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Abstract: Protein-ligand interaction prediction plays an important role in drug design and discovery. However, wet
lab procedures are inherently time consuming and expensive due to the vast number of candidate compounds and target
genes. Hence, computational approaches became imperative and have become popular due to their promising results
and practicality. Such methods require high accuracy and precision outputs for them to be useful, thus, the problem of
devising such an algorithm remains very challenging. In this paper we propose an algorithm employing both support
vector machines (SVM) and an extension of canonical correlation analysis (CCA). Following assumptions of recent
chemogenomic approaches, we explore the effects of incorporating bias on similarity of compounds. We introduce
kernel weighted CCA as a means of uncovering any underlying relationship between similarity of ligands and known
ligands of target proteins. Experimental results indicate statistically significant improvement in the area under the ROC
curve (AUC) and F-measure values obtained as opposed to those gathered when only SVM, or SVM with kernel CCA
is employed, which translates to better quality of prediction.
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1. Introduction

Drug discovery is a multi-staged process which involves the
determination of existing interactions between a compound and
a protein. Many drugs are developed depending on the reaction
they produce when coupled with the respective proteins acting
during a biological process in the body. However, only a few
existing interactions have actually been validated through experi-
ments. Moreover, wet lab procedures are inherently time consum-
ing and expensive due to the vast number of candidate compounds
and target genes. Hence, computational approaches became im-
perative and have become popular due to their promising results
and practicality.

The protein-ligand interaction prediction problem can be
viewed as a task of filling up a protein-ligand matrix whose rows
represent the candidate compounds and the columns represent the
target proteins as shown in the example in Fig. 1 (a). A matrix
entry is +1 if there is interaction between the corresponding drug
and target. Otherwise, −1. Only a few interactions have actually
been verified and recorded which makes the protein-ligand matrix
sparse. Termed as the ‘chemogenomic approach’ by Rognan [20],
the ultimate goal of this task is to identify all the ligands of each
target, thus, fully matching the ligand and target spaces [3].

Many in silico methods have already been developed to address
this problem. We can classify these methods into two: the struc-
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ture or docking approach and the ligand-based approach. Dock-
ing approaches make use of 3D structures of the chemical com-
pounds or the proteins to find protein-ligand pairs which are more
likely to bind [2], [4], [5]. On the other hand, ligand-based tech-
niques usually employ machine learning algorithms in comparing
known ligands and candidate ligands of a certain target even with-
out any prior information regarding their structure [9], [14], [25].
In this study, we shall make use of the ligand-based approach.

There are two ways of approaching the task of interaction pre-
diction: one is by using the global model [2], [17], and another
one is via the local model [3], [14], [25]. The global model uti-
lizes a large interaction matrix and imputation of missing val-
ues is done simultaneously. Each cell in the interaction matrix is
considered as a sample to which statistical methods are applied.
Descriptors of ligands in the form of a feature matrix and some
information for target proteins are combined to generate a fused
profile for each cell in the interaction matrix. An advantage is
that interaction prediction for target proteins with few known in-
teractions can still be formed. However, since the model aims

(a) Problem (b) Specialized descriptors

Fig. 1 Protein-ligand matrix and descriptors. In the example depicted in (a),
the prediction task is to impute 11 missing entries in the 6×5 protein-
ligand matrix using 10-dimensional raw descriptors of ligands. The
problem can be divided into six sub-problems, each of which is to
complete a row in the protein-ligand matrix. Our algorithm extracts
compact descriptors specialized in each sub-problem.
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to exploit information from similar columns, some useful infor-
mation for learning the rule for prediction may be corrupted by
information from irrelevant columns.

Meanwhile, in the local model approach, prediction is made
for each column of the protein-ligand table independently — the
approach finds unknown chemical compounds which are simi-
lar to known ligands interacting with the target protein of inter-
est. The local model often suffers from a small-sample problem.
Many columns in the protein-ligand interaction matrix include
few positive interactions, causing machine learning algorithms to
be trained with few positive samples despite very high dimen-
sionality of ligand descriptors.

The goal of determining interactions between targets and com-
pounds is established under twofold assumptions [3], [20]: First
is that compounds with similar properties tend to share tar-
gets. And, targets with similar ligands share similarities in struc-
tures such as binding sites. These have been verified by re-
cent studies by considering drug side effects [7] and similarities
among ligands [16]. Moreover, integrated approaches exploring
both protein and compound similarities have also been investi-
gated [6], [14], [26]. Thus, recent methodologies have allowed us
to make predictions on interactions based on similarity measures
for ligands and targets.

Motivated by the assumption that similar ligands tend to have
similar target proteins [15], [23], our goal is to uncover any un-
derlying relationship between a set of ligands and exploit this re-
lationship, together with some known ligand-target interactions,
to predict new interactions. We search for ligands with strong as-
sociations by finding correlations between them using their fea-
tures.

In this paper, we present a weighted extension of canonical
correlation analysis (WCCA) in the reproducing kernel Hilbert
space (RKHS) in an attempt to introduce advantageous proper-
ties of local models to the global model approach. To estimate
the missing entries in each row of the interaction matrix, we use
kernel WCCA (KWCCA) to extract essential features which are
specialized in imputation of the corresponding row. The extracted
features are compact enough for local models to be trained with a
small training set composed from the column. Through the exper-
iments with data of GPCRs and odorant receptors, the prediction
performance is shown to be improved when our algorithm is ap-
plied compared to several existing methods.

1.1 Related Works
A popular and useful technique in investigating relationships

between sets of data is the so-called canonical correlation analysis
(CCA) [12]. First introduced by Hotelling [13], CCA generally
aims to find linear transformations which maximize the correla-
tion between a pair of data. However, the common information
extracted from the data sources may not be as useful if nonlinear
correlations exist. For this reason, kernel CCA (KCCA) was in-
troduced to offer an alternative solution via the kernel trick, where
CCA is performed in a reproducing kernel Hilbert space (RKHS),
typically a higher dimensional feature space [1].

