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Abstract: Fast computation of multiple reflections and scattering among complex objects is very important in pho-
torealistic rendering. This paper applies the plane-parallel scattering theory to the rendering of densely distributed
objects such as trees. We propose a simplified plane-parallel scattering model that has very simple analytic solutions,
allowing efficient evaluation of multiple scattering. A geometric compensation method is also introduced to cope
with the infinite plane condition, required by the plane-parallel model. The scattering model was successfully applied
to tree rendering. Comparison with a Monte Carlo method was made and reasonable agreement was confirmed. A
rendering system based on the model was implemented and multiple inter-reflections were effectively obtained. The
view-independent feature of the model allows fast display of scenes. The pre-computation is also modest, permitting
interactive control of lighting conditions.
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1. Introduction

Even with the latest graphics hardware, fast rendering
of complex scenes is still a challenging task when inter-
reflection/transmission among objects is taken into account.
Global illumination algorithms such as radiosity, path tracing,
and photon-mapping usually involve a huge number of visibility
evaluations, which limits the performance. However, if a scene
consists of densely distributed small objects, it is possible to re-
gard them as continuous scattering media and to avoid visibility
estimation by applying volumetric scattering techniques. In this
case, visibility is averaged over the volume into scattering param-
eters, such as the total cross section (σt), and individual visibility
among objects can be neglected. Such a volumetric approxima-
tion is known to be efficient for foliage [1], hair [2], knitwear [3]
and so on.

Energy transport in scattering media can be described by an
integro-partial differential equation, called the volume rendering
equation. Although it is hard to solve exactly, there are useful ap-
proximation theories such as the diffusion theory and the plane-
parallel theory [4].

The plane-parallel theory deals with uniformly illuminated me-
dia with infinite parallel planar boundaries. For such media, the
volume rendering equation can be described as a linear ordinary
integro-differential equation. By discretizing directions, the equa-
tion becomes a set of first order ordinary differential equations,
which can be analytically solved via eigenvalue decomposition,
in homogeneous cases. Max et al., applied the plane-parallel the-
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ory to the rendering of vegetation in which the equation is solved
by the Runge-Kutta method in the Fourier domain [1].

The plane-parallel solution is complete for infinite slabs and
well approximates dense vegetation. However, because the nu-
merical process involved is still slow for runtime evaluation, the
solution has to be calculated as a pre-process and stored in tables.
Since the resulting radiance depends on many variables, such as
the incident light direction, the scattering light direction, depth,
and so on, it is necessary to use high dimensional tables, which
can be huge and impinge on the flexibility. A more serious lim-
itation is that the infinite hypothesis is unrealistic for those trees
not completely surrounded by other trees.

Recently, a simplified plane-parallel (SPP) scattering model
was reported and applied to hair rendering [5]. In this paper, we
present more detailed discussions on the SPP model and decribe
its application to tree rendering. The simplification was made by
setting the cosine factor in the governing equation as a constant
based on the observation that a large part of the scattering power
is localized near to the incident light direction. This simplified
plane-parallel model has very simple analytic solutions which
reasonably approximate the original exact solutions especially in
the case of isotropic scattering. To cope with the infinite hypoth-
esis, we propose a geometric compensation factor, based on an
analysis of second order scattering. The model was applied to
tree rendering. The calculated radiance agrees reasonably with
that obtained using a Monte Carlo method. The computational
cost was very similar to the conventional single scattering mod-
els. Interactive speed was achieved in dynamic lighting environ-
ments.

In the following sections, Section 2 sets out the related work
and Section 3 describes the simplified plane parallel model.
Section 4 describes the geometric compensation and Section 5
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presents the experiments and the rendering system while the re-
sults are shown in Section 5.

2. Related Work

The literature regarding global illumination and scattering sim-
ulation is too extensive to list here, so we focus on work that uti-
lizes scattering techniques for rendering densely distributed ob-
jects. Self-shadowing of complex objects, such as hair and trees,
is often treated as a single scattering event by using, for exam-
ple, the deep shadow map [6], the opacity map [7], and the deep
opacity map [8].

