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A Linear Edge Kernel for Two-Layer Crossing
Minimization

Yasuaki Kobayashi1,a) HirokazuMaruta1,b) Yusuke Nakae2,c) Hisao Tamaki1,d)

Abstract: We consider a simple generalization of two-layer crossing minimization problem (TLCM) called leaf-
edge-weighted TLCM (LEW-TLCM), where we allow positive weights on edges incident to leaves, and show that this
problem admits a kernel with O(k) edges provided that the given graph is connected. As a straightforward consequence,
LEW-TLCM (and hence TLCM) has a fixed parameter algorithm that runs in 2O(k log k) + nO(1) time which improves on
the previously best known algorithm with running time 2O(k3)n.

1. Introduction
A two-layer drawing of a bipartite graph G with bipartition

(X,Y) of vertices places vertices in X on one line and those
in Y on another line parallel to the first and draws edges as
straight line segments between these two lines. We call these
parallel lines layers of the drawing. A crossing in a two-layer
drawing is a pair of edges that intersect each other at a point
not representing a vertex. Note that the set of crossings in a
two-layer drawing of G is completely determined by the order
of the vertices in X on one layer and the order of the vertices in
Y on the other layer. The problem to find a two-layer drawing
whose crossing number is the minimum is called two-layer
crossing minimization, TLCM for short. This problem is known
to be NP-hard [12] (although it is polynomial time solvable
for trees [15] and permutation graphs [16]). We consider this
problem and its generalization on a parameterized perspective
described as follows. An edge is a leaf edge if it is incident
to a leaf (a vertex of degree one); a internal edge otherwise.

Two-Layer Crossing Minimization (TLCM)
Instance: bipartite graph G = (V(G), E(G))
Parameter: k
Task: Find a two-layer drawing of G with at most k crossings?

Leaf-Edge-Weighted TLCM (LEW-TLCM)
Instance: bipartite graph G = (V(G), E(G)), function
w : E(G)→ N with w(e) = 1 for every internal edge e ∈ E(G)
Parameter: k
Task: Find a two-layer drawing of G with crossings of total
weight at most k, where a crossing (e, e′) has weight w(e)w(e′)?
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Clearly, LEW-TLCM is a generalization of TLCM. In this pa-
per, we give kernelizations for these problems.

A kernelization [4] for a parameterized problem is an algorithm
that, given an instance I and a parameter k, computes an instance
I′ and a parameter k′ of the same problem in time polynomial in
k and the size of I such that
( 1 ) (I, k) is feasible if and only if (I′, k′) is feasible,
( 2 ) the size of I′ is bounded by a computable function f in k,

and
( 3 ) k′ is bounded by a function in k.
When the function f is polynomial, we call the algorithm a poly-
nomial kernelization and its output a polynomial kernel.

TLCM is a special case of a problem called h-layer crossing
minimization which decides if a given graph has an h-layer draw-
ing with at most k crossings. This problem is fixed parameter
tractable [6] when parameterized by k + h. The running time of
the algorithm of [6] is 2O((h+k)3)n. Besides having a large exponent
in the running time, this algorithm is rather complicated, involv-
ing, in particular, the fixed parameter algorithm for pathwidth due
to Bodlaender and Kloks [1], [2] and is not easy to implement. It
is natural to ask if we can obtain a simpler and faster fixed pa-
rameter algorithm for the special case of h = 2, namely TLCM.
To the best of the present authors’ knowledge, neither a faster al-
gorithm for TLCM than the one given in [6] nor its polynomial
kernelization is previously known.

In contrast to TLCM, several fixed parameter algorithms are
known for two-layer planarization (TLP), where the objective is
to find a subset of edges of size at most k of the given graph whose
removal enables a two-layer drawing without any crossings. This
problem is fixed parameter tractable [5] and can be solved in time
O(k · 3.562k + n) where n is the number of vertices of the given
graph [17]. Moreover, a kernel with O(k) edges for TLP is known
[5].

Another related problem is one-sided crossing minimization
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(OSCM), which asks for a two-layer drawing of the given bi-
partite graph with minimum number of crossings, but with the
vertex order in one layer fixed as part of the input. OSCM is also
NP-hard [10]. The fixed parameter tractability of OSCM seems
to be better-studied [7], [8], [11], [14] than TLCM. More specif-
ically, [8] gives the first fixed parameter algorithm, [7] gives a
faster fixed parameter algorithm and a kernel with O(k2) edges,
and [11] and [14] give subexponential fixed parameter algorithms
with running time 2O(

√
k log k)+nO(1) and O(3

√
2k+n), respectively.