Several variants of CCA have been developed and applied to
different problem settings. For instance, Yu et al. [31] intro-

duced weights to CCA. Although we also introduce weighting
in our proposed method, the authors’ purpose and formulation
are totally different from ours: they assumed more than two data
sources and weight each source, whereas, in our formulation, we
assume two data sources and each sample is weighted. On the
other hand, in a biologically-related setting, Yamanishi et al. [29]
employed multiple KCCA and integrated KCCA for gene cluster
extraction. One is done by maximizing the sum of pairwise cor-
relations and the other by maximizing correlation of combination
of attributes.

For the problem of functional site prediction, Gonzalez et
al. [11] incorporated KCCA to find amino acid pairs and protein
functional classifications which are maximally correlated. This
technique was motivated by the Xdet method [18] and CCA was
employed as an alternative to computing Pearson correlation.

The indefinite kernel CCA (IKCCA) was developed by
Samarov et al. [22] with a motivation similar to ours. They re-
moved the similarity of samples outside the neighborhood to re-
fine the analysis. The operation often yields an indefinite matrix.
IKCCA finds a definite matrix close to the indefinite matrix to
perform CCA on the definite matrix. However, their usage of
employing CCA is different from ours: the inputs of their ap-
proach are positive pairs of ligands and proteins, whereas our
approach applies CCA to two different types of ligand profiles.
IKCCA is formulated with a saddle-point problem that is solved
by minimizing a maximum, but the numerical algorithm to solve
the problem has not been shown.

Another important variant is sparse CCA [27], [28] which uses
lasso or elastic net techniques to encourage loading matrices to be
sparse. This approach was also applied to a set of protein-ligand
pairs with positive interactions in order to elucidate meaningful
chemical descriptors in Ref. [28]. Another is the Supervised Reg-
ularized CCA [10] which allows integration of multimodal data.
Such method can be very useful when involving non-image and
image data samples.

2. Materials and Methods

2.1 Data
The data used for this study was originally from Ref. [21]. The

given interaction matrix consists of 62 mammalian odorant re-
ceptors (ORs) as target proteins and 63 odorants as candidate lig-
ands. It is binary in form and contains 340 positive interactions.
The number of known positive interactions for each target protein
is at least one and at most thirty-seven, while the median is three.
Some randomly selected protein-ligand pairs are assumed to be
unknown to test prediction methods, and the values of the cells
are set to zero. Each row in the interaction matrix provides an
interaction profile of the ligand.

From the chemical IDs supplied, we searched PubChem *1 for
the chemical structures of the odorants to obtain the descriptors
of the ligands. Frequent substructures are employed as descrip-
tors of ligands. The frequent substructures are mined with a soft-
ware named gSpan [30]. The software is applied to the 63 chem-
ical structures, and the 60,311 binary descriptors are obtained as

*1 http://pubchem.ncbi.nlm.nih.gov/
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chemical profiles.

2.2 Overview of the Algorithm
Our approach consists of two stages: First, we consider sub-

problems, each of which involves imputation on a single row in
the interaction matrix, and use weighted CCA to extract a com-
pact vector representation for each sub-problem. Then, we apply
SVM for prediction of each cell using the corresponding descrip-
tor extracted in the previous stage. This technique is overviewed
as follows.

Chemical profiles obtained from chemical structures contain
numerous features that are not important for prediction. Extract-
ing significant features from such chemical profiles is crucial for
accurate prediction of protein-ligand interaction. To accomplish
this, we have to find effective low-dimensional representations
of the original chemical profiles lying in the extremely high-
dimensional chemical space.

Interaction profiles describe the existence and the absence of
interactions with several target proteins. More often than not,
target proteins share similar properties. For this reason, inter-
action profiles approximately span a low-dimensional space, say
R

m, which we shall also extract from a high-dimensional interac-

tion space, in a similar fashion as the chemical profiles.
Canonical correlation analysis uses a set of chemical profiles

and interaction profiles to find two projection functions, φch and
φin, simultaneously: The projection φch is from the chemical
space to the low-dimensional canonical space Rm, andφin is from
the interaction space to Rm. The images of φch are used to ap-
proximate the images of φin. The projections obtained by CCA
are shown mathematically to be the minimizer of the expected
deviation of the image of φch from the image of φin.

Figure 2 (a) is an illustration of how CCA works with chemical
profiles and interaction profiles. In this figure, the shaded squares
are data representations of the feature vector of each ligand in the
chemical space. While the open circles are the data representation
of the interaction vector of each ligand in the interaction space.
The images under φch and φin of these data points are plotted in

(a) Classical CCA (b) Weighted CCA

Fig. 2 Classical CCA and weighted CCA. Our approach projects chemical and interaction profiles into a
low-dimensional canonical space so that the images are close to each other. The star point repre-
sents the ligand of interest, and red points are ligands sharing similarities with the ligand of interest.
Although the classical CCA minimizes the average deviation over all the ligands, to achieve accu-
rate prediction, it is sufficient that the deviations between the images of the target ligand and the
ligands similar to it are small. The weighted CCA works with arbitrarily specified weights, which
ensures small deviations for red points by giving them larger weights.

the canonical space, and their corresponding images are linked
with a dashed line. CCA finds the projections φch and φin so that
the average squared length of the dashed lines is minimized.

In application to protein-ligand interaction prediction, estimat-
ing the images for all ligands is not necessary; it is only for the
ligand whose interactions we wish to predict that the image of the
chemical compound is desired to be well approximated. To ob-
tain a good approximation for a ligand of interest, it is sufficient
to estimate projections so that only the images of similar ligands
are approximated well. The precisions of the approximations for
ligands dissimilar to the ligand of interest barely affect the accu-
racy of the solution. This consideration motivated us to assign
weights to ligands according to their similarity to the ligand of
interest, and to extend the classical CCA so that the weighted
average deviation is minimized. The weighted CCA almost dis-
regards ligands with small weights to find projections, achieving
more accurate approximations for the ligand of interest. We refer
to the extension of CCA as weighted CCA.

