of an XML file should base on both structure and
content. In previous work, LAX+ is an algorithm for reckoning a similarity value from structure and contents of XML
files in the office documents. However, since LAX+ used exactly matching method between corresponding leaves,
similar words in the leaf-nodes are considered as different. To solve the problem, we propose to combine LAX+ with
keyword similarity in leaf-nodes. We use docx, xlsx and pptx file formats as experimental data set. The evaluation
shows that our approach can be used to improve the precision and recall.

Keywords: XML Similarity, OOXML, Keyword Similarity, Document Search

1. Introduction
Over the past years, the Extensible Markup Language (XML)

has been established as a major means for information manage-
ment. It has been broadly utilized for complex data represen-
tation and many applications, because it can represent different
kinds of data from multiple sources. Therefore, more and more
information are published and exchanged by XML. Demands for
searching XML documents become increasing and complicated.

Moreover, Microsoft Office Document format [1] is also based
on XML file format and the amount of office document is still
increasing on the Internet. As an application of XML search-
ing, our research group has been developing a system named SOS
(Structure-based Office document Search) [12] which finds office
documents being similar to a given query document. To provide
relevant search results to users, we need a method to calculate
similarity of XML trees precisely.

Since, the content and the structure of XML trees play different
roles and importance depending on kind and purpose of the docu-
ment. So, a suitable solution for XML searching should consider
both structure and content of XML trees. Hence, we propose
the method which combining structure-based similarity with the
content-based similarity.

This research can be divided into two parts; first we developed
KLAX, a method to measure a similarity value between a pair of
XML trees. KLAX is an improvement of our previous method
LAX+ [12] by use a keyword similarity to match leaf nodes

1 Tokyo Institute of Technology, 2–12–1 Meguro, Tokyo 152–8552, Japan
2 Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok,

10260, Thailand
a) auvattanasombat.a.aa@m.titech.ac.jp
b) watanabe@de.cs.titech.ac.jp
c) yokota@cs.titech.ac.jp

of subtrees in XML trees. Second, we propose LAX&KEY, a
method to calculate the similarity between XML trees by utiliz-
ing both structure and content. LAX&KEY separately computes
structure-based similarity from LAX+ and content-based similar-
ity from keywords, then combines with weighting.

We apply KLAX and LAX&KEY to our SOS system instead
of LAX+ to improve its precision. In our experimental evalua-
tion, we use docx, xlsx and pptx file formats as experimental data
set to investigate effects of our approach.

The remaining part of this paper is organized as follows: Sec-
tion 2 introduces related work. Section 3 explains an OOXML
document format. Section 4 overviews Structure-based Office
document Search (SOS) and LAX+, and Section 5 explain our
proposed methods. Section 6 shows our experimental results.
Section 7 concludes this paper and mentions future research is-
sues.

2. Related work
There are several search engines which have difference pur-

poses and processes [2], [3], [4]. Recently, there are many kinds
of documents and the quantity is increasing in high rate due to the
information period. So, searching and clustering of those docu-
ments have become the issue that we need to solve. Since there
are many kinds of documents which are depend on their struc-
tures and using purposes, the search engine should be different to
be proper with them. For XML tree is also need specification for
search engine.

We have various methods to measure XML similarity values
[5], [7], [8], [9], [10]. The important factors that should be con-
sidered for the performance of the method are computational cost
and precision. Some are popularly used because they are fast and
some give high precision. LAX [11] and LAX+ [12] are algo-

ⓒ 2013 Information Processing Society of Japan 1

Vol.2013-DBS-157 No.14
Vol.2013-IFAT-111 No.14

2013/7/23

IPSJ SIG Technical Report

Fig. 1 Structure of OOXML

rithms to calculate similarity values of XML trees by comparing
leaf nodes from their subtrees with low computational cost and
high precision. Then, SOS [12] is the method for measuring the
similarity values for OOXML documents from LAX+. In this pa-
per, we modified LAX+ to improve the precision of the result and
also applied our propose methods to SOS.