Multiple reflection/transmission is recognized as crucial for re-
alistic rendering of trees and hair. Qin et al., developed an ap-
proximation to capture multiple reflection among leaves, assum-
ing local two-flux inter-reflection between neighboring parallel
surfaces [9]. Dual scattering [2] applies a similar idea to hair ren-
dering and successful results have been obtained. However, both
methods strongly rely on model-based heuristics. Boulanger et
al., presented a fast rendering method, taking second order scat-
tering into account [10]. Moon et al., applied photon mapping to
hair rendering [11] and encoded it by spherical harmonics [12].
The results are impressive, but the pre-computation was heavy
and it is thus difficult to apply it to dynamic lighting and scenes.
Max et al., applied plane-parallel scattering theory to tree render-
ing. The concept was very stimulating, and the potential of the
plane-parallel theory was clearly demonstrated. However, prob-
lems related to the infinite plane assumption have limited its prac-
tical application.

The plane-parallel theory is ideal for calculating the BRDF (Bi-
directional Reflectance Distribution Function) of scattering ma-
terials and has been applied to shading models for skin [14] and
leaves [13].

3. Simplification of the Plane-parallel Scatter-
ing Theory

This section briefly reviews the plane-parallel scattering the-
ory, and then presents a simplified plane-parallel model. The sim-
plified plane-parallel model uses a pre-defined intensity distribu-
tion, which provides a view-independent feature to the rendering
system and allows fast display.

3.1 Plane-parallel Theory
Light energy propagates through scattering media via repeated

scattering and absorption events. The irradiance I(x, s) at x in the
direction s satisfies the volume rendering equation:

(∇ · s)I(x, s) = −σt I(x, s) + σs

∫
Ω

p(s, s′)I(x, s′)ds′, (1)

where σt, σs represents the total cross section, and the scatter-
ing cross section respectively, while Ω denotes the unit sphere.
The function p is the phase function, often defined by Henyey-
Greenstein’s function

p(s, s′) = (1/4π)(1 − g2)/(1 − 2g(s · s′) + g2)3/2, (2)

where g denotes the average cosine. The volume rendering equa-
tion also has its equivalent integral form, represented by

Fig. 1 Infinite slab of scattering material with thickness w.

I(x, s) =
∫ l

0
[exp(−σtl

′)σs∫
p(s, s′)I(x′, s′)ds′]dl′ + I0(x, s), (3)

x′ = x − l′s, (4)

where I0 denotes the attenuated direct light, and l represents the
length of the integration path (Fig. 1).

The volume rendering equation is simple when the material is
homogeneous and the boundary is an infinite plane, as shown in
Fig. 1. In this case, I(x, s) depends only on the depth z and the
direction s, so the gradient ∇ in Eq. (1) can be replaced by the
ordinary differential d/dz, as follows:

cos θdI(z, s)/dz = −σt I(z, s) + σs

∫
p(s, s′)I(z, s′)ds′, (5)

where θ represents the angle between s and the z-axis.
The plane-parallel problem can be solved through discretiza-

tion. Using an orthogonal function system on the unit sphere,
φ j(s), the irradiance I(z, s) can be approximated by:

I(z, s) �
∑

j

I j(z)φ j(s). (6)

For simplicity, let us adopt the delta-function δ(s − s j) for φ j as
in Refs. [1], [14], leading to:

cos θidI j(z)/dz = −σt I j + σs

∑
i

p(si, s j)Ii(z)ds′, (7)

Equation (7) is a linear ordinary differential equation with re-
spect to I j and can be analytically solved through eigenvalue de-
composition.

3.2 Simplified Plane-parallel Model
Calculation of the plane-parallel solution involves eigenvalue

decomposition, which is still computationally expensive for run-
time evaluation. In this section, we further simplify the model to
obtain a faster, non-iterative solution.