Figure 2 (b) illustrates the effects of weighted CCA when
weights are added to similar ligands. In this context, we define
similarity as the measure of affinity between features of com-
pounds. This can be represented by the distance between the data
representation of the ligands in the chemical space. In the given
figure, the chemical profile for a ligand of interest is marked with
a star, and profiles of similar ligands are colored red. In a similar
manner, we interpret points of the same color as ligands shar-
ing similarities in their chemical properties, hence their grouping
in the chemical space. The two figures, (a) and (b), allow us to
compare classical CCA with weighted CCA: the deviations for
red points in (b) are smaller than those in (a). The deviations for
other ligands are larger, which hardly worsen the performance of
predicting the interaction of the protein of interest.

The final prediction result is obtained in the post-processing
stage using SVM. The images of the projections are used for
SVM learning. SVM is trained well if a good training set is
given. Hence, ligands with poor approximations by CCA, which
are noisy for SVM learning, are preferably excluded. The im-

c© 2013 Information Processing Society of Japan 20



IPSJ Transactions on Bioinformatics Vol.6 18–28 (June 2013)

ages are already in a low-dimensional space in which SVM learn-
ing works well even with a small training set, encouraging us to
assign smaller weights to ligands with poor approximations for
SVM learning.

2.3 Weighted CCA
In this subsection we present the details of weighted CCA. We

denote the chemical profile and the interaction profile, respec-
tively, by a pch-dimensional vector xch and a pin-dimensional
vector xin. Assuming that the functions φch : Rpch → Rm and
φin : Rpin → Rm are affine transformations allows us to express
them as φch(xch) =W �

ch(xch − μch), φin(xin) =W �
in (xin − μin),

where Wch ∈ Rpch×m, μch ∈ Rpch , Win ∈ Rpin×m, and μin ∈ Rpin

are their respective parameters. We wish to find the pair of pro-
jection functions minimizing the expected deviation between the
images given by J(φch,φin) ≡ E[∥∥∥φch(xch) − φin(xin)

∥∥∥2], where
E is the expectation operator.

The expected deviation can be reduced arbitrarily by setting
the projections so that the images are scaled down. A trivial so-
lution is Wch = 0 and Win = 0 at which the expected devia-
tion vanishes for any dataset. To avoid trivial solutions, the size
of the images is adjusted by fixing the second moment matrices,
E
[
φch(xch)φch(xch)�

]
and E

[
φin(xin)φin(xin)�

]
, to identity ma-

trices.
The expectation appearing in the derivation and the second

moment matrices operates according to an empirical probabilis-
tic distribution. Supposing n ligands are given, the chemical
profiles are denoted by xch

1 , . . . ,x
ch
n , and the interaction pro-

files by xin
1 , . . . ,x

in
n . If we define an empirical distribution as

q(xch,xin) =
∑n

j=1 v jδ
(
xch − xch

j

)
δ
(
xin − xin

j

)
, with weights

v1, . . . , vn whose sum is one and δ(·) is the Dirac delta function,
then the expected deviation is reduced to the weighted average of
deviation and can be expressed as

J(φch,φin) =
n∑

j=1

v j

∥∥∥φch
(
xch

j
) − φin

(
xin

j
)∥∥∥2. (1)

This implies that approximations are refined locally by setting the
weights so that ligands dissimilar from the target ligand are given
smaller weights.

The optimal projections can be computed via the generalized
eigen-decomposition, as given in Algorithm 1 in the Appendix.
When setting v j = 1/n, the algorithm is shown to be equivalent to
the classical CCA. Hence, we can say that weighted CCA is an
extension of the classical CCA.

Kernelization of weighted CCA is formulated with a similarity
function of chemical profiles Kch(xch

i ,x
ch
j ) and a similarity func-

tion of interaction profiles Kin(xin
i ,x

in
j ) without using the vec-

tors themselves explicitly. These similarity functions are said
to be valid kernels guaranteeing the theory of the algorithms,
which map the profiles non-linearly into other (typically high-
dimensional) spaces Hch and Hin, respectively, called an RKHS.
Kernelized weighted CCA finds affine-transforms from RKHS to
a canonical space Rm, so that the expected deviation between
images in Rm is minimized. If we denote the composite map-
ping functions by ψch and ψin, respectively, the optimal solu-
tion is given by ψch(xch) = A�chD

1/2
v k̄ch(xch), ψin(xin) =

A�inD
1/2
v k̄in(xin). The algorithm for computing the two matrices,

Ach ∈ Rm×n and Ain ∈ Rm×n, is presented in Algorithm 2 in the
Appendix. The functions k̄ch(·) and k̄in(·) are called the empirical
kernel mapping, and their definition is as given in Eq. (A.7) in the
Appendix.

2.4 Weighted SVM
Prediction of the interaction between ligand i and target t is

performed with the SVM score given by f
(
xch

i ; w(i,t), b(i,t)
)
=

w�(i,t)ψch
(
xch

i

)
+b(i,t), where xch

i is the chemical profile of ligand i.
The SVM parameters,w(i,t) and b(i,t), are obtained beforehand by
the SVM learning algorithm. This is performed only with ligands
whose interaction with the target t is known. This study employs
the similarity of ligands as weights in the learning process, as in
the algorithm presented in the Appendix.

2.5 Weighting Schemes
Ligands are given weights in both stages of the weighted CCA

and the weighted SVM. These weights are dependent on the lig-
and to be predicted. Larger weights are given for ligands that are
more similar to the ligand of interest. In predicting the interaction
of the ith ligand, the weight of jth ligand is given by the normal-
ization of v′j =

1∥∥∥k̄ch

(
xch

j

)
−k̄ch

(
xch

i

)∥∥∥+∥∥∥k̄ in

(
xin

j

)
−k̄ in

(
xin

i

)∥∥∥+ε , where ε is

a positive constant and set to 10 in our analysis. Normalization is
done by setting v j =

v′j∑n
k=1 v

′
k

so that the sum of the weights is one.

