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Abstract: In this paper we have presented a classification framework for classifying tweets relevant to some specific
target sectors. Due to the imposed length restriction on an individual tweet, tweet classification faces some additional
challenges which are not present in most other short text classification problems, needless to say in classification of
standard written text. Hence, bag-of-word classifiers, which have been successfully leveraged for text classification
in other domains, fail to achieve a similar level of accuracy in classifying tweets. In this paper, we have proposed a
collocation feature selection algorithm for tweet classification. Moreover, we have proposed a strategy, built on our
selected collocation features, for identifying and removing confounding outliers from a training set. An Evaluation on
two real world datasets shows that the proposed model yields a better accuracy than the unigram model, uni-bigram
model and also a partially supervised topic model on two different classification tasks.
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1. Introduction

Twitter, a microblogging site, which also falls under the broad
category of social networks, has grown at a staggering rate since
its advent in 2006. It is no longer restricted as a mere virtual en-
vironment for social communication among friends; rather it has
become a platform for diversified usage like posting personal sta-
tus updates, sharing multimedia contents, propagating news and
even advertising products and services [1]. The spatial resolution
of its coverage has made it a promising network for assessing the
evolution and dynamics of social systems. The richness of infor-
mation content of Twitter has allured many researchers over the
years to study different social phenomena by trying to establish a
correlation between the vast public opinion expressed in Twitter
and physical events taking place in society [2], [3], [4], [5]. Start-
ing from predicting stock indices [6], researchers have tried to
predict box office hits [7], propagation of earthquake [8] and even
outbreak of infection diseases in communities [9], [10], [11].

Generally these endeavors involve two major steps: a classi-
fication or filtering step followed by a prediction or inference
step. In the classification step the researchers try to identify and
segregate tweets relevant to the target sector they are trying to
assess or predict. In the prediction step, they try to come up
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with some models that establish some correlation between the
information content in the segregated tweets and the target sec-
tor, often by using some regression mechanism. Considering the
huge traffic in Twitter, tweets relevant to a specific topic is really
scarce [2]. Isolating the large volume of irrelevant tweets is one
of the paramount challenges to be solved [3], [12] and is still an
active research challenge.

In many occasions [2], [3], [8], [10], [13], [14] researchers
have adopted Bag-of-Word (BOW) classifiers for filtering topic–
relevant tweets. BOW classifiers are statistical learning al-
gorithms that use textual features like n–grams (e.g., words,
phrases) and their derivatives (e.g., frequencies). They have been
successfully leveraged for many short text classification tasks like
sentiment classification in user reviews [15], disease identifica-
tion from abstracts of medical journals [16], etc. Many traditional
classifiers like Naı̈ve Bayes, Maximum Entropy, Support Vector
Machine etc. fall in this category. The performances of these clas-
sifiers are often influenced by the feature selection strategy and
also the quality of the training set; i.e., its representativeness to
the further unseen text.

Twitter imposes 140 character length restriction on its posts
which makes tweets different from most other short texts like user
reviews, search snippets or journal abstracts that have been suc-
cessfully classified using BOW classifiers. The length restriction
forces its users to use unstructured language, non–grammatical
sentences and non–dictionary vocabulary often referring to some
URL containing more elaborate information regarding the topic
of the post. This increases the complexity of generating a repre-
sentative training set by many folds. On one hand, it gives rise
to an almost infinite vocabulary and on the other hand it induces
the sparseness of textual features in an individual tweet [17] – the
only arsenal available to a BOW classifier. These added dimen-
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sions of complexities naturally make tweet classification quite
different from other short text classification. The aforementioned
works, although could achieve impressive results, did not take
any special measure to handle these complexities in the classifi-
cation phase. As we shall see in the related work section, most of
them adopted some well established feature selection and training
set generation techniques that had been successfully deployed in
some other kind of text classification job. In this paper we pro-
pose a simple but robust tweet classification strategy acknowledg-
ing two prominent limitations of tweets — a) the samples we can
possibly incorporate in a training set are far from being represen-
tative due to the possibly infinite vocabulary and b) the sparseness
amputates the BOW classifier’s ability to discern context and con-
notation of words in the tweets. Hence, if not carefully annotated,
the sparseness could easily confuse a BOW classifier causing ill
performance.

Our main contributions are as follows:
( 1 ) We have proposed a feature selection method, which takes

into consideration the possibly infinite vocabulary in Twitter
and thus discarding any collocation features that might have
occurred by chance, even though they appear with relatively
higher frequencies in the training set.

( 2 ) We have also proposed a parameterized algorithm built on
top of the selected collocation features for automatic detec-
tion and tweaking of noisy training instances, which we call
confounding outliers. Evaluation results show that their re-
moval contributes to the improvement of the classification
performance.

( 3 ) Moreover, as part of our feature selection process, we have
proposed a stop–word selection strategy, which avoids in-
cluding high–frequency discriminating features into the sto-
plist.