Figure 2 (a) shows some examples of scattering fields, calcu-
lated from the plane-parallel model, where directional light illu-
minates the media. As seen in the figure, power is concentrated
near the incident light direction. Thus, let us apply the following
rough approximation to the cosine factor

cos(θ) ∼ ± cos(θ0). (8)

where θ0 denotes the incident light angle. We also approximate
the phase function p(s, s′) by the sum of the uniform functions on
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Fig. 2 Directional distribution of the scattering field computed at depth z.
In each image, the left hand side shows complete solutions obtained
using the plane-parallel model, and the right hand side shows approx-
imate solutions calculated using the simplified model. σs = 0.95 and
σt = 1.0.

the upper and lower hemispheres, as shown in Fig. 2 (b):

p(s, s′) ∼
{

TU+(s′) + RU−(s′) (s ∈ Ω+),
RU+(s′) + TU−(s′) (s ∈ Ω−),

(9)

where

T =
∫

U+(s′)p(s0, s
′)ds′, R =

∫
U−(s′)p(s0, s

′)ds′

and

U+(s′) =
{

1/2π (s′ ∈ Ω+),
0 (s′ ∈ Ω−),

,

U−(s′) =
{

0 (s′ ∈ Ω+),
1/2π (s′ ∈ Ω−),

(10)

in which s0 denotes the direction of the incident light.
For the positive direction s ∈ Ω+, Eq. (7) can be approximated

by

cos θ0dI(z, s)/dz = −σt I + σs

(
T

∫
Ω+

I(z, s′)ds′

+R
∫
Ω−

Ids′
)
, (11)

and for the negative direction s ∈ Ω− by,

− cos θ0dI(z, s)/dz = −σt I + σs

(
R

∫
Ω+

I(z, s′)ds′

+T
∫
Ω−

Ids′
)
. (12)

As shown in the next section, these equations have very simple
analytical solutions. Let us call this model the simplified plane-
parallel model and abbreviate it here to SPP model.

3.3 Solutions
As in Fig. 2 (a), the shapes of the solutions apparently con-

sist of upper and lower hemispheres and a delta-function. This
suggests that the solution might be constructed from the uniform
functions U± and the incident light distribution (a delta function).
In fact, it can be confirmed that there are two types of solutions
related to the hemispheres and the incident light as follows.
Type I

Based on the observation, we assume the Type I solution to
have a hemispheric form as follows:

I(z, s) = (αU+(s) + βU−(s)) exp(−λz), (13)

where, α, β, and λ are constants. Substituting this into Eqs. (11)
and (12) yields a set of quadratic equations with respect to α, β,
and λ:

−λα cos θ0 = −σtα + σs(αT + βR)

λβ cos θ0 = −σtβ + σs(αR + βT ). (14)

Since the solution has scaling freedom, we set β = 1. From
Eq. (14), we have:

α(σt − σsT − λ cos θ0) = σsR (15)

ασsR = (σt − σsT + λ cos θ0). (16)

By dividing Eq. (15) by Eq. (16), we have a quadratic equation
for λ:

(σt − σsT − λ cos θ0)/σsR = σsR/(σt − σsT + λ cos θ0),

(σt − σsT )2 − (λ cos θ0)2 = (σsR)2

By solving this equation,

λ = ±(1/ cos θ0)[(σt − δσ)(σt − σs)]
1/2,

α = σsR/(σt − σsT − λ cos θ0),

β = 1,

δσ = σs(T − R), (17)

where we used R + T = 1.
With these parameters, Eq. (13) satisfies Eqs. (11) and (12).

Type II
This type of solution is related to the incident light. Using an

arbitrary function F+ that satisfies:

F+(s) = 0 for s ∈ Ω−,∫
Ω

F+(s)ds = 0,

the Type II solution is defined by:

I(z, s) = F+(s) exp(−σtz). (18)

It can be easily confirmed that Eq. (18) satisfies Eqs. (11) and
(12). This solution involves negative values, but these are can-
celled in Type I solutions by applying boundary conditions.

