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Non-rigid Registration using Local Rigid Transformations
for Shape Analysis

Kent Fujiwara1,a) Ko Nishino2,b) Jun Takamatsu3,c) Bo Zheng1,d) Katsushi Ikeuchi1,e)

Abstract: With the advances in technology of sensing, it has become very easy to digitize various objects and capture
detailed images and models. We propose non-rigid registration methods to utilize such data for shape analysis. We
first introduce a novel dual-grid FFD (free-form deformation) framework which treats the source shape as a collection
of local structures and match them to corresponding locations on the target shape. These local structures then guide
the movement of FFD control points that determine the overall deformation. We then introduce a smoothness con-
straint and a weighting scheme based on distance from the surface to produce a smooth deformation grid and suppress
movement in unnecessary regions. Finally, we extend the method to groupwise registration by estimating an ”average”
shape and apply the locally rigid globally non-rigid registration to each of the shapes in a group and transform them
simultaneously.

1. Introduction
With the development of various sensors and the improvements

to the sensing accuracy of these devices, it has now become easy
to capture high quality images or models of various objects. One
active field of research that requires these high quality images
and models is shape analysis. Generally, shape analysis of actual
objects is conducted by visual inspection or measurement of var-
ious characteristic parts. Methods such as destructive inspection,
which involves actual physical interaction with the object, cannot
be applied to valuable assets such as these artifacts. Using 3D
data instead of real objects, a wider range of analysis methods
can be applied to discover more about the subjects.

In this paper, we focus on the issue of comparing similar shapes
and analyzing the relationship between them. We refer to this is-
sue as intra-class shape analysis. We define it as a case of ana-
lyzing shapes that are classified into the same class, as opposed
to inter-class shape analysis, which considers the issue of sepa-
rating various objects into different classes.

One of the methods for intra-class shape analysis is solving for
correspondences between objects through registration [5]. Regis-
tration is a method that transforms a source shape so that it would
be aligned to a target shape. There are two main methods for
registration: rigid and non-rigid registration. Rigid registration
involves translation and rotation of the source shape. Iterative
closest point (ICP) [1], [29] has been widely used to align point
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cloud data. Various strategies have been proposed to improve the
original method [19], [22]. Non-rigid registration is a framework
that requires a source shape to be deformed to a target shape to
form correspondences between them. There are various methods
of non-rigid registration that brings together images, point clouds,
and volumes [7], [8], [10], [16], [17], [26], [31].

Our interest is in analyzing surface models of shapes from the
same class, such as artifacts with similar shapes, or skulls and
bones of the same animal species. The goal is to extract the sim-
ilarities and differences within a group of similar shapes through
non-rigid registration, and attempt to identify or describe each of
the individuals in the group.

The first objective of this paper is to obtain a transformation
between source and target objects that aligns the overall shape as
well as the local prominent features. In order to conduct analy-
sis on shapes that are classified into the same group, dense and
meaningful correspondence between the shapes are required. In
general, non-rigid registration methods focus on bringing object
surfaces together as much as possible. However, the resulting
transformations do not necessarily align the prominent features
of these objects.

We propose methods that are able to align the overall surface
of objects as well as their local features accurately and provide
meaningful correspondences. In order to accomplish this goal,
we introduce two methods that are based on the novel idea of “lo-
cal rigidity and global deformability”. In the non-rigid registra-
tion methods based on this idea, the source shape is considered as
a group of local structures. These structures move to the most
similar locations on the target shape. Then, these movements
guide the overall deformation. By introducing the idea of local
structures, the resulting deformation robustly aligns the overall
shapes and the local features. This accurate correspondence, we
claim, is essential to the analysis of similar objects that possess
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similar structures in the vicinity of each other.
The second objective is to obtain transformations between mul-

tiple similar objects that accurately align all the surfaces and the
corresponding features. The same idea of “local rigidity and
global deformability” will be introduced to achieve this goal.
However, the two methods above cannot be directly applied to
the scenario involving multiple images. This is due to the fact
that the two methods are pairwise registration methods, which re-
quire a target shape to be designated. In the case of groupwise
registration, which requires multiple shapes to be simultaneously
aligned, this would force all the shapes to be aligned to the shape
selected as the target, leading to a biased registration result.

We propose to overcome this by extending the proposed pair-
wise non-rigid registration method to handle multiple shape si-
multaneously. In this method, the target is estimated from all the
shapes in the group to be registered. The estimated target, which
would be the average of all the shapes, contains some “flat” re-
gions in order to avoid the peaks from disrupting the average val-
ues. During the transformation of each shape, these flat regions
are excluded from being included in the calculation of transfor-
mations, making the registration robust. By introducing this strat-
egy, all the shapes as well as their local features are registered to
the average position. This enables the simultaneous comparison
of multiple shapes.

We conduct a number of experiments on 2D contour images
and 3D surface models to demonstrate the effectiveness of the
proposed methods. The results show that these methods achieve
the objectives by aligning the shapes as well as their prominent
features.

2. Locally Rigid Globally Non-rigid Surface
Registration

The goal of non-rigid surface registration is to deform the sur-
face of a source shape to match the surface of a target shape. We
claim that an ideal surface registration should match character-
istic features on the source shape to the corresponding features
on the target shape. Prior work has attempted to accomplish this
mainly by explicitly identifying corresponding features either by
manual intervention or by feature extraction [11].

We search for this ideal registration by computing a shape-
preserving deformation that brings the original shape into align-
ment with the target shape. We build on the key insight that the
entire shape can be considered as a collection of local structures,
each of which transforms rigidly to align with counterparts of the
target shape and collectively deform the overall global structure.

We propose a novel dual-grid free-form deformation (FFD)
representation to achieve the locally rigid, globally non-rigid reg-
istration. The secondary grid, which we call the sampling grid, is
superimposed over the conventional FFD [23] control point grid
that controls the overall deformation. The sampling grid is subdi-
vided into sampling regions so that each control point is enclosed
by one sampling region. The control point is translated based on
the rigid transformation required to minimize the difference be-
tween the signed distance fields in the corresponding sampling
region. Deformation is determined by the new positions of the
control points

(c) (d)

(b)(a)

Fig. 1 Our method deforms a source shape (a) to the target shape (b) by
rigidly aligning local structures (c) that collectively form a free form
deformation grid in a coarse-to-fine fashion (d).

2.1 Shape Representation
We first compute an implicit representation of the source and

target shapes using the signed distance field (SDF). For the sake
of simplicity, we explain this for 2D shapes but the same compu-
tation easily extends to 3D shapes.