2. Related Work

Different researchers have adopted various techniques in tweet
classification step. While some have used simply hand-picked
keywords or phrases for filtering tweets [6], [11], others have
sought recourse in text classifiers [2], [3], [8], [10], [13], [14].

Lampos et al. [11] collected 1,560 disease and symptom re-
lated keywords from web articles related to influenza and from
Wikipedia. Using LASSO regression, they restricted the feature
space and reduced the keywords from 1,560 to 97. Selecting
keywords from domains like Wikipedia or online forums where
no length restriction is imposed on posts, runs the risk of facing
the problem of ‘domain adaptation’. Hence, instead of borrow-
ing knowledge from other domains, we have opted for selecting
textual features from Twitter corpus alone. Phan et al. [16] also
used Wikipedia for identifying latent topics in web snippets using
LDA. However, web snippets are excerpts of web pages. Hence,
the domain of textual features are similar to that of Wikipedia.

Some researchers have used different fast-filtering techniques
for reducing the amount of irrelevant tweets from Twitter corpus
before applying any classification technique. While some have
used keyword based filtering [8], [10], [14], others have used in-
formation contained in the attached URL [3] or mention of pre-
defined event related persons or venues [4]. Ramage et al. [17]

dropped all tweets from a training set having less than a prede-
fined number of terms. Those short tweets just added noise to the
training set without contributing anything to the learning process.

Culotta [14], in his attempt to predict the intensity of influenza
in New York, used four hand chosen keywords to select 206
tweets which he manually categorized into 160 +ve and 46 -ve
examples. He then trained a Naı̈ve Bayes classifier to classify fur-
ther tweets. Aramaki et al. [10] made a similar effort to establish
a correlation between Twitter messages and influenza epidemics
in Japan. They extracted influenza related tweets using a sim-
ple word lookup of ‘influenza’. They manually annotated 5,000
tweets as +ve or -ve and trained a BOW classifier to classify fur-
ther unseen tweets. Sakaki et al. [8] used Twitter posts containing
the keyword ‘earthquake’ to detect occurrences of earthquake in
Japan. Like the aforementioned researchers, they too prepared
a small training set by manual classification of tweets into posi-
tive and negative classes. They trained a support vector machine
(SVM) classifier to classify further tweets.

Some researchers have used partially supervised learning al-
gorithms. Use of partially supervised models have twofold ad-
vantages: in one hand, it eliminates the need for any manual la-
beling which is both time consuming and expensive and on the
other hand it allows incorporation of a very large training set,
which certainly leads to a more robust learning process. Ramage
et al. [17] used a supervised topic model called LLDA, which is
a labeled version of LDA [18], to map contents of Twitter feed
into 4 categories namely substance (about events and ideas), so-
cial (recognizing language used towards a social end), status (de-
noting personal updates) and style (broader trends in language
usage). They used hashtags as one of many user defined labeled
dimensions (some of the other dimensions being emoticons, user
references, reply, question marks etc.) and by combining these
dimensions with identified latent dimensions, they tried to deter-
mine the most appropriate category for the tweet. The authors
used a heuristic approach to subdivide each of these labels into
10 sub-labels and stated that it is still to be determined how best
to select the number of sub-labels per label type. The 4 categories
had been chosen to represent 4 different usage of language in the
Twitter corpus. As the authors found, roughly all tweets that were
either a reply or had some user references (@user) were assigned
to “social” category, those having emoticons were grouped un-
der “style” category and tweets that contained any hashtag had
been categorized as “substance” category. In our two experiment
scenarios and in many other tweet classification tasks, separa-
tion of tweets based on such usage of language is a far shot. For
example, in one of our experiments, we tried to identify tweets
reporting authors’ self-infection to influenza. Tweets similar to
‘I am having #flu :( . . . wish @cristine were here’ were not un-
common in our training set. This example tweet, which evidently
is a status update, contains a user reference, an emoticon and a
hashtag. Moreover, both tweets reporting self-illness and those
not reporting any illness might contain user references, hashtags
and emoticons.

3. Detail Problem Statement

As we have alluded in previous sections, the length restriction
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on tweets incurs some unique classification challenges. The two
we tried to circumvent are as follows:

3.1 Sparsity
Twitter users have adapted to its imposed length restriction by

using abbreviation, truncating words which they believe can be
understood from context and often by referring to a more elabo-
rate source of information through URLs. The follower-following
paradigm of twitter sets a platform where the author of the tweet
may assume that the target audience is already familiar with the
context. A human reader essentially uses the textual features of
a tweet, the connotation, the context and also his background
knowledge about the topic to interpret a tweet. However, the only
arsenal available to a BOW classifier are the textual features and
their derivatives. In a length unrestricted document, the associ-
ated words, phrases and sentences provide required support for
word sense disambiguation and development of context and con-
notation. However, for tweets not much support is available due
to their brevity. Moreover, as the language used in Twitter is un-
structured, different users use different techniques for abridging
their text, making it extremely difficult to find a pattern out of it.
Hence, unlike a follower, a BOW classifier does not have the re-
quired dimensions for interpreting some of the tweets correctly.
Let us consider that we intend to classify tweets as flu +ve or -ve
and encounter the following two tweets:
( 1 ) “In bed . . . listening to Theraflu . . .”
( 2 ) “In bed . . . hope this Theraflu works . . .”