3. Results

3.1 Experimental Setting
To illustrate the effectiveness of the kernel weighted CCA

(KWCCA), we carried out experiments on an interaction dataset
of GPCRs and odorant receptors described in the previous sec-
tion. For evaluation of prediction performance, we applied a 10-
fold Monte-Carlo cross validation, where data is randomly di-
vided into 2 disjoint sets of training and test data for 10 repeti-
tions. Data was partitioned such that for each target protein, 50%
of the positive and negative interactions are used for training, and
the other half for testing. KCCA, KWCCA, and the weighted
SVM were implemented in Matlab, and LIBSVM [8] was used
for the classical SVM.

We also performed prediction using SVM in the global model
setting for comparison. The kernel function for the global model
here is defined as the product of the inner product among chemi-
cal profiles and the inner product among columns of the interac-
tion matrix.

Parameters of the local models are determined by finding re-
spective values where the test data perform best using SVM and
KCCA. Namely, the regularization parameter C and the kernel
function for SVM are chosen so that SVM achieves the highest
prediction performance, while the regularization parameters for
CCA γch and γin, and the number of dimensions of the canon-
ical space m, are determined via the performance of KCCA.
As a result, the values of the parameters are set as C = 1000,
γch = γin = 1, and m = 4. The RBF kernel is applied and the ker-
nel width is determined as the mean of the distance within sets.
These mentioned parameters are then fed into the algorithm em-
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Table 1 Abbreviation of methods.

Abbreviation Description

WW KWCCA +Weighted SVM
WU KWCCA + Classical SVM
KW Classical KCCA +Weighted SVM
KU Classical KCCA + Classical SVM
S SVM of local model

SGL Linear SVM of global model
SGR RBF SVM of global model

ploying KWCCA. The parameters are not tuned specifically for
KWCCA. Thus, it is believed that there is a chance of improve-
ment in the perfomance of this algorithm if careful and suitable
parameter selection is done.

For the global model, the kernel which achieves the best per-
formance is the linear kernel. The regularization parameter is
chosen as C = 10, achieving the best performance among other
values. Results for the case of the RBF kernel with the best C

value obtained are also reported for comparison.
The methods based on KWCCA involve two stages upon im-

plementation. First, we exploit KWCCA to extract a set of fea-
tures for each compound. Second, we use them for training a ma-
chine learning algorithm employing SVMs before testing them
to make predictions. In total, seven methods are implemented in
the experiments: two using SVM in the global model setting, and
the other five following the local model. One of the two global
model methods uses RBF kernel for SVM, and the other uses the
linear kernel. On the other hand, the methods used for the local
models are as follows: SVM, KCCA with classical SVM, KCCA
with weighted SVM, KWCCA with classical SVM, and KWCCA
with weighted SVM. For simplicity of notation, we shall refer to
each of the seven methods using the abbreviations in Table 1.

3.2 Performance Evaluation Criteria
The following criteria were used to compare the seven predic-

tion methods:
( 1 ) Area under the ROC curve (AUC) – The receiver operat-

ing characteristic (ROC) curve is a plot of the true posi-
tive rate (TPR) versus the false positive rate (FPR) where
TPR = TP

TP+FN , FPR = FP
FP+TN , and TP, FN, FP, and TN are

the number of true positives, false negatives, false positives,
and true negatives, respectively. For performance compari-
son using the ROC, the AUC value is further computed.

( 2 ) F-measure – A value which is given by the harmonic mean
of precision and recall: F = 2Prec×Recall

Prec+Recall where the preci-
sion Prec and the recall Recall are defined by Prec = TP

TP+FP ,
Recall = TP

TP+FN , respectively. Since the problem is presented
as a binary classification problem, only the maximum value
of the F-measure values for each target is considered. The
scores obtained via SVM are used as confidence levels, thus,
changing the threshold yields different predictions.

These values are calculated for each target protein and aver-
aged over the ten data divisions. However, there are instances
when the test set does not contain a true positive interaction,
hence AUC and F-measures cannot be computed. Therefore,
these values were disregarded and, out of 62 target proteins, AUC
and F-measures were computed for 49 of them. The Wilcoxon
signed test was used for the statistical significance of the differ-

Fig. 3 Average performance of the methods. Data was randomly split into
training and test sets, and 10 training-testing data divisions were used
for each method. Following the local model, AUC and F-measure
were computed for each of the 62 targets. The bar plots represent
the average AUC (green) and average F-measure (yellow) over the
10 cross validation sets and the 49 targets containing true positives.
The two KWCCA-based methods, WW and WU, and the other meth-
ods were implemented for comparison. The difference of the perfor-
mances of WW and WU from the other five methods showed to be
statistically significant in terms of the P-values (by Wilcoxon signed
rank test).

ence among the values of the evaluation measures.

3.3 Effects of the Use of CCA
The average AUCs and F-measures are reported in Fig. 3. Error

bars are also included to present standard deviations. In compar-
ison with the local models, four CCA-based methods, WW, WU,
KW, and KU, achieve remarkably better AUCs and F-measures
compared to those of S: the differences between the AUCs and F-
measures of KW, the worst among the four CCA-based methods,
and S are 0.014 and 0.053, respectively, (P-values: 5.81×10−7 and
9.49 × 10−9 respectively). The AUC of the global model SGL is
comparable to some of the local models, whereas the F-measure
is not worse than that of S. A closer inspection on the results of
SGL indicate that it has the lowest average number of true pos-
itives over all cross-validations among all models, around 161,
which may be the reason behind a very small F-measure value.

3.4 Improvement by Weighting
The effects of the weighted extension of CCA are manifested

via comparison among four CCA-based methods. WW achieves
significantly higher AUC and F-measures in average compared to
KW and KU, where the P-values for the difference in the AUCs
are 4.85 × 10−11 and 6.91 × 10−10, and the P-values for the F-
measures are 3.59 × 10−7 and 3.96 × 10−6, respectively.

3.5 Histogram Comparison
The frequencies of WW besting the AUC or F-measure val-

ues of the other methods in predicting interactions for a certain
target protein are shown in the histograms in Fig. 4 (a). These
values represent the number of target proteins such that the eval-
uated AUC and F-measure values for the method WW is better
than the AUC and F-measure values of the other method in com-
parison. Instances when there are ties between the methods were
unaccounted. For the evaluated AUC and F-measure values, WW
outputs are more desirable than most of the others which indicates
higher quality of prediction performance.
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(a) Histogram comparisons of the proposed method WW vs. other methods.