Given a data shape A, we consider an arbitrary point x. From
this arbitrary point, we search for the closest point on the data
shape A, which we denote as ax ∈ A. We assume that the surface
normal of the shape is available at this point, which is expressed
as nax . The signed distance ϕA(x) of point x to the shape A is
defined as the normal projected distance

ϕA(x) = nT
ax

(x − ax) . (1)

By calculating the signed distance at uniformly spread sampling
points, we produce the SDF ΦA around the shape A.

2.2 Local Rigidity, Global Deformability
We propose a dual-grid FFD framework to achieve locally

rigid and globally non-rigid registration. Figure 1 illustrates the
overview of this framework. Here, we consider a registration pro-
cess between a source shape A consisting of points a ∈ A and a
target shape B consisting of points b ∈ B. First, as in other meth-
ods using FFD, we prepare a grid that surrounds the source shape
A, which will be deformed in this process. This grid consists of
FFD control points whose locations control the deformation of
the field within. In Figure 2, the FFD grid is the gray grid.

In addition to this FFD grid, we add another grid, which we
refer to as the sampling grid. We define each block of this sam-
pling grid as sampling region S consisting of sampling points s.
In Figure 2, this grid is shown in red. The sampling grid is de-
fined relative to the FFD grid so that a single FFD control point Pi
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Fig. 2 The sampling grid (red) is placed over the conventional FFD control
point grid (gray). Each sampling region S transforms rigidly, moving
the underlying control point P embedded within. The sampling grid
is defined relative to the FFD grid so that the sampling grid com-
pletely covers the FFD grid without any overlap even after the FFD
grid is deformed.

is immersed in a single sampling region SPi . This is achieved by
defining the sampling region for each FFD control point by con-
necting the mid-points of the edges of the FFD grid connected to
the control point of interest. This ensures that the sampling re-
gions will be mutually exclusive and no space is sampled more
than once. We place the same number of sampling points s and
space them uniformly within each sampling region by defining
them relative to the midpoints of the control points at the corners
of the sampling region.

2.3 Local Rigid Registration
We solve for the optimal rigid transformation for each sam-

pling region SP that minimizes the above error function. To reg-
ister the two SDFs, we use the iterative registration method pro-
posed by Lucas and Kanade [15]. The algorithm iteratively solves
for the increments in the parameters ∆w that minimizes the error
between the SDFs and updates the estimated parameters w by
solving for the error function defined as

E =
∑

s

(
ϕB
(
T(s; w + ∆w)

)
− ϕA(s)

)2
. (2)

Taylor expansion can then be used to linearize this expression

E =
∑

s

(
ϕB
(
T(s; w)

)
+ ∇ϕB

∂T
∂w
∆w − ϕA(s)

)2
, (3)

where ∇ϕB represents the gradient of the signed distance. The
partial derivative of the error function with respect to ∆w is

∂E
∂∆w

= 2
∑

s

[
∇ϕB
∂T
∂w

]T[
ϕB
(
T(s; w)

)
+ ∇ϕB

∂T
∂w
∆w − ϕA(s)

]
.

(4)
This yields the additional values to the parameters ∆w

∆w = H−1
∑

s

[
∇ϕB
∂T
∂w

]T[
ϕA(s) − ϕB

(
T(s; w)

)]
, (5)

where H is the Gauss-Newton approximation to the Hessian ma-
trix which can also be written as

H =
∑

s

[
∇ϕB
∂T
∂w

]T [
∇ϕB
∂T
∂w

]
. (6)

Deformation is defined by the coordinates of the control points
on the FFD grid. The translation vector can therefore be applied

A B

T

ΦA
ΦA

ΦB

Fig. 3 The difference between the signed distance fieldΦA of the sampling
region of the source image A and the signed distance field ΦB of
the target image B is minimized by the rigid transformation T of the
sampling region. This transformation guides the movement of the
FFD control point, which determines the overall global deformation
in the following step.

to move the control points, but the rotation, which rotates the
sampling region around the control point, has no effect on the
displacement of its center, that is, the control point itself.

To include the effect that a control point receives from the
neighboring n control points, we convert the rotation of neigh-
boring control points Ri into translation tR of the control point at
the center P

tR =

n∑
i

wdRi(P − Pi) , (7)

where wd =
wi∑n
j w j

is the weight based on the distance between the

control points and wi =
∑n

k dk

di
is the inverse of the normalized dis-

tance. di represents the distance between the control point at the
center P and the neighboring control point Pi. The weight term
is introduced based on the basic notion that the closer a sampling
region is, the more the control point P should be influenced by it.
This assigns more weight to the control points Pi that are closer
to P. The weights are normalized so that the total of the neighbor
weights sum to one to avoid excessive effect from control points
that are very close to each other.

The final translation would be

tf = ts + tR , (8)

where ts is the translation obtained from the transformation pa-
rameter w.

2.4 Global Non-rigid Registration
We apply the rigid transformation obtained from each sampling

region to the corresponding control point. Using these coordi-
nates we move the FFD grid and apply the FFD deformation to
the source shape. This process of computing the rigid transforma-
tion locally and applying it to the control points to deform glob-
ally is iterated until convergence.

Deformation of a point a = (x, y) using cubic B-spline FFD is
computed by the weighted sum of the control points

F(a) =
∑

i

∑
j

Bi(u)B j(v)P , (9)

where B denotes the B-spline basis function and u, v represent the
relative coordinates of x and y within the FFD grid. The global
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deformation of the point a on the surface A is obtained by adding
the translation tf to the control point coordinates

F(a) =
∑

i

∑
j

Bi(u)B j(v)
(
P + αSP (tf,i, j)

)
.

When computing the translation of a control point from its
sampling region, we weight the influence of the sampling region
based on the area using the weight α. This ensures that if the sam-
pling region, which is defined relatively to the FFD grid, becomes
smaller in the course of iterative computation of the deformation,
its influence is lessened and eventually vanishes if it becomes de-
generate. Therefore, αSP ,k =

S P,k
S P,0

becomes smaller when the area
of the sampling region S is smaller, and becomes larger when S is
larger. Here, S P,0 and S P,k are the area of sampling region around
P at the initial stage and at the k-th iteration. This is normalized
as αSP ,k =

αSP ,k

αm
by dividing it by the largest value αm.

2.5 Experimental Results
We first evaluate the proposed method on 2D images using the

silhouette data from the database provided by Sharvit et al. [24]
and Bronstein et al. [4]. We extracted the contour data from these
silhouette images and used them to test the registration accuracy.
We compared the result of our method with the results of the dis-
tance field-based method by Huang et al. [11].