In the first tweet, the user is referring to a popular music track
of DJ Khaled, titled ‘Theraflu’. However, in the second tweet the
user is referring to a common drug used in US against seasonal
flu whose brand name is also ‘Theraflu’. Now the following three
cases are worth mentioning, with case (ii) and (iii) being identical
with role reversion:
(i) Tweets with similar textual features as (1) are not uncommon

among -ve training instances and those similar to (2) are not
uncommon among +ve training instances.

(ii) Tweets with similar textual features as (1) are not uncommon
among -ve training instances but those similar to example (2)
are extremely rare among +ve training instances.

(iii) Tweets with similar textual features as (1) are extremely rare
among -ve training instances but those similar to example
(2) are not uncommon among +ve training instances.

In case of (i), the performance of the classifier in finding an op-
timal classification boundary would be largely dependent on the
feature selection strategy. The classifier would try to work around
by assigning different weights to the selected features. Unigrams
like ‘Theraflu’ or ‘bed’ would not play any significant role if they
appear with near equal frequency among the training instances of
both classes. Depending on the feature selection strategy, they
actually might be dropped from feature set.

However, if (ii) is the case, then we call tweet (2) a confound-

ing outlier.
Definition 1 Confounding Outlier: A Confounding outlier is

a tweet that satisfies both the following properties:
a. It is an outlier among training instances of its own class
b. It has remarkable resemblance in terms of textual features

with majority of training instance of some other class(es).
Edgar et al. [20] analyzed the effect of outlier detection on the

performance of classifiers and found that the misclassification er-
ror rate decreases after removing outliers. In this paper, we have
proposed a method, built on top of our feature selection proce-
dure, for identifying and tweaking confounding outliers from a
training set. Evaluation results show that, though confounding
outliers comprise a very small fraction of the training set, their
removal improves the classification accuracy, which agrees with
the findings of Acuña et al. [20].

3.2 Loose Coupling
People post their opinion, news etc. about their domain of in-

terest in Twitter. It is quite expected that by the passage of time,
physical events would cause some of the domains come closer
to the other topics. For example, the Occupy-Wall-Street (OWS)
movement either intentionally or unintentionally had some influ-
ence on real estate prices, job market etc. and NY police had
a busy time deterring those protesters. Hence tweets like “Ex-

Philly police captain arrested at NY Occupy rally is warned

not to wear uniform at protests: http://t.co/6FmTvWOp #OWS

#NYPD” or “Police arresting people for no apparent reason:

http://t.co/Csytb3yr #OWS” were common among our crawled
tweets. Textual feature of the first tweet has several discrim-
inating features of OWS related tweets (e.g., ‘occupy’, ‘rally’,
‘protests’ etc.), however the same cannot be said about the second
one. A classification problem would face no challenges if these
overlapping domains map to the same class. However, had two
of our different classes corresponded to tweets relevant to OWS
movement and those relevant to normal police activities in New
York, then considering the significant proportion of police action
related tweets in the OWS corpus, it seems that the classification
problem would have been similar to the one explained in case (i)
in the ’Sparsity’ subsection. In our experiment we had two dif-
ferent classes, one mapping tweets from OWS domain and the
other mapping those from real estate domain. The following two
tweets were picked up as confounding outliers by our tweaking
module:
( 1 ) “Euro is not to blame for crisis: Martin Webber: We

have had this Occupy Wall Street movement emerging

http://t.co/epNk3ejl #realestate”
( 2 ) “Our campaign against @REBNY’s attempted park clo-

sures makes The Real Deal top real estate stories of 2011:

http://t.co/J9DbOVa5 #ows”
The hashtags affixed to the above tweets are not inappropriate

in the sense that the events reported in the tweets actually corre-
spond to the topics indicated by the hashtags. However, at the
same time they also satisfy both the properties of confounding
outliers, and hence tweaked from the training set. We shall dis-
cuss the tweaking process in detail in the next section.

4. Proposed Method

Figure 1 shows the general framework of our proposed model.
‘Feature selection’ and ‘Tweaking’ are the two key sub–modules
of the framework, which are responsible for selecting textual fea-
ture and removing confounding outliers respectively. We describe
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their functional details in the following subsections.

4.1 Feature Selection Unit
4.1.1 Unigram Feature Selection

Let, C be the set of all classes and Tc be the set of all uni-
grams encountered among the training instances for class c. Let,
U = {t : t ∈ Tc for all c ∈ C}.