3. Office Open XML (OOXML or OpenXML)
OOXML file format [1] is a zipped, XML-based file format

developed by Microsoft. We can reach internal XML files by ex-
tracting the zip archive. This file format can be used to represent
electronic office documents. There are formats for word process-
ing documents, spreadsheets and presentations as well as specific
formats for material such as mathematical formulae, graphics,
bibliographies etc.

OOXML documents are stored in Open Packaging Convention
(OPC) packages, which are zip files containing XML and other
data, along with a specification of the relationship between them.
Depending on the type of the document, the packages have dif-
ferent internal directory structures and names. An OOXML doc-
ument consists of multiple Parts, and each Part consists of one or
more XML files. Figure 1 shows a structure of a docx file when
it has been extracted.

4. An Overview of Previous Methods
Here, we introduce our previous work [12]. We have been de-

veloping SOS system for OOXML similarity search. It has to
calculate similarities between sets of XML files in OOXML doc-
uments. LAX+ is our previous method to calculate similarity of
XML trees. Firstly, we explain LAX+ and SOS in Section 4.1
and Section 4.2, then we describe the problem of LAX+ in Sec-
tion 4.3.

4.1 LAX+
LAX+ is an algorithm to calculate similarity values between

two XML trees. From a pair of XML trees (fbase, ftarget), it returns
S xml(fbase, ftarget). LAX+ is an symmetric similarity measure, so
S xml(fbase, ftarget) is equal to S xml(ftarget, fbase).

The procedure of LAX+ to calculate a similarity value between
a pair of XML trees is as follow:
(1) Decomposing an XML tree to subtrees by choosing a cut-

ting point:

A cutting point is a node (element) to divide a XML tree into
subtrees. For each node x in the XML tree, we apply the fol-
lowing formula to decide which node is most suitable to be
a cutting point.

wx = |children(x)| × dαx (1)

|children(x)| is the number of x’s child nodes, dx is the max-
imum depth from node x to leaf nodes, and α is a weight
parameter. fbase is decomposed into a set of subtrees Tbase =

{tu}, and ftarget is also decomposed into Ttarget = {tv}.
(2) Calculating similarity values between subtrees:

We make a pair of subtrees (tu, tv) from base’s subtrees and
target’s subtrees. Similarity values between subtrees are de-
rived by the following formula.

S sub(tu, tv) = |Matched Lea f (tu, tv)| (2)

Matched Lea f (tu, tv) expresses a subset of leaf nodes in tu,
whose element exactly matches one or more leaf nodes in
tv. “Match” means strings (PCDATA) in leaf nodes are com-
pletely same.

(3) Calculating a similarity value between two XML trees by
deriving from similarity values of subtree pairs:
S xml(fbase, ftarget) is a LAX+’s similarity value between
XML trees fbase and ftarget. It is defined by the following
formula.

S xml(fbase, ftarget)

= min(∑
tu∈Tbase

maxtv∈Ttarget (S sub(tu, tv))
|Lea f (fbase)| ,∑

tv∈Ttarget
maxtu∈Tbase (S sub(tu, tv))

|Lea f (ftarget)|
) (3)

4.2 Structure-Based Office Document Search(SOS): Style
and Structure Similarity Measure

Since an OOXML document consists of multiple Parts with
one or more XML files, comparing only one pair of XML files is
not enough. SOS is a method for calculating similarity between
sets of XML files from OOXML documents considered hierarchy
of parts and XML files.

We suppose oq is an OOXML document being a query file of
similarity search and oi (1 ≥ i ≥ n) is an OOXML document in a
database. As we describe in Section 3, each OOXML document
oi consists of a set of Parts Pi = {pi j|1 ≤ j ≤ Ji}. And each Parts
pi j consists of a set of XML files Fi j = { fi jk |1 ≤ k ≤ Ki j}. oq also
includes a set of Parts Pq and sets of XML files Fq j. The pro-
cedure to calculate a similarity value between a pair of OOXML
documents in SOS is as follow.
(1) Calculating similarity values between XML files:

By matching file names, we make a pair of XML files
(fq jk, fi jk) from the j-th Parts of both OOXML documents
oq and oi. We calculate a similarity value for each pair
S xml(fq jk, fi jk). The S xml value is derived by LAX+ and our
proposed methods. LAX+ is explained in Section 4.1.