First, we obtained the results from Huang et al.’s method with-
out the feature constraint. We then gave explicit feature corre-
spondences to Huang et al.’s method and adjusted the parameters,
such as the weight on the feature constraint and the bandwidth of
SDFs to acquire the best possible registration results. The feature
points that were provided are marked as blue dots on the source
and the target image. These features are not given to our method,
and are just used to quantitatively evaluate the registration accu-
racy. We also marked other features that were not given to any
of the methods. These points, which are marked as pink dots, are
also used to evaluate the accuracy of registration to gauge whether
each method is capable of matching characteristic structures with-
out explicit assignment of feature correspondences. For Huang et
al.’s method with the feature constraint, this evaluates whether
the registration computed from the given feature correspondences
can propagate to align other features that were not specified. The
corresponding features on the target surface are marked as white
dots for visualization. In this section we present the registration
results of “Device,” “Fgen,” “Misk,” “Fish,” and “Dude”in the
database of Sharvit et al. [24] and “Pliers” and “Scissors” from
the database of Bronstein et al. [4].

We used the same number of control points for the FFD grid
in all of the methods. Huang et al.’s method uses a coarse-to-fine
approach for registration and subdivides the FFD grid once the
registration converges in the coarse stage. Therefore we applied
the same approach to all the methods for comparison.

Some of the registration results are shown in Figs. 4 - 6. Fig-
ure 7 shows the residual error between all the feature points in
various experiments including the 3 cases. In the case of Fig. 4,
the previous methods come close to successful registration. How-
ever, the marked feature points did not match precisely. The result
from our method is very accurate. Although these two shapes are

(a) source (b) target

(c) [11] (d) [11] + feat. (e) proposed

Fig. 4 Experimental results of 2D contour data “device”.

(a) source (b) target

(c) [11] (d) [11] + feat. (e) proposed

Fig. 5 Experimental results of 2D contour data “misk”.

(a) source (b) target

(c) [11] (d) [11] + feat. (e) proposed

Fig. 6 Experimental results of 2D contour data “dude”.

quite different from each other, the assumption of local rigidity
maintained the relative positions of the features and successfully
matched them to the corresponding features.

In the case of Fig. 5, even though the previous methods suc-
ceeded in matching the outer surface and the blue features, the
featureless version was stuck at a local minima. Huang et al.’s
method using the features managed to match the inner surface,
but the pink feature point inside the opening failed to match. Our
method precisely matched this structure.

In Fig. 6, our method and the method by Huang et al. with
the feature constraint performed well and matched the surfaces.
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scissors (p)

scissors (b)

pliers (p)

pliers (b)

dude (p)

dude (b)

fish (p)

fish (b)

misk (p)

misk (b)

fgen (p)

fgen (b)

device (p)

device (b)

0 10 20 30 40 50 60 70

mean square error (pixels)

Huang et al. Huang et al. (with features) Our Method

Fig. 7 The mean square error between the blue feature points (b) and pink
feature points (p) indicate that our method constantly outperforms
other methods.

The featureless version of Huang et al. was stuck at a local mini-
mum. The right arm of the image was difficult to register for the
method by Huang et al. even with the given features, and required
additional weight on the feature correspondences. However, this
manual operation was still not enough to match the features on
the right arm. This example shows that depending on the shape
being registered, the method by Huang et al. requires manual pa-
rameter setting, as well as manual feature selection. Our method
automatically achieves feature correspondence without any a pri-
ori correspondences by utilising the local structures.

2.6 Extension to 3D
Extending our method to handle 3D surface data is straightfor-

ward. We add the third coordinate z to the vectors and matrices.
The area of the sampling region used for calculating the weight
α for global deformation is replaced with the volume of the 3D
sampling volume. The rest of the method is the same as in 2D.

We have tested the 3D version of our method with synthetic
3D range data of a wave and a deformed version of the wave.
Figure 8(a) shows the registration results. In Figure 8(b), we ran-
domly deformed the “Stanford Bunny” [27] and registered the
original model to the deformed model. We also processed 3D
data taken from two separate chicken skulls to test our method on
real data. Figure 8(c) is the result of registration. The experiments
on synthetic and real data in 3D demonstrate that the method is
effective in 3D as well.

Our concept of “align locally, deform globally” is based on the
key idea that the shape along with the distance fields around it
should maintain rigidity even in a non-rigid registration frame-
work. Our method based on this key idea proved to be very
effective in preserving local features and matching them to cor-
responding features on the target, which we believe is the most
important aspect in non-rigid registration.

3. Non-rigid Registration with Local Rigid
Transformations

The method in Section 2 treated all of the regions on the SDF
equally. This caused the control points to move at locations where
there is little or no effect on the actual deformation of the source

initial state after deformation

(b)

(a)

(c)

Fig. 8 The method was applied to 3D synthetic data of waves (a), “Stanford
Bunny” (b), and real data taken from actual skulls of chicken (c). The
source image (red) was deformed to match the target image (white).
Our method was successful at matching parts that were apart after
initial rigid registration.

shape. The control points should ideally move in harmony with
the neighboring control points to conduct robust alignment and
obtain accurate correspondence.

We introduce a novel weighting scheme and a smoothness con-
straint based on the distance from the surface of shapes to achieve
a flexible non-rigid registration, allowing more movement of con-
trol points when the difference between shapes is larger. The
overview of our method is shown in Fig. 9.

In our locally-rigid globally non-rigid registration, we first di-
vide the source shape and the space around it into sampling re-
gions and then align each region to its optimal position in the
entire target space. Registration of these sampling regions is anal-
ogous to template matching. Here, the sampling region with the
local information of the source shape can be considered as a tem-
plate that moves to a location in the target space where the dif-
ference is minimal. As depicted in Fig. 2, the sampling regions
are defined to be the dual of the FFD control grid. The rigid
transformation required to move each sampling region to the op-
timal position acts as a guide for the corresponding FFD control
point encapsulated in each region. The rigid transformation of
each sampling region indicates the translation of the correspond-
ing control point required to achieve a global deformation that
preserves the local structures as much as possible.