4.1.1.1 Preprocessing Step: Let U∗ ⊆ U be the set of uni-
grams satisfying any of the following conditions:
• its length is less than 3
• it is a hashtag, URL or user reference (@user)
• it is a numeral or time expression
4.1.1.2 Stop-word Selection: The most common terms are

effectively a corpus–specific collection of stop–words [17]. A
common practice in NLP is to consider the top k terms with the
highest frequency as stop–words, with typically k ranging from
30 to 50. However, selecting solely by term frequency causes
content-bearing words to be added to the stoplist [21]. Hence,
instead of simply selecting the terms with highest frequency, we
define a new measure for selecting stop–words based on term–

frequency, doc–frequency and inclination of each term.
Definition 2 Term–frequency: Number of times a term ap-

pears in a particular tweet collection. For each term t, let tf t be a
length |C| vector holding its term–frequency in the training corpus
of each class.

Definition 3 Doc–frequency: Number of tweets in a collec-
tion containing the term. For each term t, let df t be a length |C|
vector holding its doc–frequency in the training corpus of each
class.

Definition 4 Inclination: To measure the degree of inclina-
tion of a term toward the training corpus of any particular class,
we define a new function γt:

γt =
‖df t‖1 − max(df t)

‖df t‖1

where, ‖.‖1 represents the L1 norm. If df t

‖df t‖1
is a uniform distribu-

tion, then γt will be equal to |C|−1
|C| , and if the term appears only in

the training corpus of a single class, then γt will be equal to 0.
Our set of selected stop–words for unigram features:

Su = {arg max
t∈U−U∗

‖tf t‖1 : γt > 0.15 and |Su| = 40}.

4.1.1.3 Rare Unigram Identification: Terms appearing in
very few documents in the training set are often referred to
as rare terms. Removing rare terms from the unigram feature
set is also a common practice adopted by many researchers in-
cluding Ramage et al. [17]. Our selected set of rare unigrams
Ru = {t : ‖df t‖1 < 4 and t ∈ U −U∗}.

Our finally selected unigram feature set Fu = U−U∗−Su−Ru.
4.1.2 Bigram Feature Selection

4.1.2.1 Selecting Unigrams for Bigram Construction:
Several earlier researchers reported better results when consid-
ering unigrams of some specific part–of–speech for construct-
ing bigrams [29], [30]. We adopted a similar approach and only
unigrams in the set Up = {t : t ∈ U − U∗ and POS(t) ∈
{verb, noun, adjective}} participated in the bigram construction
process, where POS(t) returns the part–of–speech of a unigram,

Fig. 1 General framework of the proposed model.

which we determined using the ‘Stanford Log–linear Part–Of–
Speech Tagger’ [27].

4.1.2.2 Capturing Bigrams with a Flexible Structure: As
Twitter users often do not follow any standard grammar for their
posts, we look for bigrams where the two unigrams stand in more
flexible relationship to one another. Hence, instead of looking for
pair of words immediately following each other, we use a ‘col-
location window’ of 3 – thus considering each word pair in the
window as a potential bigram. For example, the phrase “powerful
personal computer” would produce three bigrams; ‘powerful per-
sonal’, ‘personal computer’ and ‘powerful computer’ when the
collocation window is set to 2 or higher. As has been shown by
Smadja [22], this method is quite successful at terminology ex-
traction and determining appropriate phrases for natural language
generation. Let, B̂c = {(t1, t2) : t1, t2 ∈ Up and dist(t1, t2) � 3}.

4.1.2.3 Identifying Bigrams with Structural Importance:
Smadja [22] actually used a variance based method for reducing
the feature space. Of course, considering all possible bigrams
encountered in the training set would make the feature space
extremely sparse. To determine whether the bigram has some
real structural importance, we have adopted the ‘Likelihood Ra-
tio’ approach for hypothesis testing of independence proposed by
Dunning [23], which takes into account the volume of data that
has been considered for calculating the frequency of the bigram
as well as the frequency of the individual words comprising the
bigram. For sparse data (as in case of Twitter) this approach is
more appropriate than the χ2 test [24].

Likelihood ratio is a number that tells how much more likely
one hypothesis is over another. Our first hypothesisH1 states that
there is no association between the words beyond chance occur-
rence; i.e., in the bigram w1w2, the words w1 and w2 are generated
completely independently of each other. The second hypothesis
H2 states that there is a structural dependence between w1 and
w2. Formally,
Hypothesis 1 (H1): P(w2|w1) = p = P(w2|¬w1)
Hypothesis 2 (H2): P(w2|w1) = p1 � p2 = P(w2|¬w1)
We have used the usual maximum likelihood estimation for cal-
culating p, p1 and p2. Let, n1, n2 and n12 be the number of occur-
rences of w1,w2 and w1w2 in the text corpus respectively and N

be the total number of terms. The likelihood of getting the counts
w1,w2 and w1w2 in the current corpus is

L(H1) = bin(n12; n1, p)bin(n2 − n12; N − n1, p) and

L(H2) = bin(n12; n1, p1)bin(n2 − n12; N − n1, p2).