3.4 Boundary Conditions
Let us describe the incident light distribution by i0(s), which

is a delta function δ(s − s0) in the case of directional light. The
boundary conditions can be satisfied by a linear combination of
type I and II solutions. We assume the solution I(z, s) to be:

I(z, s) = c1(αU+(s) + βU−(s)) exp(−λz)

+(c2U+(s) + i0(s)) exp(−σtz)

+c3(αU+(s) + βU−(s)) exp(λz), (19)

where i0 represents the incident light distribution. Note that the
first and the third terms are Type I solutions. The second term is
a Type II solution by setting

c2 = −
∫
Ω+

i0(s′)ds′/T. (20)

The boundary conditions are:
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I(0, s) = i0(s) for s ∈ Ω+,
I(w, s) = 0 for s ∈ Ω−, (21)

where i0 and w denote the incident light distribution and the thick-
ness of the media, respectively (Fig. 1). These lead to a linear
equation with c1 and c3, which yields

c1 = −αE3c2/(α
2E3 − β2E1),

c3 = −βE1c2/(α
2E3 − β2E1), (22)

where E1 = exp(−λw) and E3 = exp(λw).
The evaluation of the scattering field can be summarized as

follows:
( 1 ) Calculate λ, α and β according to Eq. (17)
( 2 ) Calculate c1, c2 and c3 according to Eqs. (20) and (22)
( 3 ) Calculate I(z, s) by Eq. (19).
Note that the calculation is simple enough to be evaluated in run-
time per vertex or pixel.

3.5 Refinement
The approximation in Eqs. (8) and (9), neglects directional

variations of scattering events, and the calculated scattering fields
are almost directionless. However, when we can apply ray-
marching or the usual surface shading operations to the approxi-
mated solutions, they can be improved by taking directional vari-
ations into account.

The ray-marching operation is described by the line integral
(Eq. (4)). Since the simplified solution, Eq. (19), is a sum of ex-
ponential functions, the integration is straight forward. The cal-
culation is shown in Appendix A.1.

3.6 Experiment 1
We examined the manner in which this approximation works.

Table 1 shows the root-mean-square difference, averaged over
several incident directions and depth values. As shown in the ta-
ble, the simplified plane-parallel model generally provides a good
approximation, and the ray-marching integral makes further im-
provements. For lower albedo values, the approximation errors
were very low because the direct light components are dominant
in these cases, but even in cases when multiple scattering is dom-
inant with higher albedo values, the approximation is reasonable.
Table 2 shows the RMS errors for several thickness values. It can
be seen that the errors slightly increase as the thickness decreases,

Table 1 Measured RMS errors due to the simplification. For given albedo
values and phase functions, the error in the simplified solution (S.)
and that in the refined solution (R.) are described. The errors are
averaged over a number of directions and depth values, normal-
ized by the total power. The total error throughout all the albedo
values is shown in the last row. The phase function is a Henyey-
Greenstein’s function (Eq. (2)). The thickness of the media was
set to 10/σt .

albedo g = 0.0 g = 0.5 g = −0.5

S. R. S. R. S. R.

0.5 2.7% 0.3 1.3 0.3 1.2 0.2
0.7 1.9 0.5 2.1 0.7 1.8 0.4
0.9 2.1 1.2 3.4 1.7 2.7 1.3
0.95 2.9 1.7 4.1 2.7 3.4 2.0
0.99 4.5 3.9 5.5 5.8 5.0 4.7
total 2.8 1.7 3.3 2.5 2.9 2.1

but the influence is not significant.
Figure 3 shows the solutions to Eq. (11) and the ones refined

by the ray-marching integral. As shown in the figure, the SPP so-
lutions are in reasonable agreement with the exact solutions and
improvements made by using ray-marching can also be observed.

4. Geometric Compensation

A major limitation of the plane-parallel theory is that it as-
sumes infinite planar boundaries, which is unrealistic in many
cases. This section describes a compensation method that takes
the boundary geometry into account.