ⓒ 2013 Information Processing Society of Japan 2

Vol.2013-DBS-157 No.14
Vol.2013-IFAT-111 No.14

2013/7/23

IPSJ SIG Technical Report

Fig. 2 An example of LAX+’s problem

(2) Calculating similarity values between Parts by aggregat-
ing multiple S xml values:
S parts(pq j, pi j) is a similarity value for the j-th parts by the
following formula.

S part(pq j, pi j) =

∑
fq jk∈Fq j , fi jk∈Fi j

S xml(fq jk, fi jk)

max(|Fq j|, |Fi j|)
(4)

(3) Calculating a similarity value between OOXML docu-
ments by aggregating multiple S parts values:
S oo(oq, oi) is a similarity value of a pair of OOXML docu-
ments (oq, oi), and it is obtained by the following formula.

S oo(oq, oi) =
∑

pq j∈Pq ,pi j∈Pi

(
w j∑|Pq |
l=1 wl

× S part(pq j, pi j)) (5)

When w j is a weight parameter for jth Parts

4.3 Problem of LAX+ at Leaf Node Similarity Measure
In LAX+, when it compares the leaf node of subtrees-pair, it

has used the exactly same matching method between the contents
in two leaf nodes as in Formula 2. That means the similarity score
between two leaf nodes can be only 0 or 1 even though the con-
tent in target leaf node has some common words or almost all are
same with the content in base leaf node.

For instance, as in Figure 2 if using LAX+ to compare these
two subtrees, the overall score will be 0. In spite of, the content
in leaf nodes are very close to each other. This example shows
that LAX+’s score is insufficient in some cases.

5. KLAX and LAX&KEY (Proposed meth-
ods)

To solve the problem introduced in Section 4.3, we used key-
word similarity method for comparing leaf nodes of subtree. We
propose KLAX (Keyword LAX+) extending the LAX+ process
in Section 5.2. Moreover, we also propose another way to indi-
cate the similarity between XML trees. LAX&KEY is described
in Section 5.3.

5.1 Keyword Extraction and keyword-based similarity
Figure 3 illustrates how to extract keywords. First, we choose

keywords by assort only the content of the file. The content means
the text that readers (human) can read when open an OOXML
documents excluding tags and attributes of each tag. Then, sep-
arate the content into words and roughly assign Part of speech
(POS) [17], [18] for each word. After that, pick only “Noun”

Fig. 3 Procedure of how to choose keywords

words (including proper noun and others that cannot determine
its POS) to be represent keywords for each files. Last, comparing
each file (or leaf node) using these keywords to measure the sim-
ilarity. The similarity score is defined by the following formula.

S keyword(fbase, ftarget) =
|MatchKeyword(fbase, ftarget)|

max(|Kbase|, |Ktarget |)
(6)

� |MatchKeyword(fbase, ftarget)| is the number of keywords
from base file’s content that matching with the keywords in
target file’s content.

� |Kbase| is the number of keywords in base file’s content.
� |Ktarget | is the number of keywords in target file’s content.

5.2 KLAX
KLAX is an algorithm to measure the XML similarity which is

extended from LAX+ by utilizing keyword similarity to measure
the leaf nodes of subtrees similarity instead of the rigid match-
ing of LAX+. When we compute a similarity value between leaf
nodes, we considered tags, attributes and attribute’s values sep-
arately from the content. First, we compare tags, attributes and
attribute’s values of leaf-node-pair. If they are all same it get first
γ score, then compare content with keyword-based similarity by
Formula 6. So, the overall score for KLAX is derived by follow-
ing formula.