(b) Histogram comparisons of Weighted SVM using weighting
scheme (2) vs. Classical SVM.

Fig. 4 Histogram comparisons between the proposed method WW and
other methods. Frequencies when the AUC (blue), AUC between 0
and 0.05 (green), and F-measure (red) values of WW outperform the
other methods, and vice-versa, are illustrated. It can be observed that
AUC and F-measure values histograms for WW are more desirable
than the rest.

3.6 Weighted and Classical SVM
WU yields interesting results in the histogram (Fig. 4 (a)): The

frequency of WW yielding better AUCs are comparable to that
of WU’s, although frequency of better F-measures are relatively
higher for WW than WU. To further investigate the comparison
between WW and WU, we compute the area under the curve of
the region of FPR between 0 and 0.05. This area, which we shall
refer to as AUC05, allows us to evaluate the true positive rate
with higher confidence. The histogram on AUC05 shows WW
bests WU more frequently than WU does, which implies the use
of weights in the SVM stage can find more true positives confi-
dently than the classical SVM.

The motivation to endow the weights with training data in
SVM learning is that the projections in the canonical space from
chemical profiles with larger weights are expected to be better
approximations of the projections from interaction profiles. It is
possible to directly evaluate how good the approximations are by
computing the distances among the projections. This motivation
leads to another weighting scheme using the normalization of

v′j =
1∥∥∥φch

(
xch

j

) − φin
(
xin

j

)∥∥∥ + ε (2)

instead of Eq. (1) in the SVM learning stage. We investigate the

Fig. 5 ROC curves. WWI uses the projections from interaction profiles in
the SVM stage, and WWIC uses the projections from both chemical
and interaction profiles for SVM.

performance when the weighting scheme is changed to Eq. (2) in
the SVM learning stage. We refer to this approach as WWUW

hereinafter. The average AUC and F-measure of WWUW are
0.802 and 0.649, respectively, which are slightly worse than those
of WW. The number of target proteins, for which the prediction
performance of WWUW is better than that of WW is not larger
than the number of WW besting WWUW, as depicted in Fig. 4 (b).
These facts imply that the changing weighting scheme in SVM
learning does not achieve significant improvements.

3.7 Using Interaction Profiles
When a sufficient number of known positive and negative in-

teractions are given for a certain ligand, the image of the inter-
action profile in the canonical image can provide good descrip-
tors for predicting the remaining interactions. We further imple-
mented two methods, herein referred to as WWI and WWIC, to
investigate the performance of the interaction profile. WWI re-
places the image of a chemical profile with the image of the inter-
action profile in the SVM stage, while WWIC concatenates the
two images to feed them to the weighted SVM. The two meth-
ods achieved significant improvement. WWI achieved an average
AUC of 0.857 and average F-measure of 0.699, while WWIC ob-
tained a 0.835 average AUC and a 0.692 average F-measure. The
P-values of the differences on AUC from WW are 5.27×10−9 and
0.021, respectively, and P-values on F-measures are 1.05 × 10−5

and 9.17 × 10−7, respectively. Figure 5 compares the average
ROC curves of WW, WWI, and WWIC. The curves of WWI
and WWIC are higher than that of WW, which supports the claim
that introducing the interaction profiles improves the prediction
performance.

4. Conclusions

A kernel version of weighted canonical correlation analysis
is proposed, which is implemented using a derived form of the
generalized eigenvalue problem. Similar to the linear CCA and
its kernelized version, this can be applied to machine learning
problems for dimension reduction and feature extraction. The pa-
per presents an application to improving the prediction quality
obtained in the protein-ligand interaction problem setting. By
adding bias to more similar samples, better prediction can be

c© 2013 Information Processing Society of Japan 23



IPSJ Transactions on Bioinformatics Vol.6 18–28 (June 2013)

made which is evident on the higher AUC and F-measure val-
ues obtained. Weighting scheme on SVM based on CCA out-
puts were also explored and are judged to be better than classical
SVM.

Even in the field of computational biology, CCA for more than
two data sources has been widely used [19], [24], [29] and their
usual objectives involve maximizing the sum of correlations for
every pair of data sources. For future work, it could be worth
exploring the extension of weighted CCA for analysis of multi-
ple data sets in a biological setting. It could also be interesting
to investigate the effectiveness of applying the proposed method
to other biological problems aside from protein-ligand interaction
prediction.
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Appendix
Here we present the details of the supporting theories applied

in this study. Throughout the discussion, we shall use the fol-
lowing notations. We will denote vectors by boldface lower-case
letters and matrices by boldface upper-case letters. The inverse of
a matrixA is denoted byA−1 and its transpose isA�. The n × n

identity matrix is given by In, while Dv is defined as diag(v),
the matrix whose diagonal entries are from vector v. We let Sn

be the set of all n × n symmetric matrices, Sn
+ as the set of all

n × n symmetric positive semi-definite matrices, Sn
++, the set of

all n× n symmetric positive definite matrices, and Om×n as the set
of all m × n orthonormal matrices. We define Nn = {i ∈ N|i ≤ n},
and 〈·, ·〉 is used to denote the inner product between vectors.

A.1 Generalized Eigendecomposition

The generalized eigendecomposition is defined as follows:
Theorem 1. (Generalized Eigendecomposition) Let n ∈ N. For
anyA ∈ Sn and anyB ∈ Sn

++,

∃U ∈ Rn×n,∃λ ∈ Rn, s.t. AU = BUDλ,

U�BU = In.