4.1 Second Order Analysis
Let us consider the situation illustrated in Fig. 4 (a). We ob-

served that both the complete and simplified plane-parallel mod-
els tend to over-estimate irradiance at points with a large depth

Table 2 Measured RMS errors with several thickness values (w). The total
cross section σt = 1.0. Other conditions are the same as Table 1.

albedo w = inf w = 16 w = 10 w = 5

0.5 0.3% 0.3 0.3 0.4
0.7 0.7 0.7 0.7 0.8
0.9 1.7 1.7 1.6 1.6

0.95 2.3 2.2 2.1 2.6
0.99 4.0 4.6 4.6 4.4
total 2.3 2.5 2.4 2.5

Fig. 3 Directional distribution of scattering field computed at depth z. In
each image, the left hand side shows complete solutions obtained
by the plane-parallel model, the right hand side shows approximated
solutions calculated by the simplified model, and the middle shows
refined solutions. σs = 0.99, g = 0.5 and σt = 1.0.

Fig. 4 G-factor and depth computation.
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value, and often the single scattering model provides a much bet-
ter approximation in such areas. On the other hand, the plane-
parallel models provide much better results near directly illumi-
nated points by capturing multiple reflection light. Therefore, it is
an attractive idea to interpolate between two results by estimating
the degree to which the plane-parallel condition is satisfied.

In the plane-parallel models, the boundary is assumed to be the
plane z = 0. At P in Fig. 4 (a), for example, the irradiance in
s direction is calculated from the sum of the contributions along
P-B0 by the plane-parallel model. However, the real boundary
point is B1, and the contribution from B0-B1 gives rise to errors
in the plane-parallel models. These errors can be estimated in the
following way. When the boundary point is B0, the irradiance at
point x can be estimated using the integral form (Eq. (3))

I(P, s; B0) =
∫ B0

P
exp(−σtl

′)σs

∫
p(s, s′)I′(x′, s′)ds′dl′

+I0(P, s), (23)

where I′(x, s) represents the approximate irradiance at x. There-
fore, the difference in irradiance can be estimated from:

δI(P, B1) = I(P, s; B0) − I(P, s; B1) (24)

=

∫ B0

B1

exp(−σtl
′)σs

∫
p(s, s′)I′(x′, s′)ds′dl′.

(25)

When B1 = B0, then δI = 0 and the plane-parallel models pro-
vide good approximations. On the other hand, when B1 = P, δI
is maximized and the single scattering model provides a better
approximation. Therefore, the value

Gs = δI(P, B1)/δI(P, P) (26)

can measure the validity of the plane-parallel models. When we
adopt the direct light I0 as I′(x′s′) in the integral, the integrand be-
comes a simple exponential function, which can be analytically
evaluated (see Appendix A.2).

Summing the difference Gsi for N sample directions, si, we
define the geometric compensation factor (G-factor) G by

G(P) = 1.0 −
N∑
i

Gsi/N. (27)

When the plane-parallel condition holds, G takes the value 1, and
it takes low values when the boundary departs from the plane.
Using the G-factor, we interpolate the irradiance value calculated
from the SPP model, Ipp, and the direct light I0, using

IG = GIpp + (1 −G)I0. (28)

4.2 Experiment 2
We carried out experiments to estimate the accuracy of the pro-

posed method by comparing the results with those from a Monte
Carlo method. The test object was a tree model composed of
Lambertian meshes. In the Monte Carlo method, a number of
light rays were shot and traced, and the number of intersections
were recorded in each mesh.

Depth information is fundamental in the SPP model. Instead
of estimating the mean free path, 1/σt, and storing the geometric

depth, we counted the number of intersections n+ and n− along
the incident light direction (Fig. 4 (b)), and assigned the depth d

and thickness w to

d = n+/σt, w = (n+ + n−)/σt, (29)

where σt can be any fixed value because all the calculations with
depth d are factorized by σt. Each mesh stores a depth and thick-
ness value by averaging n+ and n− of the light rays that intersect
the mesh.