ⓒ 2013 Information Processing Society of Japan 3

Vol.2013-DBS-157 No.14
Vol.2013-IFAT-111 No.14

2013/7/23

IPSJ SIG Technical Report

Fig. 4 Comparison between LAX+ and KLAX to calculate the similarity
between leaf nodes of subtrees

S K lea f (lu, lv)

=

0 if tags are not same

γ + ((1 − γ) · S keyword(lu, lv)) otherwise
(7)

We have used γ = 0.5 in this research. When (lu, lv) is leaf-
node-pairs on a subtree-pair (tu, tv).

Therefore, in KLAX Formula 2 in the second step of LAX+ is
replaced by the following formula.

S sub(tu, tv) =
∑

lu∈Lea f (tu) maxlv∈Lea f (tv)(S K lea f (lu, lv))
min(|Lea f (tu)|, |Lea f (tv)|)

(8)

When |Lea f (tu)| and |Lea f (tv)| stand for the number of leaf
nodes in subtree tu and tv respectively.

Figure 4 shows the difference between using LAX+ and KLAX
when they calculate the similarity between Subtree1 and Sub-
tree2. The remaining part to compute the similarity between
XML files is same as LAX+.

5.3 LAX&KEY
Due to the different roles between XML structure and the con-

tent of files, the document similarity should be a combination
of the structure similarity value and the content similarity val-
ues. LAX&KEY calculates LAX+ similarity and keyword sim-
ilarity separately. Then, it combines two scores together in or-
der to reckon the overall similarity score. The similarity score of
LAX&KEY is defined by following formula.

S LAX&KEY (fbase, ftarget)

= β · S xml(fbase, ftarget) + (1 − β) · S keyword(fbase, ftarget) (9)

� S xml(fbase, ftarget) is the LAX+ score between base file(fbase)
and target file(ftarget)

� S keyword(fbase, ftarget) is the keyword similarity score between
base file(fbase) and target file(ftarget)

� β is a weight parameter to control influences of LAX+ and
keyword similarity. (β ∈ (0, 1))

In additional, we also used this purpose with SOS to find the
similarity between OOXML documents and the similarity score
for SOS with LAX&KEY is derived by combining the SOS score
with the keyword-based similarity score which is shown in For-
mula 6. We have join both score by using Formula 9 above.

6. Experiment Evaluation
In this section, we held two experiments and for each can be

separated into two parts. First experiment, we compare LAX+
with our new proposed methods to show that our proposals give
better result in precision and recall for calculation similarity
of single pair of XML files. Second, we compare the origi-
nal SOS (using LAX+) with improved SOS (using KLAX and
LAX&KEY) to investigate the precision and recall of measuring
a similarity between OOXML documents (multiple sets of XML
files). Figure 5 is the experiment data for our experiments below.

Fig. 5 Experiment Data

6.1 Comparison of LAX+ with KLAX and LAX&KEY
In this experiment, we extracted the XML files from pptx files

and docx files, for pptx files we used “slide1.xml” which includes
style information and content data of the first slide and docx files
we used “document.xml” which is the main part of any word doc-
uments to calculate the similarity value between XML files for
each kind of documents. Therefore, the procedure of this experi-
ment is as follows.
(1) From a set of pptx and docx files, we choose one file as a

query file oq. Then, the remaining files are target of similar-
ity search.

(2) For each query file and target files, we choose “slide1.xml”
for pptx files and “document.xml” for docx files. Then, we
calculate a similarity value between XML files.

(3) We rank the target files based on its similarity values and
chooses the file whose similarity values are greater than the
threshold θ. Then, we compare the result with an answer set
corresponding to the query file, and get precision and recall;
precision and recall are defined as follows.

Precision =
Number Retrieved Relevant

Number Total Retrieved
(10)

Recall =
Number Retrieved Relevant
Number Possible Relevant

(11)

(4) We iterate step 1, 2, 3 for each file in an experimental data to
compute average values of precision and recall.