Our results are as follows.
Theorem 1. TLCM admits a kernel with O(k2) edges provided
that the given graph is connected.
Theorem 2. LEW-TLCM admits a kernel with O(k) edges pro-
vided that the given graph is connected.

The second theorem implies a fixed parameter algorithm with
running time 2O(k log k) + nO(1) for both TLCM and LEW-TLCM
via the standard approach: given an instance of TLCM or LEW-
TLCM, we construct a kernel with O(k) edges in LEW-TLCM
for each connected component and then do an exhaustive search
to find a solution for each of these kernels. Note that all but k
connected components are crossing-free, assuming that the given
instance is feasible, which can be detected by a simple linear time
algorithm [9].

We remark that, although some of the lemmas needed for the
kernelization are non-trivial, the kernelization algorithm itself is
quite simple and easy to implement.

The rest of this paper is organized as follows. In section 2, we
give preliminaries for TLCM. In section 3, we describe a kernel-
ization for TLCM whose output has O(k2) edges, proving some
lemmas necessary for this kernelization. In section 4, we show
that the same method works for LEW-TLCM and gives a kernel-
ization whose output has O(k) edges. Finally, Section 5 contains
the conclusion.

2. Preliminaries
Let G be a bipartite graph with a prescribed bipartition of

the vertex set. We denote by V(G) the set of vertices of
G, by (X(G), Y(G)) the bipartition of V(G), and by E(G) ⊆
X(G) × Y(G) the set of edges of G. We also view G as a triple
(X(G), Y(G), E(G)). For each vertex v ∈ V(G), we denote by d(v)
the degree of v. A leaf is a vertex v with d(v) = 1. We call an edge
a leaf edge if the edge is incident to a leaf; otherwise a internal
edge. For an edge e in G, the graph G − e is a subgraph obtained
from G by deleting e. A cut vertex (a bridge) is a vertex (an edge)
whose removal increases the number of components. A block is a
maximal connected subgraph without a cut vertex. We say that a
block is trivial if it has at most two vertices. Otherwise, the block
is non-trivial. For each subset U of V(G), we denote by G[U]
the subgraph of G induced by U. For each subgraph G′ of G, we
denote X(G) ∩ V(G′) by X(G′) and Y(G) ∩ V(G′) by Y(G′).

A two-layer drawing D of G is defined as a triple (G, <X , <Y )
where <X and <Y are total orders on X(G) and Y(G), respectively.
The number of crossings inD is the number of pairs of edges that
intersect each other:

bcr(D) =
∑

{u,v}∈E(G)

|{(x, y) ∈ E(G) : x <X u, v <Y y}|.

The bipartite crossing number of G, denoted by bcr(G), is the
minimum number of crossings over all two-layer drawings of G.
For each subgraph G′ of G, we denote by D | G′ the two-layer
drawing of G′ in which the vertices of V(G′) are placed in the
same order as in D. For distinct vertices u, v ∈ X(G), we say that
a vertex u is to the left (right) of v inD if u <X v (v <X u). A ver-
tex u ∈ X(G) is the leftmost (rightmost) in D if u <X v (v <X u)
for all v ∈ X(G) \ {u}. We may omit the reference to D when it
is clear from the context. We use similar terminology for vertices
in Y(G).

3. A kernel with O(k2) edges for TLCM
In this section, we give a kernelization for TLCM whose out-

put has O(k2) edges. The same approach is extended to a kernel-
ization for LEW-TLCM in the next section. This kernelization
is based on some lower bound on the bipartite crossing number
and some reduction rule on bridges. First, we show a technical
lemma.
Lemma 1. LetD be a two-layer drawing of a bipartite graph G
and let P be a path in D from a leftmost vertex u, either in X(G)
or Y(G), to a rightmost vertex v, either in X(G) or Y(G). Then,
each edge not incident to V(P) has a crossing with some edge in
P.

Proof. Consider an arbitrary geometric representation ofD and
connect u and v with a curve Q not intersecting any edge in the
drawing. Then, the closed curve consisting of Q and the polyg-
onal curve representing P divides the plane into several regions.
One of them contains X(G) \ V(P) in its interior and another re-
gion, distinct from the first, contains Y(G) \ V(P) in its interior.
Therefore, each edge not incident to V(P) must intersect with the
closed curve and hence cross some edge of P, since it does not
intersect with Q. See. Fig. 1 for an example. �

Fig. 1 The dotted polygonal curve indicates a path P and the solid black line
indicates a curve Q. Each edge not incident to V(P) has a crossing
with P.