The phase function can be estimated from the distribution of
surface normal vectors and the shading model. In this experiment,
we simply set the same value for the Lambertian reflectance and
the transmittance. In this case, the phase function becomes an
isotropic phase function.

In general, scattering theories can only provide average behav-
ior of light reflection/transmission. To examine how well the SPP
model estimates the average scattering field with respect to depth
and thickness, we classified the meshes based on the depth and
thickness values, and evaluated the RMS error, based on averages
within the depth-thickness categories, using

RMSdw =

√∑
d,w

(〈Ld,w〉2 − 〈Ld,w
0 〉2)/

∑
d,w

(Ld,w
0 )2, (30)

where Ld,w
0 and Ld,w represent the irradiance of a mesh with depth

d and thickness w, calculated from the MC method and the other
models, respectively, and 〈L〉 indicates the average of L.

We first examined an isolated tree, and calculated the irradi-
ance using the Monte Carlo method (MC), the simplified plane-
parallel model (SPP), the SPP model with G-factor compensation
(SPPG), and the single scattering model (SS). In the single scat-
tering model, reflection/transmission of the direct light, I0, was
simply calculated. The tree model consisted of 18K triangles,
with directional light illuminating it from above. In the Monte
Carlo method, 184K rays were traced.

Figure 5 shows the generated images and Table 3 presents
the measured RMS values. As shown in the figure, the SPP
model produces a too bright image, especially in the lower
part of the canopy, making the RMS value the largest of all

Fig. 5 Comparison of scattering fields for a single tree.

Table 3 Comparisons of measured RMS errors defined by Eq. (30).
The albedo value was set to 0.95.

single tree multiple trees

SPPG 6.2% 9.2%
SPP 65 43
SS 16 28
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Fig. 6 Evaluated G-factors represented by psuedo colors.

Fig. 7 Comparison of scattering fields for multiple trees.

the models. The SPP model with the G-factor well compen-
sates the over-estimation while taking account of multiple re-
flection/transmission of leaves. Figure 6 shows the evaluated G-
factor at each cell. The red color indicates a high G-factor value
while blue represents a low value. The observed RMS was very
small. The image from the single scattering model is somewhat
dark in the upper part, and the RMS was twice that of the SPPG.

Next, we repeated the same tree model periodically in the
scene. The generated images are shown in Fig. 7. Due to
inter-reflection among the trees, the reference MC image appears
brighter. However, the SS image has stayed dark, making its RMS
larger. The SPP image is still brighter than the reference, but
the G-factor again has adapted well to this situation and captured
inter-reflections among the trees.

5. Rendering System

We constructed a system for tree rendering based on the SPP
model and the geometric compensation. The view-independent
feature of the SPP model allows fast display as shown in this sec-
tion.

5.1 Data Representation
Vegetation scenes are usually constructed by repeatedly plac-

Fig. 8 Deep opacity maps and cells in the tree model.

ing the same tree models in different positions. To efficiently deal
with such structures, we represent scene data by prototype tree
models, instance models, and ground models. A prototype model
represents data for an original tree, and an instance model is a
copy of the prototype model, placed in the scene.
Prototype model

Prototype models contain all the detailed data, such as geomet-
ric data, texture, shading parameters, and depth information. To
represent high resolution depth information, we adopted the deep
opacity map [8], which efficiently encodes the number of inter-
sections on a GPU. We prepared a deep opacity map for each
light source to calculate the scattering field due to each source. In
addition, we sampled a small number of directions (typically 16)
and set a deep opacity map for each direction (Fig. 8 (a)).
Instance model

Instance models contain a pointer to a prototype model, a trans-
lation vector, links to neighboring instances, and a low resolution
(∼ 163) 3D grid that represents the G-factors and depth informa-
tion (Fig. 8 (b)). Each grid cell stores the G-factor and the depth
values in the sampling directions of the prototype deep opacity
maps.
Ground model

Ground models contain geometric data, textures, shading pa-
rameters, and shadow maps in the sampling directions.