6.1.1 LAX+ vs. KLAX
We show a precision-recall graph of LAX+ and KLAX in Fig-

ure 6 for pptx file type and Figure 7 for docx file type. The
horizontal axis expresses recall values and the vertical axis ex-
presses precision values. From the result, KLAX is better that
LAX+ in precision at the same recall value. Since KLAX used
the keyword-based similarity to match leaf nodes between sub-
trees which is more flexible than LAX+’s, the similarity scores of

ⓒ 2013 Information Processing Society of Japan 4

Vol.2013-DBS-157 No.14
Vol.2013-IFAT-111 No.14

2013/7/23

IPSJ SIG Technical Report

Fig. 6 Precision-recall graph of LAX+ and KLAX on pptx files

Fig. 7 Precision-recall graph of LAX+ and KLAX on docx files

Fig. 8 Precision-recall graph of LAX+ and LAX&KEY on pptx files

KLAX are higher in most cases especially for alike files. Thus,
the similarity score by KLAX is more than LAX+ for each in
case of similar files pair.
6.1.2 LAX+ vs. LAX&KEY

In this experiment, we have varied the β values from 0.01 to
0.99 to explore the properly β that gives the best result in preci-
sion and recall for each document type which are 0.50 and 0.35
for pptx and docx respectively. We show a precision-recall graph
of LAX+ and LAX&KEY in Figure 8 for pptx file type and Fig-
ure 9 for docx file type. From above result, LAX&KEY is better
that LAX+ in precision at the same recall value. Due to the fact
that XML file has two considerable parts which are structure and
content of file, consideration of both should get more accuracy in
result.

Fig. 9 Precision-recall graph of LAX+ and LAX&KEY on docx files

Fig. 10 Precision-recall graph of SOS and KLAX on pptx files

Fig. 11 Precision-recall graph of SOS and KLAX on docx files

6.2 Applying KLAX and LAX&KEY to SOS
6.2.1 SOS with KLAX

In this experiment, we compare SOS using LAX+ and SOS
using KLAX to verify whether KLAX can be improves SOS in
precision and recall. We show precision-recall graphs of SOS
with LAX+ and SOS with KLAX for pptx, docx and xlsx file
type in Figure 10, 11, 12 respectively. From above result, SOS
with KLAX is better than SOS with LAX+ in precision at the
same recall value for pptx and docx file type. In case of xlsx
files, the keyword similarity might not very significant to calcu-
late the similarity value between them. Due to the purpose of
xlsx files which often include many numbers or IDs and almost
not composed of words or keywords, keyword-based similarity is
not much influential in this document type.
6.2.2 SOS with LAX&KEY

In this experiment, we also varied the β values from 0.01 to
0.99 to explore the properly β that gives the best result in preci-

ⓒ 2013 Information Processing Society of Japan 5

Vol.2013-DBS-157 No.14
Vol.2013-IFAT-111 No.14

2013/7/23

IPSJ SIG Technical Report

Fig. 12 Precision-recall graph of SOS and KLAX on xlsx files

Fig. 13 Precision-recall graph of SOS and LAX&KEY on pptx files

Fig. 14 Precision-recall graph of SOS and LAX&KEY on docx files

sion and recall for each document type which are 0.50, 0.40 and
0.50 for pptx, docx and xlsx respectively. We show a precision-
recall graph of SOS with LAX+ and SOS with LAX&KEY in for
pptx, docx and xlsx file type in Figure 13, 14, 15 respectively.
From the result graph, SOS with LAX&KEY is better than SOS
with LAX+ in precision at the same recall value for all type of
OOXML documents in the experiment.