Lemma 2. Let G be a biconnected bipartite graph. Then
bcr(G) ≥ |E(G)|−1

3 .
The proof of this lemma is omitted in this version and can be

found in [13]. The bound in this lemma is tight. See Fig. 2 for an
example, which can be generalized to a biconnected graph with
3k + 1 edges and k crossings for arbitrary k ≥ 1.

Fig. 2 A biconnected graph G with bcr(G) = |E(G)|−1
3 .

c⃝ 2013 Information Processing Society of Japan 2

Vol.2013-AL-144 No.4
2013/5/17



IPSJ SIG Technical Report

Fix a bipartite graph G and a positive integer k. We assume that
G is connected since our goal is to establish Theorem 1. In the rest
of this section, we show that G can be reduced to a graph G′ such
that bcr(G) = bcr(G′) and |E(G′)| ≤ f (k), where f (k) = O(k2),
if bcr(G) ≤ k. This implies a kernelization with O(k2) edges: we
output a trivial infeasible instance if |E(G′)| > f (k).

We say a bridge e of G is order-inducing if each of the two
connected components of G − e has more than k edges; other-
wise e is non-order-inducing. Let us note that every leaf edge is
non-order-inducing. The following lemma justifies the name of
order-inducing bridges.
Lemma 3. Let e = (u, v) be an order-inducing bridge of G and let
G1 and G2 be the connected components of G − e with u ∈ X(G1)
and v ∈ Y(G2). If bcr(G) ≤ k then there is a two-layer drawing
D = (G, <X , <Y ) with bcr(D) ≤ k in which the vertices of G1 are
placed entirely to the left of the vertices of G2. That is, a <X b for
a ∈ X(G1), b ∈ X(G2) and a <Y b for a ∈ Y(G1), b ∈ Y(G2).

Proof. LetD′ be an arbitrary two-layer drawing with bcr(D′) ≤
k in which G1 contains the leftmost vertex yl of Y(G).

First, we claim that the rightmost vertex xr of X(G) in D′ is
contained in X(G2). Assume otherwise, that G1 contains both yl

and xr. Then, by Lemma 1, the path from yl to xr in G1 have a
crossing with each edge in E(G2), contradicting the assumption
that bcr(D′) ≤ k.

We construct a two-layer drawingD = (G, <X , <Y ) as follows:
( 1 ) a <X b for a ∈ X(G1), b ∈ X(G2),
( 2 ) a <Y b for a ∈ Y(G1), b ∈ Y(G2),
( 3 ) D′ | G1 = D | G1, and
( 4 ) D′ | G2 = D | G2.

Clearly, <X and <Y are total orders on X and Y respectively. In
the following we show that bcr(D′) ≥ bcr(D). Since each edge
of G1 has no crossings with any edge of G2 inD and the crossings
within G1 and within G2 are preserved, to prove the inequality, it
suffices to show that each edge f ∈ E(G1) that crosses e inD has
at least one crossing with E(G2) ∪ {e} in D′, together with the
symmetric property for edges in G2.

Let f = (x, y) be an edge of G1 that crosses e in D. Let P be a
path consisting of e and a path from v to xr in G2. Since e = (u, v)
and f = (x, y) cross each other and y ∈ Y(G1) is to the left of
v ∈ Y(G2) inD, x is to the right of u inD. This order is the same
in D′ as u, x ∈ X(G1). Moreover, x , xr since x ∈ X(G1) and
xr ∈ X(G2). Therefore, f = (x, y) crosses some edge of P, by
an argument similar to the proof of Lemma 1. We are done since
E(P) ⊆ E(G2) ∪ {e}. See Fig. 3 for an example. �

Fig. 3 Path P and edge f = (x, y) in the drawingD′. P, which include e, is
shown in dotted lines. Vertex x is to the right of u as it is inD. Edge
f crosses P no matter whether y is to the left or to the right of v.

We say that an order-inducing bridge e of G is contractable if
each end of e is incident to an order-inducing bridge distinct from
e and is not incident to any internal edge other than e and this
order-inducing bridge.
Lemma 4. Suppose G has a contractable bridge e and let H be
the result of contracting e in G. Then, bcr(G) ≤ k if and only if
bcr(H) ≤ k.

Proof. Let e = (v1, v2) and let ei, i = 1, 2, be the order-inducing
edge that is incident to vi and is distinct from e. For i = 1, 2, let
Gi be the connected component of G − ei that does not contain e.