Here, bin(x; n, p) =
(

n
x

)
px(1 − p)n−x represents binomial distribu-

tion. We then calculate the likelihood ratio λ = L(H1)
L(H2) of the
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two hypotheses. The quantity (−2 log λ) is asymptotically χ2

distribution. We reject the hypothesis of independence H1

for a bigram with 95% confidence if −2 log λ ≥ 7.88, which
is the critical value for χ2 distribution with 1-degree of free-
dom at confidence level α = 0.005. Let, Bc = {b : b ∈
B̂c and b is structurally important}.

4.1.2.4 Bigram Stoplist Construction: Let, F̂b =
⋃
c∈C
Bc.

Our selected set of bigrams in the stoplist:

Sb = {arg max
b∈F̂b

‖tf b‖1 : γb > 0.15 and |Sb| = 10}.

4.1.2.5 Rare Bigram Selection: Our selected set of rare bi-
grams Rb = {t : ‖df b‖1 < 4 and b ∈ F̂b}.

Our finally selected bigram feature set Fb = F̂b − Sb − Rb. We
refer to this set as ‘fidels’.

4.2 Tweaking Unit
This unit is responsible for identifying and removing con-

founding tweets from the training set by using the selected fea-
tures.
4.2.1 Determining Most Appropriate Class for Overlapping

Bigrams
Ratios of relative frequencies between two or more different

corpora can be used to discover collocations that are characteris-
tics of a corpus when compared to another corpus [26]. For each
bigram in Fb, we tried to determine the class for which the bi-
gram is more appropriate as a characteristic feature. For such
bigrams, we checked the ‘ratios of relative frequencies’ between
two or more classes to determine the most appropriate class for
the bigram. Let, n1 and n2 be the frequencies of a bigram b in the
training corpus of classes X and Y respectively. Let, N1 and N2 be
the total number of terms identified from classes X and Y . Then
the relative frequency ratio is r = n1/N1

n2/N2
. If r ≥ 1, then b’s most

appropriate class is X, otherwise it is Y . Mb is a length |C| vector
holding the relative frequency of fidel b for each class c ∈ C.
4.2.2 Identifying and Tweaking Confounding outliers from

a Training Set
We have developed algorithm 1 to identify confounding out-

liers in a training set. For every tweet in the training corpus of
a class c, we determine the number of bigrams in the tweet for
which c is its most appropriate class (lines 8–10). In the algorithm
δ ∈ [0, 1] is a design parameter, which controls the strength–
accuracy tradeoff of the model. If δ is set too close to 1, each
tweet in the training set will contain bigram features from exactly
one class. Along with the confounding outliers, all tweets on the
class boundaries will be culled. Though the classifier will show
better accuracy on the training set, it will not be robust against
actual tweets. Similarly, setting δ close to 0 will not tweak any
tweets from the training set thus leaving the confounding outliers
behind. If for less than δ fraction of the bigrams in a tweet, the
bigrams’ most appropriate classes are different from the class as-
signed to the tweet, we discard that tweet from the training set
(lines 13–15). In our experiment we have used δ = 0.3. Hence,
a tweet is declared as a confounding outlier, if approximately
more than 2

3 -rd of its bigram features’ most appropriate classes
are different from its own class. A higher value of δ would run

the risk of tweaking many instances near class boundaries, which
would result in over-fitting. The objective of the tweaking pro-
cess is to tweak those tweets whose textual features suggest a
different class than that currently assigned to it. In one of our
experiments we used hashtags as class labels and the tweaking
process culled 1.3% training instances. In our other experiment,
we manually labeled training instances and the tweaking process
culled only 0.28% tweets. It substantiates that when the train-
ing instances are carefully annotated, tweaking would be hardly
necessary. Though the inter-class distances were quite marginal
in the later experiment too, the tweaking process did not try to
widen them by culling tweets near class boundaries.

Algorithm 1 Tweak Confounding Outliers from Training Set
1. trainingSet ← null

2. for each class c ∈ C do

3. for each tweet T ∈ training corpus of c do

4. total← 0 local← 0

5. for each bigram b ∈ T do

6. if b ∈ Fb then

7. total← total + 1

8. if Mb,c = max(Mb) then

9. local← local + 1

10. end if

11. end if

12. end for

13. if total = 0 or local
total ≥ δ then

14. trainingS et ← trainingS et ∪ {T }
15. end if

16. end for

17. end for

5. Evaluation

To evaluate the performance of the proposed model, we con-
ducted two experiments.