3.1 Formulation
In the proposed framework, we solve for the local rigid trans-

formations that minimize the difference between the source SDF
ΦA within the sampling regions and the entire target SDF ΦB.
The SDFs are defined in the same manner as in the previous sec-
tion. Although the actual sampling grid and the FFD control grid
are discrete grids, we first consider a special case where the sam-
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(a) (b) (c)

(d) (e)

Fig. 9 Overview of the proposed method. The input source and target
shapes (a) are represented with the signed distance fields (SDF) (b).
The sampling regions defined by the free-form deformation (FFD)
control grid assumes rigid transformations that minimize the differ-
ence between the local SDFs and create a smooth deformation field
(c). These transformations are applied to the corresponding control
points to deform the source shape. This is conducted in a coarse-to-
fine manner (d). By iterating the process in each of the scale lev-
els, this method computes a smooth deformation field that accurately
matches the overall shapes as well as the corresponding local char-
acteristic structures.

pling regions are infinitesimally small and each region can be rep-
resented as a point p = (x, y) to simplify the notation. In this case,
this infinitesimally small region is actually equivalent to the FFD
control point p ∈ P, which is embedded at the center of each sam-
pling region. In this context, rigid transformation of the sampling
region can now be considered as translation. We will discretize
the problem later to reflect the actual setting. The error function
in this special case can be expressed as

E = Ee + Es . (10)

The error term Ee is the difference between the source SDFs
from the sampling regions and the entire target SDF. This is ex-
pressed as

Ee =

∫ ∫ (
ϕB
(
x + t(x)

)
− ϕA(x)

)2
dx , (11)

where t = (u, v) is the translation in x, y coordinates. ϕA is the
signed distance from a point to its closest point on shape A.
We introduce a smoothness constraint to this error function. As
previously stated, this is to incorporate movements of neighbor-
ing sampling regions to make the entire FFD grid smooth. The
smoothness term Es is represented as

0 10 20 30 40 50 60 70 80 90 100

Fig. 10 Visualization of the weight function α. The weight (red) decreases
as the distance from the surface (left boundary) increases, providing
more weight to the smoothness constraint.

Es = λ

∫ ∫ (
tx(x)2 + ty(x)2

)
dx , (12)

where tx(x) = ∂
∂x t(x), and ty(x) = ∂

∂y
t(x). λ is the weight bal-

ancing the scale of the error term and the smoothness term. The
goal is to find t for each sampling region that minimizes the error
function.

3.2 Weight Based on Distance
In this formulation, all the locations are treated equally and

would move to minimize the error between source and target
SDFs. However, there are differences of importance among the
regions. Regions away from the surface have large ambiguities in
where they should move. Also, the regions far away from the sur-
face only affect the control points that do not contribute at all to
the deformation of the actual shape. Therefore, the control points
closer to the surface of the shapes should have more effect on the
overall registration than those away from the surface.

We take advantage of the pre-calculated distance values and in-
troduce a weight α based on the distance from the surface. The
weight is defined as a sigmoid curve, as shown in Fig. 10. The
weighted version of the error term and the smoothness term are
expressed as

E =
∫ ∫

α(x)
(
ϕB
(
x + t(x)

)
− ϕA(x)

)2
+λ
(
1 − α(x)

)(
tx(x)2 + ty(x)2

)
dx , (13)

where,α(x) = 1
1+en(m−k) and m = 1

2 (|ϕA(x)| + |ϕB(x)|).
This means that if a control point is close to the surface, the

error term receives more weight, and if it is far, the smoothness
term becomes more prevalent. n determines the steepness of the
sigmoid function, and k is the point where the value is halved.
These two parameters are determined from the spacing of the ini-
tial FFD control grid.

The initial FFD control grid is set up so that the length of each
side of the grid l is 3 times as large as the largest side of the
shapes. This is determined empirically to form a coarse grid in
the initial stages of registration. The coarse grid ensures more
space for each control point to move in, thus allowing more flex-
ible registration.

In order for the control points to reflect the effect of this sig-
moid function, there has to be at least 3 control points segment-
ing the curve of the sigmoid function from the sampling theorem.
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Fig. 11 The hierarchical registration process. The process is iterated until
convergence in the initial scale level. When the process converges,
the grid is subdivided into a finer grid. The process is repeated in
the finer scale levels until convergence. The sigmoid function, in-
dicated by the region within the green line is recalculated based on
the granularity of the FFD grid in each scale level.

We set the number of control points on each side of the initial
grid to satisfy this condition. The space between the edge of the
deformation field to the object surface is represented as 1

2 (l − d),
where d is the diameter of the circle that encloses the shape, or
the longest side of the input image. In this space, there has to
be more than 4 control points to include the 3 control points and
to also avoid moving the control points on the boundary of the
FFD control grid. The intervals between control points should be
at least 1

8 (l − d). This means that on one side of the image 1
2 l,

there has to be at least 1
2 l · 8

l−d =
4l

l−d control points. The same
condition has to be fulfilled on the other side of the object, which
leads to the overall number of control points c = 2⌊ 4l

l−d ⌋ + 1. The
extra control point is added at the end to ensure the symmetry of
the control grid. We calculate the gap between the control points
g = l

c−1 .
The parameter k = 3

2g of the sigmoid function is defined as
the midpoint of the curve. The steepness of the curve is defined
as n = k−1 log(199) so that the curve would be scaled properly
and the weight should be as close to 1 as possible at the surface
of the shape. The value of the weight smoothly decreases as the
distance from the surface increases. The effect of the smoothness
term is nullified in regions that are more than twice the value of
k away from the surface to avoid excessive movement of control
points unrelated to the actual deformation of the surface.

3.3 Discretization
We conduct the optimization to estimate t using calculus of

variations. The functional to consider is

F(x, α, t, tx, ty) = α(x)
(
ϕB
(
x + t(x)

)
− ϕA(x)

)2
+λ
(
1 − α(x)

)(
tx(x)2 + ty(x)2

)
. (14)

We considered a special case where sampling regions were
infinitesimally small and were equivalent to points to make the
problem easier. However, this does not reflect the actual setting
where the sampling grid and the FFD control grid are discrete,
and each of the control points is encapsulated in a sampling re-
gion. We, therefore, discretize the problem and solve for t of each
sampling region, which also determines the movement of the cor-
responding control point p. Assuming that the boundary condi-
tion is fulfilled, which in this case would be ∂

∂tx
F = ∂

∂ty F = 0, the
Euler-Lagrange equation, by abuse of notation, is

1
nα(p)

∑n
i

(
ϕB
(
p + si + t(p)

) − ϕA(p)
)
∂
∂tϕB
(
p + si + t(p)

)
+λ
(
αx(p)tx(p) + αy(p)ty(p) − (1 − α(p)

)
∆t(p)

)
= 0 , (15)

where αx(x) = ∂
∂xα(x), αy(x) = ∂

∂y
α(x), and ∆ = ∂2

∂x2 +
∂2

∂y2 de-
notes the Laplace operator. si = (sx

i , s
y
i ) is the sampling point

in the sampling region surrounding the control point. The sam-
pling points are defined in the local coordinate system with the
origin at the corresponding control point. The translation can
be computed numerically by approximating the Laplacian as
∆t(x) = t(x) − t(x), where t(x) is the weighted average of the
neighbor translations. The movements of the neighboring control
points from the previous iteration are used to solve the above.