The entries of λ are called generalized eigenvalues, and the
columns of U are called generalized eigenvectors.
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This section deals with the case when the two matrices A ∈
S

n+m andB ∈ Sn+m
++ are of the form

A =

⎡⎢⎢⎢⎢⎣ 0m×m C

C� 0n×n

⎤⎥⎥⎥⎥⎦ , B =

⎡⎢⎢⎢⎢⎣ Bx 0m×n

0n×m By

⎤⎥⎥⎥⎥⎦

whereC ∈ Rm×n with r ≡ rank(C). Let us denote the generalized
eigendecomposition of (A,B) by

AUall = BUallΛall,

where U�allBUall = Im+n, and Λall = diag(λall) and λall =

[λ1, . . . , λm+n]�, such that λ1 ≥ · · · ≥ λm+n. We denote the
columns in Uall by

Uall = [u1, . . . ,um+n] =

⎡⎢⎢⎢⎢⎣ ux,1, · · · ,ux,m+n

uy,1, · · · ,uy,m+n

⎤⎥⎥⎥⎥⎦

where (∀i ∈ Nm+n)ux,i ∈ Rm, uy,i ∈ Rn, and define

Ux ≡ [ux,1, . . .ux,r], Uy ≡ [uy,1, . . . ,uy,r].

The following theorem is the main result of this section.
Theorem 2. Consider the following optimization problem

max tr(X�CY )

wrt X ∈ Rm×k,Y ∈ Rn×k,

subj to X�BxX = Y
�ByY = Ik.

An optimal solution is given by

X =
√

2[ux,1, . . . ,ux,k], Y =
√

2[uy,1, . . . ,uy,k].

To prove Theorem 2, we will use the following lemma.
Lemma 1.

U�x BxUx = U
�
y ByUy =

1
2
Ir.

Proof. (of Lemma 1) Let

Λ ≡ diag{λ1, . . . , λr}.

We assume λr > 0 here. From this assumption,

CUy = BxUxΛ, C�Ux = ByUyΛ.

Pre-multiplying the former equation byU�x and post-multiplying
the transpose of the latter equation by Uy yield

U�x BxUxΛ = U
�
x CUy = ΛU�y ByUy.

For the diagonal entries of the above equality,

∀i ∈ Nr : λiu
�
x,iBxux,i = λiu

�
y,iByuy,i,

resulting in

u�x,iBxux,i = u
�
y,iByuy,i =

1
2

(A.1)

since λi > 0 and from the assumption thatU�allBUall = Im+n. For
the off-diagonal entries,

u�x,iBxux, j − λi

λ j
u�y,iByuy, j = 0. (A.2)

From the assumption U�allBUall = Im+n,

[ ux,i

uy,i

]�
B
[ ux, j

uy, j

]
= u�x,iBxux, j + u

�
y,iByuy, j = 0. (A.3)

From the two equations (A.2) and (A.3), we have

u�x,iBxux, j = u
�
y,iByuy, j = 0. (A.4)

Thus, Eqs. (A.1) and (A.4) establish Lemma 1. �

Proof. (of Theorem 2) Let

Z ≡ 1√
2

[ X
Y

]
.

There exists R ∈ R(m+n)×k such that Z = UallR, and matrix R is
orthonormal, i.e.,R ∈ O(m+n)×k, since

R�R = R�I(m+n)R = R
�U�allBUallR = Z

�BZ

=
1
2
X�BxX +

1
2
Y �ByY = Ik.

Let ri ∈ Rk denote the ith row vector, i.e.,

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r�1
...

r�m+n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then we have

tr(X�CY ) =
1
2

tr(X�CY ) +
1
2

tr(Y �C�X )

=
1
2

tr
( [
X�,Y �

] ⎡⎢⎢⎢⎢⎣ 0m×m C

C� 0n×n

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣ X
Y

⎤⎥⎥⎥⎥⎦
)

= tr(Z�AZ) = tr(R�U�allAUallR)

= tr(R�U�allBUallDλallR) = tr(R�DλallR)

=

m+n∑
i=1

λi‖ri‖2 = 〈w,λall〉, (A.5)

where w ∈ Rm+n
+ is a nonnegative vector in which the ith entry is

defined by wi = ‖ri‖2. To conclude the proof, we shall make use
of the following two properties:

First, note that there existsS ∈ O(m+n)×(m+n−k) such thatR�S =
0k×(m+n−k). Then [R,S] ∈ O(m+n)×(m+n). Let si ∈ R(m+n−k) denote
the ith row vector, i.e.,

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s�1
...

s�m+n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then, ∀i ∈ Nn we have

1 =
∥∥∥∥
[ ri

si

]∥∥∥∥2 = ‖ri‖2 + ‖si‖2 ≥ ‖ri‖2 = wi,

where the first equality follows from the property of the square
orthonormal matrix: [R,S][R,S]� = In. Second, observe that

‖w‖1 =
n∑

i=1

wi =

n∑
i=1

‖rk‖2 = tr(RR�) = tr(R�R) = trIk = k.

Now, the objective function tr(X�CY ) is maximized when
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wi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if 1 ≤ i ≤ k,

0, if k < i ≤ n,

and so the value of Eq. (A.5) is bounded above by

〈w,λ〉 ≤
k∑

i=1

λi.

Finally, we show that equality holds when

R =

⎡⎢⎢⎢⎢⎣ Ik

0(m+n−k)×k

⎤⎥⎥⎥⎥⎦ .

Since Z = UR = Uma, where Uma ≡ [u1, . . . ,uk], we have

tr(Z�AZ) = tr(U�maAUma) =
k∑

i=1

λi.

Thus, Z = Uma is an optimum, which implies

X =
√

2[ux,1, . . . ,ux,k], Y =
√

2[uy,1, . . . ,uy,k].

�

A.2 Linear Weighted CCA

Algorithm 1 (Linear Weighted CCA) Define two matrices,

Xch ≡ [xch
1 , . . . ,x

ch
n
]
, Xin ≡ [xin

1 , . . . ,x
in
n
]
,

and let v = [v1, . . . , vn]�. Then the optimal offsets, μch, μin, are
computed as

μch =Xchv, μin =Xinv.