Experiment 1: In the first experiment we tried to identify
tweets reporting some illness of the author. The algorithm learned
on a small manually labeled training set. Following an approach
similar to Culotta [14] and Aramaki et al. [10], we considered
tweets having the keywords ‘influenza’ or ‘flu’ only and then clas-
sified those tweets into those reporting some illness (+ve class)
and those not reporting any illness of the author (–ve class). We
actually divided the –ve class into two sub–classes – one report-
ing some flu related news, e.g., those reporting outbreak of an
epidemic somewhere in the world or reporting some important
research finding regarding flu etc. and the other just having the
keywords but not reporting any illness.

Experiment 2: In the second experiment, we tried to deter-
mine appropriate ‘hashtags’ for tweets. ‘Hashtags’ are twitter
provided mechanism for self-annotation of tweets by their au-
thors. A user can add the ‘#’ sign before any word in his/her
tweet to convert the word into a hashtag. Twitter users optionally
affix hashtags to their tweets for making the topic of the tweet
more explicit and also for other users with similar interest to eas-
ily track these tweets. So, one way to filter tweets relevant to a
particular topic would be to look for tweets with relevant hash-
tags. However, a significant proportion of tweets do not contain
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any hashtags [28]. Hence, in this task we tried to classify un–
tagged tweets to their appropriate ‘hashtag class’. The use of
hashtags as class labels has several advantages:
• This eliminates the need for any manual labeling of the train-

ing set; thus offers a way to avoid the cost of a large training
set generation.

• A topic often begets many sub–topics. For example, the clas-
sifier trained to filter earthquake relevant tweets should be
able to filter out tweets relevant to the earthquake of Japan
on March 11, 2011. However, it would fail to filter most
tweets relevant to the Fukushima nuclear power plant disas-
ter, which had been a consequence of the earthquake. Again,
along the course of time, tweets relevant to the Fukushima
disaster also changed sub–topics. During the first few days,
the discussion topics were dominated by the possible impact
of tentative meltdown of some reactors. Gradually over the
time topics changed from contamination of plants, animals
and fishes to lack of transparency by TEPCO and so on. De-
signing a new classifier using manual labeling of training in-
stances each time the sub–topic changes would incur a lot of
time and cost. However, as the proposed approach of using
hashtags as class labels reduces the time and cost for gener-
ating a training set to the minimum (as opposed to manual
labeling of training set, which requires significant time and
human labor), it offers a way for quick development of clas-
sifiers on–demand targeting sub-topics with a minimal cost.
It is to be mentioned here that there is no specific guide-
line for affixing hashtags to a tweet. Hence, a topic might
be covered by many hashtags. However, as authors of
Refs. [8], [10], [14] used only 1 or 2 keywords for fast–
filtering target–topic related tweets, we also adopted a simi-
lar approach and used 1 to 3 hashtags for each topic. Again,
it is not impossible that a single hashtag is used in two com-
pletely different topic domains (equivocal hashtags). The
proposed method would not be able to separate multiple
topic classes sharing same hashtag.

5.1 Experiment Design
5.1.1 Twitter Data Collection

Twitter offers several APIs for crawling tweets from their
servers. We have developed a Java–based crawler using Twit-
ter’s Search API and have been collecting tweets from several
cities including New York. Search API allows to define a cen-
ter (expressed in latitude and longitude) and a radius (expressed
in kilometer) to define an area. It then returns tweets generated
within that area. However, it imposes rate limitations on the num-
ber of times the API can be called per hour. Hence, the crawled
tweets are only a sample of the total tweets generated within that
region.
5.1.2 Models Considered for Evaluation

For both the experiments, we used the following four models:
• Unigram Model: Considers only unigram features.
• Uni-Bigram Model: Considers both unigram and bigram

features.
• Proposed model: Considers unigram features and fidels.
• Supervised Topic Model: Uses LLDA [17] on unigram fea-

Table 1 Term definition.

Relevant Non-relevant

Retrieved True Positive (T P) False Positive (FP)

Not Retrieved False Negative (FN) True Negative (T N)

tures. Class names serve as labels for the tweets.
All the models started with the same training set. However,

every model finally considered only those training instances that
contained at least 5 of its selected features. All the models dis-
carded any term in the training set that was of less than 4 charac-
ters, a numeral, a hashtag, a URL or a user reference. The uni-
gram model, uni-bigram model and the proposed model used the
same unigram stoplist. The uni-bigram model and the proposed
model shared the same bigram stoplist. However, unlike the pro-
posed model, uni-bigram model did not filter bigrams based on
part–of–speech tag of constituent terms.
5.1.3 Text Classifier

Unigram model, uni-bigram model and the proposed model
used Naı̈ve Bayes as the text classifier. We used WEKA’s [25]
multinomial Naı̈ve Bayes implementation for carrying out the ex-
periments. Despite its simplicity in its assumption of indepen-
dence, Naı̈ve Bayes often rivals and indeed outperforms more
sophisticated classifiers on many datasets [24], [25]. The prob-
ability of a tweet d being in the class c is computed as:

P(c|d) ∝ P(c)
∏

1≤k≤nd

P( fk |c)

where P( fk |c) is the conditional probability of feature fk occur-
ring in a tweet of class c and nd is the number of features encoun-
tered in tweet d. P(c) is the prior probability of a tweet occurring
in class c, which is obtained through maximum likelihood esti-
mates. The best class for tweet d is the maximum a posteriori

(MAP) class cmap:

cmap = arg max
c∈C

P̂(c|d) = arg max
c∈C

P̂(c)
∏

1≤k≤nd

P̂( fk |c)

The 10-fold cross validation method was adopted for assessing
the classification performance.

The partially supervised topic model used Stanford Topic Mod-
eling toolbox’s [19] implementation of LLDA.
5.1.4 Evaluation Metrics

We have used precision, recall and F-measure for compar-
ing the performances of the different models. Precision is the
fraction of retrieved tweets that are relevant and is defined as
P = T P/(T P + FP). Recall is the fraction of relevant tweets
that are retrieved and is defined as R = T P/(T P + FN). The
terms T P,T F, FP and FN are defined in Table 1. F-measure,
also known as F1 − score, is the harmonic mean of precision
and recall and is a convenient way for measuring the classifica-
tion performance using a single numeric value. It is defined as,
F = 2 ∗ precision∗recall

precision+recall .

5.2 Experiment 1: Classifying Tweets with Self-reported Ill-
ness

5.2.1 Experiment Data
For the first task we used tweets originated in NY from De-

cember 06, 2011 to April 30, 2012. Similar to the approach of
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Table 2 Per class statistics of training data.

Self News False

Total Labeled Tweets 329 268 290

Tweets with inadequate features 163 181 188

Total Tweaked 0 0 1

Total Bigrams 1,856 2,171 2,459

Unique Bigrams 1,698 1,864 2,371

Bigrams with Structural Importance 233 319 326

Fig. 2 Comparison among weighted average performance among the four
models.

Culotta [14] and Aramaki et al. [10], we only considered tweets
having either the keyword ‘flu’ or ‘influenza’. A total of 3, 955
tweets had these keywords and we randomly selected 887 tweets
for manually annotation into three classes: self (329), news (268)
and false (290). Class definitions are as follows:
• Self: Tweets reporting self-infection. For example, “Drink-

ing Theraflu, trying to bit this . . . Wish someone were here

taking care of me . . . ”

• News: Flu related news. For example, “Chinese bus driver

infected with H1N1 bird flu virus dies; countries first re-

ported human case in 18 months”

• False: Not reporting any infection. “Don’t understand why

people take flu so seriously . . . ”

Table 2 shows some statistics of the training set.
5.2.2 Result and Discussion

Figure 2 shows the weighted average of precision, recall and
F-measure achieved by the four models. The proposed model
shows significant performance improvement over the other com-
pared models. The difference between the uni-bigram and pro-
posed models were in feature selection and tweaking. Hence,
their performance difference (F-measure: 0.83 vs. 0.52) speaks
volume in favor of our feature selection and tweaking algorithms.
However, as only 0.28% tweets were tweaked, the performance
improvement can be attributed solely to the feature selection
method. Though the unigram model and the uni-bigram model
share the same unigram features, unigram model performs much
better than the uni-bigram model (F-measure: 0.67 vs. 0.52). It
proves that adding additional structural features can actually de-
crease the performance if not selected efficiently. Figure 3 shows
the per–class F-measures for the four models.

The LLDA model’s performances for the classes ‘Self’ and
‘News’ are almost identical to that of unigram model (Self: 0.71
vs. 0.73; News: 0.79 vs. 0.81). However, for class ‘False’
unigram model outperforms the LLDA model (0.43 vs. 0.52).

Fig. 3 Per class comparison of F-measure among the four models.

Table 3 Selected hashtags and the topics they represent.

Hashtags Topic Class

#job, #jobs Job related news and advertisement Job

#knick, #knicks Baseball team New York Knicks Knick

#nowplaying Currently popular music tracks Nowplaying

#occupywallstreet,
#occupywallst, #ows

Occupy wall street movement Ows

#realestate Recent activities in real estate sector Realestate

Table 4 Per class statistics of training data.

Job Knick Nowplaying Ows Realestate

Initial training in-
stances

1,772 2,857 1,582 5,833 1,272

Tweets with inade-
quate features

273 314 631 617 108

Total Tweaked 8 24 27 63 57

Unique Bigrams 8,061 21,730 12,948 54,521 17,309

Bigrams with
Structural Impor-
tance

3,065 8,240 4,511 26,576 7,130

Overall performance of unigram model is better than that of
LLDA model in terms of all three performance matrices as
shown in Fig. 2. This substantiates that for a small training set,
Naı̈ve Bayes can perform better than many sophisticated machine
learning algorithms as claimed by earlier researchers [24], [25].
Ramage et al. [17] reported promising results in categorizing
tweets using LLDA. However, there are two major differences be-
tween their experimental environment and ours. First, our train-
ing set is smaller than their training set by many folds and second,
they used many labels per tweet as we described in the related
work section. However, we used only the class names as labels
for the tweets while using LLDA.