Deformation of a point a = (ax, ay) on the surface A us-
ing cubic B-spline FFD is computed by adding the translation
ti j = (ui j, vi j) to the coordinates of the corresponding control
point:

T(ax, ay) =
∑

i

∑
j

Bi(s)B j(t)
(
pi j + ti j

)
, (16)

where B denotes the B-spline basis function and s, t represent the
relative coordinates of ax and ay within the FFD grid. After de-
formation, the sampling grid is redefined according to the trans-
formed FFD grid. The calculation of local transformation and
global deformation is conducted iteratively until convergence.

3.4 Hierarchical Approach
We iterate the deformation using the initial grid until the con-

trol points cease to move. We then subdivide the FFD grid into a
finer grid using the method proposed by Lee et al. [13]. Fig. 11
shows the registration results for each level for an example 2D
shape pair .

This coarse-to-fine strategy is essential to our framework. The
division size of the FFD grid determines the size of the sampling
regions. The sampling regions determine the local regions of the
source shape that should move rigidly. Therefore, the FFD grid
size controls the scale of local structures of the source shape that
rigidly align to the target shape to collectively achieve global reg-
istration.

In order to align large-scale characteristic structures first, and
then match finer-scale local structures, we progressively subdi-
vide the grid so that every time the registration converges, a new
round of iteration with finer sampling regions is started.
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(a) (b) (c) (d) (e)

Fig. 12 Experimental results of 2D contour data “device 2”.

(a) (b) (c) (d) (e)

Fig. 13 Experimental results of 2D contour data “fish”.

(a) (b) (c) (d) (e)

Fig. 14 Experimental results of 2D contour data “dude”.

(a) (b) (c) (d) (e)

Fig. 15 Experimental results of 2D contour data “butterfly”. The input source image ((a) top) is deformed
to the target image ((a) bottom) by 5 different methods: (b) Likar and Pernuš, (c) Huang et al, (d)
Huang et al. using blue points as given features, and (e) the proposed method.

3.5 Extension to 3D data
The proposed method can easily be extended to align 3D sur-

face data. The sampling regions that were introduced in the 2D
case will be converted into sampling volumes. A sampling vol-
ume would be defined as a 3D space bound by the midpoints of
the corresponding control point and its neighbors.

The 3D algorithm also requires the third coordinate z and its
translation w to be added to the Euler-Lagrange equation. The

same weighting scheme can be applied to the 3D case and no
other modifications to the original method is necessary.

3.6 Experiments
We first evaluate the effectiveness of the proposed method us-

ing 2D contour shapes obtained from silhouette images. We use
the data from the silhouette image database provided by Sharvit et
al. [24], MPEG-7 CE-Shape-1 database [12], and Bronstein et
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Likar and Pernus

Huang et al.

Huang et al. (with features)

Proposed Method

Fig. 16 Overall accuracy and distance between the corresponding features. (avg) is the average distance
between the sampled points on the source shape and the closest point on the target. (b) repre-
sents the difference between the corresponding blue points, and (p) the difference between the
corresponding pink points.

al. [4]. We compared the results of the proposed method with
those by Likar and Pernuš [14] that employs a subdivision strat-
egy, and Huang et al. [11] that uses the SDF and FFD. It is also
possible to provide explicit feature correspondence to the method
by Huang et al. as an additional constraint, which we compare
our method with as well.
3.6.1 Overall Registration Accuracy and Feature Corre-

spondence
To evaluate the effectiveness of the locally rigid but globally

non-rigid registration, we compared the accuracy of surface reg-
istration and characteristic feature correspondence.

As for the method by Likar and Pernuš, we treated the SDFs as
intensity images, then calculated the mutual information and con-
ducted the registration process. As for the method by Huang et
al. we registered the images without the feature constraints and
compared the results. Then, we assigned correspondences to the
features and used this information for the feature constraint in
the method by Huang et al. The results of these three methods
were compared with the results from the proposed method. The
source code for the method by Likar and Pernuš was not avail-
able, and was implemented based on the information from the
paper. However, the restriction based on distinctness and simi-
larity was removed in this experiment because of some unstable
behavior. Instead, the deformation process was repeated in each
layer. This was not mentioned in the original paper, but made the
method more robust.

The overall registration accuracy in each method was measured
by calculating the average distance between the sampled points
on the deformed source surface and their closest points on the
target surface. Every 10th point on the source shape was used for
this calculation.

The accuracy of the feature correspondence was measured by
calculating the average distance between the corresponding blue
and pink points. The blue points are feature points whose corre-
spondence information was given to the method by Huang et al.
for the feature constraint. These feature correspondences are not
given to any other methods and are used solely for quantitative
evaluation. The pink points are feature points whose correspon-
dence information was not given to any of the methods. These
points are used to measure how well each method can handle re-
gions whose correspondence is unknown. The points on the target
surface is marked as white points for visualization of matching
accuracy.

The experiments were conducted using “device”, “tree”, “de-
vice2”, “misk” and “fish”, whose corresponding structures are
relatively close to each other, and “dude”, “pliers”, “butterfly”,
“skyhawk” and “stef”, which involve parts that are relatively far.
The images of “misk”, “fish”, “dude”, “butterfly”, “skyhawk” and
“stef” are from the database of Sharvit et al. [24], “tree”, “device”
and “device2” are from MPEG-7 CE-Shape-1 database [12], and
“pliers” images are provided by Bronstein et al. [4].

We set up the same FFD control grid for each of the methods.
The coarse-to-fine approach was adopted for all of the methods.
The FFD grid was subdivided exactly twice. The method by Likar
and Pernuš uses thin-plate splines for deformation and does not
have the same grid to represent the deformation of the field. To
visualize how much the space had deformed in their method, the
grid with the same number of points as the other methods in the
final stage of subdivision was placed and deformed. This grid
does not have any effect on the registration. The number of bins
for the calculation of mutual information in the method by Likar
and Pernuš was set to 400, which is the average distance from
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the surface of the object to the edge of the deformation field, but
was increased up to 600 when the registration accuracy was poor.
The distance threshold that limits excessive movement of each
block was set to half the side length of rigid structures. The sub-
division of images was conducted 4 times, and 30 iterations were
conducted in each layer.

The parameters in the method by Huang et al. controlling the
smoothness, the weight on feature correspondence, and the band-
width of SDF, were set to 5.0, 3.0 and 30.0, respectively. This
setting performed well in most of the cases. However, this did
not yield the best results in all of the cases. To make the compar-
ison fair and obtain the best possible results, the parameters were
altered within a reasonable range (maximum of 10 times the ini-
tial value) depending on each case, especially when the difference
between shapes was larger.

Figs. 12 - 15 are some of the registration results. Fig. 16
shows the overall registration error and the distance between cor-
responding feature points.