We use the optimal offsets to define Cch,ch,Cch,in,Cin,ch,Cin,in as

Cch,ch ≡XchDvX
�
ch−μchμ

�
ch, Cch,in ≡XchDvX

�
in−μchμ

�
in,

Cin,ch ≡XinDvX
�
ch−μinμ

�
ch, Cin,in ≡XinDvX

�
in−μinμ

�
in,

and consider the following generalized eigen-decomposition
problem:

[ 0pch×pch Cch,in

Cin,ch 0pin×pin

][ wch

win

]
=

[ Cin,in 0pin×pch

0pch×pin Cch,ch

][ wch

win

]
.

Denote the hth major eigen-vector by
[ wch

h

win
h

]
. The optimal

loading matrices Wch and Win are computed by setting the hth
columns ofWch andWin to wch

h and win
h , respectively.

Theorem 3. Algorithm 1 yields the parameters of the mapping
functions (φch,φin) which minimize the expected deviation sub-
ject to the scaling constraints that the second moment matrices
are the identity matrix.

To prove this theorem, we employ the following result.
Let two affine mapping functions φch : Rpch → R

m and
φin : Rpin → Rm be parametrized by

φch(xch) =W �
ch(xch−μch), and φin(xin) =W �

in (xin−μin),

respectively. Define the expected deviation by

J = Ep(xch ,xin)
[‖φch(xch) − φin(xin)‖2],

where the expectation is according to a probabilistic distribution
p(xch,xin). If we consider the optimization problem for min-
imizing the expected deviation with respect to the parameters
(Wch,μch,Win,μin) subject to

Ep(xch)
[
φch(xch)φch(xch)�

]
= Ep(xin)

[
φin(xin)φin(xin)�

]
= Im,

a minimizer of the optimization problem is found by the follow-
ing optimization problem.

Set the offset vectors as μch = Ep(xch)
[
xch] and μin =

Ep(xin)
[
xin]. The optimal loading matricesWch andWin are com-

puted by setting the hth columns ofWch andWin towch
h andwin

h ,

respectively, and denoting by

⎡⎢⎢⎢⎢⎣ w
ch
h

win
h

⎤⎥⎥⎥⎥⎦ the hth major eigenvector

of the generalized eigendecomposition:

⎡⎢⎢⎢⎢⎣ 0pch×pch C̆ch,in

C̆in,ch 0pin×pin

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣ w

ch

win

⎤⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎣ C̆in,in 0pin×pch

0pch×pin C̆ch,ch

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣ w

ch

win

⎤⎥⎥⎥⎥⎦ , (A.6)

where the covariance matrices are given by

C̆ch,ch ≡ Ep(xch)
[
(xch − μch)(xch − μch)�

]
,

C̆ch,in ≡ Ep(xch ,xin)
[
(xch − μch)(xin − μin)�

]
,

C̆in,ch ≡ C̆�ch,in,

C̆in,in ≡ Ep(xin)
[
(xin − μin)(xin − μin)�

]
.

To verify this, we let

x ≡
⎡⎢⎢⎢⎢⎣ x

ch

xin

⎤⎥⎥⎥⎥⎦ , μtot ≡
⎡⎢⎢⎢⎢⎣ μch

μin

⎤⎥⎥⎥⎥⎦ .

Then the second order moment matrices are rewritten as

E[φch(xch)φch(xch)�] =W �
chE[(μch − xch)(μch − xch)�]Wch,

E[φin(xin)φin(xin)�] =W �
inE[(μin − xin)(μin − xin)�]Win,

respectively, and the expected deviation is arranged as

J = E
[∥∥∥φch(xch) − φin(xin)

∥∥∥2]

= E
[∥∥∥W �

ch(xch − μch) −W �
in (xin − μin)

∥∥∥2]
= tr
(
W �

chE
[
(xch − μch)(xch − μch)�

]
Wch
)

+ tr
(
W �

inE
[
(xin − μin)(xin − μin)�

]
Win
)

− 2tr
(
W �

chE
[
(xch − μch)(xin − μin)�

]
Win
)

= 2m − 2tr
(
W �

chE
[
(xch − μch)(xin − μin)�

]
Win
)
.

From here, we will first derive the optimal value of μtot, and
then give the algorithm to find the optimal Wch and Win. Intro-
ducing the Lagrangian multipliers Λch ∈ Spch and Λin ∈ Spin , the
Lagrangian function is written as

LA = 2m − 2tr
(
W �

chE
[
(μch − xch)(μin − xin)�

]
Win
)

− 〈Λch, Im −W �
chE
[
(μch − xch)(μch − xch)�

]
Wch
〉

− 〈Λin, Im −W �
inE
[
(μin − xin)(μin − xin)�

]
Win
〉
.

To obtain the values of μch and μin at the saddle point, we set the
derivative of the Lagrangian to zero:
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∂LA

∂μch
= 2WchW

�
in
(
μin − E[xin]

)

+ 2WchΛchW
�
ch
(
μch − E[xch]

)
,

∂LA

∂μin
= 2WinW

�
ch
(
μch − E[xch]

)

+ 2WinΛinW
�
in
(
μin − E[xin]

)
.

The two derivatives vanish simultaneously when

μch = E[xch], and μin = E[xin].

Next, we derive the optimal Wch and Win. Substituting the
definitions of the covariance matrices into the expected deviation
and the second moments of the affine transformations, we have

J = 2m − 2tr
(
W �

chC̆ch,inWin
)

and

Ep(xch)
[
φch(xch)φch(xch)�

]
=W �

chC̆ch,chWch,

Ep(xin)
[
φin(xin)φin(xin)�

]
=W �

in C̆in,inWin.

Then, by omitting the constants, the problem for finding the
optimal Wch and Win is reduced to the following optimization
problem:

max tr(W �
chC̆ch,inWin)

wrt Wch ∈ Rpch×m,Win ∈ Rpin×m

subj to W �
chC̆ch,chWch =W

�
in C̆in,inWin = Im.

From Theorem 2, the optimization problem is solved by general-
ized eigendecomposition (A.6) previously described. Hence, the
given algorithm finds a minimizer of the optimization problem.

Now we present the proof of Theorem 3.