Suppose first that bcr(G) ≤ k and let D be a drawing of G
with bcr(D) = bcr(G). Since e, e1, and e2 are order-inducing,
by Lemma 3, we may assume that, in D, the vertices of V(G1)
lie entirely to the left of v1 and v2 while the vertices of V(G2)
lie entirely to the right of v1 and v2. Therefore, the edges of Gi

have no crossings with edges not in E(Gi) ∪ {ei}, for i = 1, 2.
LetD′ be the drawing of H naturally derived fromD as follows.
Starting from the drawing D, take its subdrawing D | G′1, where
G′1 = G[V(G1) ∪ {v1}], and flip it upside down, that is, place the
vertices in X(G) on the layer for Y(G) and vice versa and keep
the order of vertices within G′1. Then, contract v1 and v2, now in
the same layer, into one vertex. Finally, place all the leaves adja-
cent to this contracted vertex between the drawings of G1 and G2.
Clearly, we have bcr(D′) = bcr(D). See Fig. 4.

To show the reverse direction, suppose bcr(H) ≤ k and let D′
be a drawing of H with bcr(D′) = bcr(H). Let v be the vertex of
H into which e is contracted and e′i the edge ei with vi replaced by
v, for i = 1, 2. Since e1 and e2 are order-inducing in G, e′1 and e′2
are order-inducing in H. Therefore, we may assume that, in D′,
the vertices of V(G1) lie entirely to the left of v and V(G2) while
the vertices of V(G2) lie entirely to the right of v and V(G1). By
a conversion that is an inverse of the above conversion fromD to
D′, we obtain a drawingD of G such that bcr(D) = bcr(D′). �

Repeating the contraction of contractable bridges until there is
no contractable bridges, we obtain a kernel of the given instance.
The following lemma bounds the size of the kernel.
Lemma 5. Suppose bcr(G) ≤ k and G does not have any con-
tractable bridge. Then, the number of internal edges of G is at
most 10k + 3.

The proof of this lemma is omitted in this version and can be
found in [13].

To obtain a kernel with O(k2) edges, we need an upper bound
on the number of leaf edges of the reduced graph G. Note that
we can assume each vertex is incident to at most k + 1 leaf edges.
This follows from the fact that there is a two-layer drawing D of
G with bcr(G) = bcr(D) such that the leaves of G with a common
neighbor appear consecutively in D. This means that, if a vertex
has more than k leaf neighbors, then all but k + 1 of them can be
discarded without changing the feasibility of the instance. There-
fore, Lemma 4 implies that the kernel obtained from a feasible
instance has at most 10k + 3 + (10k + 4)(k + 1) = 10k2 + 24k + 7
edges.

4. A kernel with O(k) edges for LEW-TLCM
It is clear that the kernel for TLCM described in the previous
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Fig. 4 An example of two-layer drawings D and D′. The dotted line indicates a contractable bridge and
thick lines indicate order-inducing bridges.

section can be represented by an instance of LEW-TLCM with
O(k) edges. Although this observation is sufficient for algorith-
mic purposes, we would like to say that LEW-TLCM has a kernel
with O(k) edges for an aesthetic reason. To this end, we confirm
that the lemmas in the previous section are applicable to instances
of LEW-TLCM.

For each leaf-edge-weighted graph G with weight function w,
let unfold(G, w) denote the unweighted graph equivalent to G
with weight w: each vertex v that is incident to a leaf edge e in G
is incident to w(e) leaf edges in unfold(G, w).

To adapt the lemmas of the previous section to leaf-edge-
weighted instances, we read “the number of edges” as “the
sum of weights of edges” in the definitions and lemmas. Then
the statements of the lemmas for a weighted instance (G, w, k)
are equivalent to the statements for the unweighted instance
(unfold(G, w), k) and hence do hold. Under this interpretation, the
kernelization in the previous section works for an LEW-TLCM
instance and produces a kernel with at most 10k+ 3+ (10k+ 4) =
20k + 7 edges.

5. Concluding remarks
We have given an O(k) edge kernel for connected instances

of a simple generalization of TLCM. Its consequences are not
limited to the fixed parameter algorithm mentioned in the intro-
duction, which applies a brute-force search to the kernel. There
are other methods for exactly solving TLCM such as integer pro-
gramming [18] and semidefinite programming [3]. Our kernel-
ization is expected to broaden the class of instances practically
solvable by such methods. We are planning an extensive experi-
ments along this line.
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