7. Conclusion and Future Work
This paper describes the problem of LAX+ to calculate sim-

ilarity value between XML trees which is the leaf node match-
ing method is rigid, and affects the similarity value to be low.
Therefore, we solved the problem with a keyword similarity
method called KLAX which extends LAX+ advantages and also
propose LAX&KEY to be an alternative way to calculate the
similarity values of XML files and OOXML documents. Af-
ter that, we applied the KLAX to SOS instead of LAX+, and
combining LAX&KEY with SOS in our experiments. SOS with
KLAX gives slightly bettet result especially for xlsx files while

Fig. 15 Precision-recall graph of SOS and LAX&KEY on xlsx files

LAX&KEY gives obviously better result than LAX+. Since, the
result of xlsx files is a bit ambiguously, we plan to do further
experiments for evaluating KLAX and LAX&KEY for OOXML
similarity by using different weight for each Part of OOXML doc-
uments. Moreover, the keyword-based similarity also can be im-
proved such as POS tagger, procedure to choosing the words and
others.

References
[1] ECMA-376 4th edition,

http://www.ecma-international.org/publications/standards/Ecma-
376.htm

[2] Windows Search,
http://www.microsoft.com/japan/windows/desktopsearch/default.mspx

[3] Mac OS X Spotlight,
http://support.apple.com/kb/HT2531

[4] “What file types can Google index?”,
http://support.google.com/webmasters/bin/answer.py?answer=35287

[5] J.Tekli, R.Chbeir and K.Yetongnon, “An overview on XML similarity:
Background, current trends and future directions”, Computer Science
Review, Vol. 3, No. 3, pp. 151–173, 2009.

[6] J. Pokorny, J. Vávra and V. Snásel, “A Renewed Matrix Model for
XML Data”, Proc. International Conference on Intelligent Systems
Design and Applications (ISDA2008), pp. 549–556, 2008.

[7] K. C. Tai, “The Tree-to-Tree Correction Problem”, Journal of the As-
sociation for Computing Machinery, Vol. 26, No. 3, pp. 422–433,
1979.

[8] E. D. Demaine, S. Mozes, B. Rossman and O. Weimann, “An Opti-
mal Decomposition Algorithm for Tree Edit Distance”, ACM Trans.
Algorithms, Vol. 6, No. 1, pp.2:1–2:19, 2009.

[9] D. Buttler, “A Short Survey of Document Structure Similarity Algo-
rithms”, Proc. International Conference on Internal Computing, pp.3–
9, 2004.

[10] S. Helmer, “Measuring the Structural Similarity of Semistructured
Documents Using Entropy”, Proc. International Conference on Very
Large Databases (VLDB2007), pp.1022–1032, 2007.

[11] W. Liang and H. Yokota, “LAX: An Efficient Approximate XML Join
Based on Clustered Leaf Nodes for XML Data Integration”, Proc. BN-
COD, Springer LNCS 3567, pp. 82–97, 2005.

[12] Y. Watanabe, H. Kamigaito and H. Yokota, “Similarity Search for Of-
fice XML Documents Based on Style and Structure Data”, Interna-
tional Journal of Web Information Systems, Emerald Group Publish-
ing, Vol. 9, Issue 2, pp. 100–116, June, 2013.

[13] W. Viyanon, S. K. Madria and S. S. Bhowmick, “XML data integra-
tion based on content and structure similarity using keys”, Proc. On
the Move to Meaningful Internet Systems (OTM2008), 2008.

[14] T. Tran, R. Nayak and P. Bruza, “Combining Structure and Content
Similarities for XML Documents Clustering”, Proc. Australasian Data
Mining Conference (AusDM’ 08), 2008.

[15] L. Zhang, Z. Li, Q. Chen and N. Li, “Structure and Content Similar-
ity for Clustering XML Documents”, Proc. WAIM 2010 Workshops,
LNCS 6185, pp. 116–124, 2010.

[16] J. Tekli, R. Chbeir and K. Yetongnon, “A Hybrid Approach for XML
Similarily” Proc. SOFSEM 2007, LNCS 4362, pp. 738–795, 2007.

[17] Stanford Log-linear Part-Of-Speech Tagger.
http://nlp.stanford.edu/software/tagger.shtml

[18] Part Of Speech Tagging PHP/ir.
http://phpir.com/part-of-speech-tagging

ⓒ 2013 Information Processing Society of Japan 6

Vol.2013-DBS-157 No.14
Vol.2013-IFAT-111 No.14

2013/7/23