Proof. Observe that if we substitute the probabilistic distribu-
tion p(xch,xin) to the empirical distribution q(xch,xin) defined
in the main text, the first moments and the second moments are
expressed as

Ep(xch)[x
ch] =Xchv, Ep(xin)[x

in] =Xinv,

C̆ch,ch =XchDvX
�
ch − μchμ

�
ch, C̆ch,in =XchDvX

�
in − μchμ

�
in,

C̆in,ch = C̆
�
ch,in, C̆in,in =XinDvX

�
in − μinμ

�
in,

which implies that the optimization algorithm given in the result
above is equivalent to Algorithm 1 in this case. Thus, Theorem 3
is established. �

A.3 Kernel Weighted CCA

Suppose we are given n drugs. The kernel matrices of the
chemical and interaction kernels Kch ∈ Sn×n and Kin ∈ Sn×n

are defined so that their respective entries are the values of the
kernel functions, as given by

∀i,∀ j ∈ Nn : Kch
i, j = Kch

(
xch

i ,x
ch
j
)
, Kin

i, j = Kin
(
xin

i ,x
in
j
)
.

The kernel empirical mapping of the two information sources are
defined as

kch(xch) ≡ [Kch(xch
1 ,x

ch), . . . ,Kch(xch
n ,x

ch)
]�
,

kin(xin) ≡ [Kin(xin
1 ,x

in), . . . ,Kin(xin
n ,x

in)
]�
.

KWCCA needs the kernel values among shifted vectors in the
kernel Hilbert spaces. The shifted kernels for chemical profiles
can be computed as

K̄ch
(
xch

i ,x
ch
j
) ≡ Kch

(
xch

i ,x
ch
j
) − v�(kch

(
xch

i
) − kch

(
xch

j
))

+ v�Kchv,

k̄ch(xch) ≡ (In − 1nv
�)(kch(xch) −Kchv

)
,

K̄ch ≡ (In − 1nv
�)Kch

(
In − v1�n

)
,

(A.7)

and K̄in
(
xin

i ,x
in
j

)
, k̄in(xin), and K̄in are defined similarly.

If we define ˜̄Kch ≡ D1/2
v K̄chD

1/2
v , ˜̄Kin ≡ D1/2

v K̄inD
1/2
v , the

expected deviation between the images in Rm is expressed as

E
[∥∥∥ψch(xch) −ψin(xin)

∥∥∥2] = 2m − 2tr
(
A�ch

˜̄Kch
˜̄KinAin

)
.

(A.8)

The second moment matrices can be written as

E
[
ψch(xch)ψch(xch)�

]
= A�ch

˜̄K2
chAch,

E
[
ψin(xin)ψin(xin)�

]
= A�in

˜̄K2
inAin.

Hence, the algorithm can be reduced to the following maximiza-
tion problem:

max tr
(
A�ch

˜̄Kch
˜̄KinAin

)
wrt Ach,Ain ∈ Rn×m,

subj to A�ch
˜̄K2

chAch = A
�
in

˜̄K2
inAin = Im.

Since the rank of In − v1�n is n − 1, the two shifted kernel matri-
ces, ˜̄Kch and ˜̄Kin, are always singular. To avoid overfitting, we
introduce two regularization terms γchA

�
chAch and γinA

�
inAin to

scale constraints as

A�ch
˜̄K2

chAch + γchA
�
chAch = A

�
in

˜̄K2
inAin + γinA

�
inAin = Im,

(A.9)

where γch and γin are constants. The following algorithm finds
Ach and Ain minimizing the expected deviation subject to the
regularized constraints.
Algorithm 2 (Kernel Weighted CCA) Solve the following gener-
alized eigen-decomposition:
⎡⎢⎢⎢⎢⎢⎣ 0n×n

˜̄Kch
˜̄Kin

˜̄Kin
˜̄Kch 0n×n

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣ α

ch

αin

⎤⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣
˜̄K2

ch + γchIn 0n×n

0n×n
˜̄K2

in + γinIn

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣ α

ch

αin

⎤⎥⎥⎥⎥⎦

The matrix

⎡⎢⎢⎢⎢⎣ Ach

Ain

⎤⎥⎥⎥⎥⎦ is set so that its hth column is set to the hth

major generalized eigenvector.
Theorem 4. Algorithm 2 yields the parameters of the mapping
functions (ψch,ψin) which minimize the expected squared devia-
tion (A.8) subject to the scaling constraints given in Eq. (A.9).
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Proof. The problem of minimizing Eq. (A.8) subject to
Eq. (A.9) is rewritten as

max tr
(
A�ch

˜̄Kch
˜̄KinAin

)
wrt Ach ∈ Rn×m,Ain ∈ Rn×m,

subj to A�ch
˜̄K2

chAch + γchA
�
chAch

= A�in
˜̄K2

inAin + γinA
�
inAin = Im.

From Theorem 2, the optimization problem is solved by general-
ized eigendecomposition in Algorithm 2. �

A.4 Weighted SVM

Let us denote the protein-ligand interaction table by Y ∈
{±1, 0}n×pin , where each row represents a ligand, and each column
represents a target protein. Each cell in the table Y takes one of
three values, ±1 and 0: +1 and −1 indicate the existence and the
absence of the interaction, respectively, and unknowns are 0.

SVM learning algorithm finds a classification boundary mini-
mizing the violations for the constraints that training points are
kept out of the margin. The weighted SVM employed in this
study counts the violations with weights v j (See Sections 2.5 and
3.6) given to each training data.

When the interaction between a ligand i and a target t is pre-
dicted, ligands whose interactions with the target t are known are
selected as training data. If the index set of the ligands for training
is denoted by Ii, then the weighted SVM minimizes

1
2
‖w‖2 +C

∑
j∈Ii

v j max
(
0, 1 − Yj,t f

(
xch

j ;w, b
))
,

where C is constant. This algorithm is reduced to the classical
SVM if all v j’s are set to be equal in value. The dual prob-
lem of the weighted SVM learning algorithm can be derived as
a quadratic program with box constraints and a single equality
linear constraint, enabling fast learning with kernels.
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