The first two rows show the registration results from cases
where the source and target shapes are relatively similar. The
quantitative evaluation in Fig. 16 shows that all the methods are
relatively successful at aligning the surfaces together. However,
there are some larger errors in some cases, such as “fish” de-
formed by the method of Huang et al. The feature constraint
in the method by Huang et al. was effective in bringing the blue
feature points close to the corresponding points on the target but
the method failed in regions where correspondence was not given,
which can be observed from the residual error of the pink feature
points.

The bottom two rows are the registration results from cases
where the difference between the source and target shapes is
larger. Here, the overall accuracy of registration become lower
in many cases. The method by Likar and Pernuš fails to align
many parts of “butterfly”. The method by Huang et al. without
any feature constraint fails to align the blue points as well as the
pink points. The feature constraint introduced to the method by
Huang et al. reduces this error to some extent. The blue points in
this case are much closer to the corresponding points. However,
this constraint does not affect the regions near the pink points
where correspondence information is unavailable.

The results from our method, even when the difference be-
tween shapes is relatively large, are very accurate compared to
the other methods. The method was able to find the similar struc-
tures in the vicinity and perform a desirable deformation.

These results show that our method is capable of deforming the
source shape to the target shape as well as aligning characteristic
features to the corresponding part on the target shape without any
intervention.
3.6.2 Grid Smoothness and Flexibility

We further evaluate our proposed method by analyzing the
smoothness of the deformation field obtained from each regis-
tration method. We recorded the FFD grid of each method after
convergence. For each control point of the FFD grid, we calcu-
lated the average distance to the neighboring control points.

The method by Likar and Pernuš was removed from this com-
parison because it does not use FFD for deformation and the grid
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Fig. 17 Distribution of the average spacing between the neighboring con-
trol points. The whiskers provide 99.7% (3σ) coverage. (a) Results
from method by Huang et al. (b) Results from method by Huang et
al. using the blue points for feature constraint. (c) Results from the
proposed method. Blue dotted line represents the original spacing
between the control points when no deformation takes place.

was placed for visualization. However, as observed in Figs. 12 -
15, the grid becomes very distorted when the difference between
source and target shapes becomes larger. The regions away from
the surface are also deformed because the method originally tar-
gets intensity images and do not constrain the movements of the
outer regions.

Fig. 17 shows the boxplots of the distributions of the average
distance between the neighboring control points. The blue hori-
zontal line shows the distance between the control points of the
undeformed FFD grid.

The first row shows the results from the method by Huang et
al. without any feature correspondence. The second row is the
results from the method by Huang et al. using the blue points as
the feature constraint. The results from our method are shown in
the last row.

In cases where shapes are relatively similar, the boxplots from
the three methods are very similar. This indicates that our method
was able to register the shapes more accurately than the previous
methods with the similar amount of grid movement as the previ-
ous methods.

When the difference between the shapes becomes larger, the
variance of the distributions from our method becomes larger
while the results from the other methods remained similar to the
other distributions. The hierarchical weighting scheme of our
method moved more control points in cases where difference be-
tween shapes is large. In the initial stages, the outer control points
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(a) (b)

Fig. 18 Experimental results of 3D range data of “michael”, “face”, and
“head” (a) Initial state. (b) After deformation. Source and target
are shown in red and green, respectively.

within the range of the sigmoid weight function were allowed to
move to some extent in order to handle larger differences and
conduct a precise alignment of the characteristic features. On
the contrary, the method by Huang et al. sets the bandwidth of
the SDF to be quite narrow (30 pixels in most cases). The de-
sign of the previous method led to less flexibility and left behind
unaligned regions. This is fatal to analysis of highly detailed im-
ages, where accurate correspondence is essential.

The flexibility of our method maintains the initial grid as much
as possible in cases where little deformation is required, and
allows more grid movement in cases where difference between
shapes is large. As a result, the overall shape and the local struc-
tures are accurately aligned.
3.6.3 3D Surface Data

We also applied our method to 3D surface data. As previously
described, the proposed method can easily be extended by adding
another dimension to the 2D formulation and replacing sampling
regions with sampling volumes.

In this experiment, we used “michael” data from the database
of Bronstein et al. [3], and “head” and “face” data from the
database of Sumner and Popovic [25].

Fig. 18 show the 3D registration results. The method also han-
dled relatively large positional difference as is seen from the case
of the man running. In the case of the head data, the method suc-
cessfully brought together the corresponding parts, such as the

Fig. 19 Groupwise registration. All the source shapes are aligned to a cer-
tain unknown shape (red). This shape generally represents the “av-
erage” shape of all the data in the group.

eyes, the nose and the mouse and aligned two different expres-
sions. Accurate results were also obtained from the face data,
where a laughing face was aligned to a furious face.

From these results, we can easily observe the effectiveness of
the proposed registration method in 3D. Extension to 3D surface
data only requires a simple process of providing the z coordinates
to all the calculations and replacing the sampling regions with
sampling volumes.

4. Groupwise Non-rigid Registration with Lo-
cal Rigid Transformations

The goal of non-rigid surface registration methods proposed in
the previous sections is to compute a transformation required to
deform a source shape to a target shape. The pairwise non-rigid
registration requires the designation of a target shape, to which
the source shape is transformed. However, there are cases where
correspondence information between multiple shapes is required.
This framework is generally called groupwise non-rigid registra-
tion. In this framework, correspondence between multiple shapes
is obtained by deforming all of the objects to a certain position.
Generally, this position is the “average” position of all the shapes,
as shown in Fig. 19. There have been many attempts to obtain this
“average” shape, mainly through use of a template [9], [20], [28],
optimization of transformations [2], [21], [30], and projection
into another space [6], [18].

We claim that a meaningful groupwise registration should not
only bring all the shapes in a group to an average location but also
maintain the characteristic structures of each shape and align all
of them to their average locations as well. This should be con-
ducted by maintaining the overall accuracy as well as the feature
matching accuracy.

The shapes in the group to be registered would be implicitly
represented using SDF. From the SDFs of all the shapes, we esti-
mate an “average” field. Although SDFs are not closed under op-
erations such as addition and multiplication, in other words these
operations on SDFs do not produce SDFs as a result, we avoid the
problem by intentionally excluding some regions of the field that
would cause instability during the averaging process and produce
a “flat” average field.

The non-rigid registration of each shape is conducted using the
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(a) (b)

Fig. 20 Visualization of signed distance field of a square. In 3D represen-
tation, the SDF has a conical shape, with a peak at the centermost
part inside the square.