5.2 Depth and G-factor Calculation
In a prototype model, the depth information is stored in deep

opacity maps. Since a scene usually consists of a small number
of prototypes, the maps can be generated quickly.

The depth values in instance models are calculated by using
the prototype deep opacity maps. Let us consider the situation
shown in (Fig. 8 (b)), where the instance model i0 is surrounded
by neighboring instance models i. The depth value, d(x, s j), at the
grid point x in the sampling direction s j is the sum of the depth
values of the instance models and can be calculated using

d(x, s j) =
neighbor∑

i

Dmap(x − (ti − ti0 ), s j), (31)

where Dmap denotes the depth value obtained from the deep opac-
ity map of the prototype, and ti represents the translation vector
of the instance i. From the depth values d(x, s j), the G-factor can
be calculated using Eqs. (27) and (A.3).

5.3 Shading
The system deals with directional light sources and environ-

mental light. The prototype deep opacity maps are referred to for
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direct light shading in order to capture higher resolution varia-
tions, while depth values stored in the grid are used for environ-
mental light shading.
Direct light

Let the light source direction, the view direction, and the sur-
face normal be s0, se and n. Referring to the prototype deep opac-
ity map in the s0 direction, we first calculate the depth d(x, s0) at
a surface point x according to Eq. (31). By substituting d into
Eq. (19), the irradiance I(x, s) can be obtained. Although it is
possible to use I(x, se), we integrate BRDF/BTDF Btr over the
surface to obtain the refined solution,

Irefine =

∫
Ω

Btr(se, s
′; n)I(x, s′)(n · s′)ds′ (32)

Since I(x, s′) is the sum of the unit hemisphere functions
(Eq. (10)) and a delta function, the integral can be easily evalu-
ated by referring to the integral table S ±:

S ±(se, n) =
∫
Ω

Btr(se, s
′; n)U±(s′)ds′

Finally, the G-factor G(x) stored in the corresponding grid cell is
multiplied by Irefine,

Ifinal = G(x)Irefine.

5.4 Procedure
The outline of the procedure is listed in Fig. 9. First, we

construct the cell structure, setting the density and the gradient
(Step 1). Second, the deep opacity maps in the sample direc-
tions are constructed (Step 2), and the G-factor is evaluated at
each cell position (Step 3). For static scenes, these three steps are
performed only once.

Next, the environmental light intensity is calculated for each
cell (Step 4), and the deep opacity map in the light source direc-
tions are constructed (Step 5). These steps are recalculated when
lighting conditions change.

Fig. 9 Outline of the procedure.

Table 4 Timing data. The number of the sampling directions of the deep opacity maps was 22.

CHERRY16 CHERRY64 MAPLE16 MAPLE64

# of polygons 1.0 M 4.0 M 3.5 M 14 M

# of cells 13 K 52 K 10 K 40 K

Step 2 and 3 117 ms 533 ms 95.3 ms 426 ms
(Preprocess)

Step 4 25 ms 100 ms 20 ms 80 ms
(Skylight change)

Step 5 3.9 ms 3.9 ms 6.7 ms 6.7 ms
(Sunlight change)

Step 6 (display) 27 ms 101 ms 29 ms 131 ms

Finally, at each pixel, the scattering field is evaluated accord-
ing to Eqs. (17), (22), and (19), by referring to the deep opacity
map in the light source direction and the normal table of the cells
(Step 6). The pixel color is then calculated for the eye direction
using the shading information. This color evaluation generally in-
volves an integral over direction s, but in isotropic scattering, the
calculation becomes simple, as described in the Appendix A.2.
Note that branches and other opaque objects can also be rendered
in the same way by simply setting their transparency to zero. Also
note that only Step 6 is necessary for the display as long as the
objects and the lighting do not change.