5.3 Experiment 2: Automatic Identification of Appropriate
Hashtags

5.3.1 Experiment Data
For this experiment we have considered tweets from New York

crawled in the period from December 6, 2011 to January 14,
2012. Among the 20 most frequent hashtags in these tweets, we
selected nine representing five different topics. Table 3 lists the
selected hashtags and the topic they represent. A total of 13,316
tweets were considered in the training set. Table 4 shows their
distribution among different classes and some statistics on the se-
lected bigram features. A total of 18,093 unique unigrams were
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Fig. 5 Word cloud for discarded training instances for hashtag #ows.

Fig. 4 Performance of the four models for an individual hashtag classes.

encountered in the training set. After pre–processing, removing
stopwords and rare terms, a total of 4,603 unigrams constituted
the final unigram feature set.
5.3.2 Results and Discussion

Figure 4 shows the performance comparison among the four
models using F-measure. Like experiment 1, here also the pro-
posed model outperforms the other three models by a large mar-
gin. The LLDA model performs better than the unigram model
for three out of the five classes. As we pointed out in the dis-
cussion section of the previous experiment, the LLDA model’s
performance might be influenced by the size of the training set.
The training set of this experiment is substantially larger than that
of the earlier experiment.

Figure 5 shows the frequency distribution of unigrams in the
tweets selected for the training set (on the left) and those dis-
carded from the training set (on the right) for the class ‘Ows’.
The size of each word in the figure corresponds to its frequency in
corresponding text corpus. Colors and orientation have no signifi-
cance. As the figure reveals, high frequency words in the selected
tweets (e.g., occupy, protesters, police, zuccotti, wall, street etc.)
are much more intuitively closer to the topic ‘OWS’ than those in
the discarded tweets (e.g., see, live, want, now, real etc.).

We also compared the reduction in misclassification rate due to
the tweaking process. Two separate experiments were carried out
using only the proposed model with the only difference between
the experiments being tweaking and not tweaking of confound-
ing outliers. Table 5 and Table 6 show the results. For both
tables, the first column is the actual class of the tweet and the first

Table 5 Distribution of misclassified training instances before tweaking.

Job Knick Now Ows Real Total

Job 0 21 7 106 15 149

Knick 0 0 28 316 20 364

Nowplaying 1 135 0 212 11 359

Ows 10 97 137 0 194 438

Realestate 21 65 15 145 0 246

1,556

Table 6 Distribution of misclassified training instances after tweaking.

Job Knick Now Ows Real Total

Job 0 18 9 102 13 142

Knick 0 0 24 304 20 348

Nowplaying 1 139 0 200 13 353

Ows 10 94 142 0 172 418

Realestate 23 68 11 132 0 234

1,495

row (due to lack of space, class ‘Nowplaying’ has been abbrevi-
ated to ‘Now’ and class ‘Realestate’ to ‘Real’) is the predicted
class. By tweaking 1.34% tweets misclassification rate could be
brought down by 0.42%. This finding agrees with the claim of
Edgar et al. [20] that removing outliers from a training set can
reduce the misclassification rate.

6. Conclusion

In this paper we put forward an argument that the length re-
striction imposed on individual posts makes tweets different from
most other short texts like user reviews or web snippets. Hence,
special measures need to be taken when training a BOW classi-
fier to classify tweets. We propose two such measures here; one,
better feature selection and two, identification and removal of
confounding outliers. The decline of classifier performance from
uni–bigram model to unigram model substantiates that just in-
cluding bigram features might actually decrease the performance
of the classifier. However, the improvement in performance from
unigram model to the proposed model suggests that careful se-
lection of structurally important bigrams can help the classifier
discern the inter–class margin better. We have also proposed
a stop–word selection method which prevents content–bearing
terms from being included in the stoplist. Evaluation shows that
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performance can be improved even more by removal of con-
founding outliers from the training set. The sparsity of textual
features in tweets and loose coupling of hashtags are the main
sources of these outliers. Hence, if a semi–supervised approach
is adopted for creating large training sets by using hashtags as
class labels instead of using a manual labeling approach, the pro-
posed tweaking method can be helpful in automatic identification
of confounding outliers and eventual reduction of misclassifica-
tion rates.

We are interested in extending the current work by including
higher order n-gram features. We would also like to develop
an automatic hashtag recommendation system based on the pro-
posed model. However, our model parameters are still chosen
based on heuristics. We would like to use optimization techniques
for tuning those parameters in our future works.
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