0

(a)

0

(b)

Fig. 21 Relationship between the SDFs and the average. Black curves:
shape SDFs. Red lines: direct average of SDFs. The location where
the lines cross the horizontal line indicates the zero level set. If one
surface completely surrounds the other surface, the average value is
relatively stable. If they do not completely overlap, the average may
produce a false or no zero level set, which is suppose to represent
the surface of the average shape.

pairwise locally rigid globally non-rigid registration method pro-
posed in the previous section. In this groupwise registration, each
of the shapes in the group would be handled as a source shape that
transforms to the target, the estimated average field.

We overcome the issue of ambiguity at the flat regions of the
estimated field by utilizing the information in the local sampling
regions of each of the source shapes. The exterior regions of the
distance fields provide more information of the group of shapes
compared to the regions within the shapes. The locally rigid
globally non-rigid registration method takes advantage of the pro-
posed average field by estimating the transformation of the sam-
pling regions using the exterior distance information. By grad-
ually deforming each of the shape to the estimated average field
and refining the average field during the process, we achieve the
registration of multiple shapes to the average location.

4.1 Average of Signed Distance Field
We propose to register a group of shapes by estimating the av-

erage field based on the SDFs of the shapes. However, as men-
tioned in the previous section, SDFs are not closed under opera-
tions such as addition and multiplication. This makes the calcu-
lation of and “average” SDF difficult. We first consider the issue
using two shapes.

Fig. 20 shows SDF of a square. The SDF is also visualized in
3D. We set the initial shape so that the image region is 3 times as
large as the input image, as was conducted in the previous sec-
tion. As can be seen from the visualization in 3D, the SDF has a
conical shape with a peak at the centermost part inside the shape.

Fig. 21 shows the 1D cross section of two pairs of SDFs and
their average values. The black curves are the SDFs, and the red
line indicates the average value of the SDFs. The location where
the SDF curves crosses the horizontal line is the surface of the

(a) (b)

(c) (d)

Fig. 22 Results of registration using the average of SDFs. (a) Original im-
ages A and B. (b) Average value of SDFs. (c) Deformation on
each object. (d) Registration result. The shapes fail to match at an
optimal location.

shapes. If the shapes completely overlap each other with the peak
at the same location, the average SDF can be used as the target for
simultaneous groupwise registration. However, if the shapes do
not overlap, which is the case in most registration scenarios, the
average value may have some false or no zero level set, and the
source shapes would be falsely registered to this value, as shown
in Fig. 22. We can observe that the peaks of the SDFs are causing
the estimation of the average to be significantly difficult.

4.2 Estimation of Registration Target
We propose to avoid the issue caused by the simple average

values of the SDFs by removing the unstable regions from con-
sideration. We achieve this by adding the absolute values of the
SDFs to the average. In the case of two images, the proposed av-
erage becomes (ΦA+ΦB+ |ΦA|+ |ΦB|)/4. In the case of multiple
shapes, this average can be defined as

Φ =
1
2l

l∑
i

(Φi + |Φi|) , (17)

where l is the total number of shapes in the group.
Fig. 23 is the cross section of the proposed field. The modified

average SDF is shown in In this average field, regions where all
the shapes have positive SDF values would remain positive. In
regions where all the shapes have negative SDF values, the value
in the average field would be equal to 0.

In regions where SDF values are mixed, the absolute value of
the SDF nullifies the effect of the negative values. This means
that the effect of the shape with the negative value would be re-
moved from the average. This is shown as regions surrounded
by blue dotted lines in Fig. 23. This region is dependent on data
with positive SDF values and therefore has more ambiguity com-
pared to the exterior regions. However, as the shapes become
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0

ΦA < 0

ΦB < 0

ΦA > 0

ΦB > 0

Fig. 23 The proposed field calculated from two shapes A and B in 1D. The
red line represents the average value. The interior regions of the
shapes are flattened by adding the absolute values of the SDF.

closer together, this region is minimized and will disappear once
the shapes are completely aligned. The locally rigid globally non-
rigid strategy also eases the negative effect from this region. Most
of the sampling regions would contain more exterior regions than
these mixed regions. The rigid transformations calculated from
the field within the sampling regions would be mainly based on
the exterior information.

4.3 Locally Rigid Globally Non-rigid Registration with the
Estimated Average

Using the method proposed in the previous section, we deform
all the objects in a group to the proposed field obtained from all
the SDFs. Here, the target would beΦ calculated from averaging
the SDFs and the absolute distance fields. The error term and the
smoothness term are expressed as

Ee =

∫ ∫
α(x, y)

(
ϕ
(
p + t(p)

)
− ϕi(p)

)2
dp (18)

Es = λ

∫ ∫ (
tx(p)2 + ty(p)2

)
dp , (19)

where t = (u, v) is the transformation of a point. The weight
α(p) = 1

1+en(m−k) is the sigmoid that determines the importance rel-
ative to the shape surface, and m = 1

2 (|ϕi(p)| + |ϕ(p)|).
After discretization using the sampling points, the two Euler-

Lagrange equation would be

1
nα(p)

∑n
j

(
ϕ
(
p + s j + t(p)

) − ϕi(p)
)
∂
∂tϕ
(
p + s j + t(p)

)
+λ
(
αx(p)tx(p) + αy(p)ty(p

(
1 − α(p)

)
∆t(p)

)
= 0 , (20)

where p = (x, y) represents the FFD control point and s j = (sx
j , s
y
j)

is the sampling point in the sampling region surrounding the con-
trol point. From these equations, the translation of control points
can be obtained as shown in the previous section.

Registration is also conducted in a hierarchical manner by sub-
dividing the grid into half when registration reaches convergence
in one layer. However, the convergence is determined by the dif-
ference between the proposed field and each SDF. When the dif-
ference between the error from the previous iteration to the cur-
rent iteration becomes small, the method assumes that the calcu-
lation has converged in the layer. The same registration process
is conducted for all l shapes to register all the shapes in the group
to the estimated average.

4.4 Extension to 3D data
The method can easily be extended to 3D data. This is straight

forward as the proposed field can be calculated by obtaining the

SDF of each surface and then averaging the SDFs and the abso-
lute distance fields.

4.5 Experiment
We first evaluate the effectiveness of the proposed average field

by conducting experiments using pairs of 2D contour images.
We use the data from the image database provided by Sharvit et
al. [24] and MPEG-7 CE-Shape-1 database [12]. We calculated
the proposed field from the images, used it as a target and aligned
each of the images by the method proposed in the previous sec-
tion. The same setup as the previous experiments was used for
the deformation, and maximum of 30 iterations were allowed for
each layer in the hierarchical registration process.
4.5.1 Overall Accuracy and Feature Correspondence

We compared the average shape obtained from our method to
the average SDF calculated using the method by Chen et al. [6].
For fairness of comparison we used the pairwise non-rigid regis-
tration method proposed in the previous section to deform each
shape to the average SDF obtained from the method by Chen et
al. Initial settings, such as the initial image size, were set to be
the same in both methods.

The experiments were conducted using “device”, “device2”,
“fish”, “stef” and “dude”. The images of “fish”, “stef” and
“dude” are from the database of Sharvit et al. [24], “device” and
“device2” are from MPEG-7 CE-Shape-1 database [12].

Figs. 24- 27 show some of the registration results. Two images
on the left are the input images with their given features. Images
in third column are the registration results using the average SDF
obtained from Chen et al. The images on the fourth column are
the results from our proposed method. The red and the blue lines
in the results indicate the original locations of the input shapes.
The red surface after deformation is shown as a yellow surface,
and the blue surface after deformation as pink surface. The fea-
ture points from the second image are shown as white points in
order to see how close the feature points are aligned. The images
on the right are the results from our method without the original
shape information. Fig. 28 shows the average distance between
the closest points and the corresponding feature points.

With “device 2” and “fish”, surface and feature matching had
been achieved relatively accurately. However, the results using
the average SDF of Chen et al. tend to be pulled toward one of
the input images. On the other hand, our method estimated the
final location accurately, and the final shapes are in between the
two original surfaces without being pulled to either one of them.

The original images of “stef” and “dude” include structures
that are far apart from each other. Registration results using the
average SDF of Chen et al. succeeded in matching the similar re-
gions, but could not determine the average position of structures
with larger variance. We can observe that the average SDF ob-
tained from the method by Chen et al. is accurate when shapes
are very close. However, the results deteriorate when the corre-
sponding structures do not overlap and are far from each other.
Our method effectively matched the surfaces and features at a lo-
cation in between the original shapes despite the large difference
between the initial corresponding structures.
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(a) (b) (c) (d) (e)

Fig. 24 Experimental results of 2D contour data “device 2”.

(a) (b) (c) (d) (e)

Fig. 25 Experimental results of 2D contour data “fish”.

(a) (b) (c) (d) (e)

Fig. 26 Experimental results of 2D contour data “stef”.

(a) (b) (c) (d) (e)

Fig. 27 Experimental results of 2D contour data “dude”. (a)(b) Input images. (c) Results using Chen et
al. (d) Proposed method. (e) Proposed method without original surface. Red and blue surfaces
in (c) and (d) represent the original shapes.

4.5.2 Grid Movement
We then evaluated the method further by measuring the amount

of FFD grid movement required to deform each image in the pre-
vious experiment. Figs. 29(a) and 29(b) show an example of FFD
grid movement in the case of “fish”. The average control point
movement was recorded for each image.

Fig 29(c) shows the average grid movement in each of the
cases. The two blue bars on the left side of each entry repre-
sent the grid movement of shape 1 and 2 using the average SDF
from Chen et al. The two red bars on the right represents the grid
movement of shape 1 and 2 using the proposed method.

We can observe that our method requires less amount of grid
movement for each image. This shows that minimum amount
of deformation was applied to each image in order to preserve the
characteristic structures of the initial shapes. The grid movements
in our method is also relatively balanced compared to the results
using the average SDF of Chen et al., which indicates that the
shapes have been registered to a position that requires a similar
amount of deformation for each of the shapes.
4.5.3 Simultaneous Registration of Multiple Images

To demonstrate that the method can handle more than 2 images,
we then conducted experiments using 4 images of 2D contour
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Fig. 28 Overall accuracy and average distance between the corresponding
features.
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Fig. 29 Comparison of FFD grid movement (a) Grid movement for
“fish”using the average SDF of Chen et al. (b) Grid movement
from the proposed method. (c) Comparison of average grid move-
ment. Similar amount of deformation has been applied to each of
the images in the pair.

data. We used “butterfly” and “dude” images from the database of
Sharvit et al. [24]. In the same manner as the experiments using
image pairs, we also obtained the average shape of the 4 images
using our groupwise non-rigid registration framework. Maximum
of 30 iterations were allowed for each layer in the hierarchical
registration process.

Figs. 30 and 31 show the registration results of 4 “butterfly”
and “dude” images. The top rows show all the input images with
the blue and pink features. The bottom rows show the initial
state before deformation and the registration result. Although the
initial shapes and poses are quite different in the two cases, the
method accurately gathered all the shapes to an average position
without destroying the structure of each shape. All the prominent
features were also aligned to the average position. The proposed
groupwise non-rigid registration framework was able to align all

(a) (b) (c) (d)

(e) (f)

Fig. 30 Registration results of “butterfly”. (a) - (d) Initial images. (e) Be-
fore registration. (f) After registration.

(a) (b) (c) (d)

(e) (f)

Fig. 31 Registration results of “dude”. (a) - (d) Initial images. (e) Before
registration. (f) After registration.

the shapes to a meaningful position despite the larger number of
input data. This has been done without manual intervention.
4.5.4 Registration of 3D Data

The method can easily be extended to 3D data. The proposed
method just requires the third dimension z to be added to the for-
mulation. Fig. 32 shows the results using the Stanford Bunny and
“gorilla” from the database of Bronstein et al. [3]. The shapes are
accurately transformed to an average shape.

5. Conclusion
In this paper, we have proposed novel methods of non-rigid

registration for shape analysis. In order to effectively align simi-
lar objects, we have proposed two methods based on the idea of
“local rigidity and global deformability”.

We first proposed a method based on a novel framework called
dual-grid FFD. Similar to template matching, sampling regions
try to find the best locations on the target that minimize the dif-
ference between the the partial source SDF within each sampling
region and the entire target SDF and guide the overall deforma-
tion.

We then proposed another method that assigns a weight based
on the distance from the surface and imposes a smoothness con-
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(a) (b)

Fig. 32 3D data of Stanford Bunny and “gorilla” (a) before and (b) after
registration

straint on the local rigid transformations, restricting radical move-
ments that disrupt the deformation of the neighboring regions.
This strategy provides flexibility to the proposed strategy, which
enables a larger amount of deformation when there is a larger dif-
ference between the source and the target shapes.

To apply the same strategy for multiple objects simultaneously,
we proposed a groupwise non-rigid registration method based on
the locally rigid but globally non-rigid registration method. By
estimating an average field from all of the SDFs of the shapes in a
group, all of the shapes are registered to a single location by main-
taining the characteristic structures. The average is estimated by
adding the absolute distance value of the SDFs to intentionally
avoid the peak information.

The experimental results of these methods applied to 2D con-
tour data demonstrate the effectiveness of the “locally rigid glob-
ally non-rigid registration” strategy. All of these methods can
easily be extended to 3D surface data just by adding the third di-
mension to all of the formulations. The results of the 3D data
are also accurate, proving the effectiveness of these methods for
analysis of surface data from various objects.
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