5.5 Results
The performance was measured for the scenes shown in

Fig. 10, and Table 4 shows the execution time on a PC with an In-
tel Core2 Quad Q8200 at 2.33 GHz and NVIDIA GeForce GTX
295. The CHERRY16 and the CHERRY64 consist of 16 and 64
instance models of a cherry blossom prototype model, and the
MAPLE16 and MAPLE64 consist of 16 and 64 instances of a
Japanese maple prototype. As seen in the table, interactive speeds
were achieved for dynamic lighting environments.

Figure 11 shows sample images rendered by the proposed
model (SPPG) and the single scattering model. For reference pur-
poses, images generated by the MC method and real photographs
are also shown. As seen in the figure, the single scattering model
has created an unnaturally dark image, while the proposed model
has produced a much better image by taking account of multiple
transmission/reflections.

Table 5 shows the computation time required to generate the
pictures in Fig. 11. As shown in the table, interactive display was

Fig. 10 Scenes used in the performance evaluation.
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Fig. 11 Rendered images.

Table 5 Timing data for Fig. 11. “Preprocess” includes Step 1 to 5 for
SPPG, and Step 4 and 5 for SS. For MC, it includes the ray
tracing process that calculates indirect light irradiance.

CHERRY MAPLE
preprocess display preprocess display

SS 4.8 ms 40.0 ms 6.0 ms 120.0 ms

SPPG 58.4 ms 40.2 ms 50.9 ms 120.3 ms

MC 71 × 103 ms 40.2 ms 433 × 103 ms 120.3 ms

achieved, and the display performance was almost the same for
the three methods.

The MC method was implemented on a CPU using a voxel-
based ray tracer. We randomly generated light rays (ten times the
number of meshes), traced them, and recorded the intersections
on a per-mesh basis. To improve the visual resolution, we did not
save the first intersections, but calculated the direct light compo-
nent in the display stage using the deep opacity map, as SS and
SPPG do. This is the reason why the display speed of MC was
almost the same as SS. Since the difference between the SS and
SPPG display processes is just a few arithmetic calculations such
as those in Eqs. (17), (22), and (19), the required computation
time was almost the same.

6. Conclusion

A simplified plane-parallel scattering model was proposed for
rendering densely distributed objects. A simplification was made
by setting the cosine factor constant, based on the observation that

a large part of the scattering power tends to be localized near to
the incident light direction. The simplified plane-parallel model
has very simple analytic solutions which reasonably approximate
the original exact solutions especially in the case of isotropic scat-
tering. A geometric compensation was also introduced to cope
with the infinite plane assumption required by the original plane-
parallel model. The model was successfully applied to tree ren-
dering. Comparisons with a Monte Carlo method were made and
reasonable agreement was confirmed.

A rendering system based on the model was implemented,
and multiple inter-reflection was efficiently achieved. The pre-
computation was also modest, allowing interactive control of
lighting conditions. Future work includes the application to larger
scale scenes, which would be possible by dealing with simpler
tree models, such as billboards.
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Appendix

A.1 Refinement by Ray-marching

Let us consider the situation shown in Fig. 1. For simplicity, let
us define a function E as

E(z; λ, σ) =

{
z (if λ = σ),
1/(−σ + λ) exp((−σ + λ)z) (otherwise),

(A.1)
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Fig. A·1 G-factor evaluation.

and set values E±i as

E+i = (1/ cos θ)(E(z0; γi, σ/ cos θ) − E(0; γi, σ/ cos θ))

E−i = (1/ cos θ)(E(w; γi, σ/ cos θ) − E(z0; γi, σ/ cos θ))

for γ1 = −λ, γ2 = σ, and γ3 = λ. We also define the function S ±
by

S ±(s) =
∫
Ω

p(s, s′)U±(s′)ds′.

Substituting Eq. (19) into Eq. (4), the refined solution can be
expressed by

I±refine(z, s) = S +(s)(c1α1E±1 + c2E±2 + c3α2Epm
3 )

+S −(s)(c1β1E±1 + c3β2E±3 )

+p(s, s0)E±2 , (A.2)

where I±refine(z, s) denotes the refined solution for s ∈ Ω±. By
preparing an integration table for S ±, Eq. (A.2) can be efficiently
evaluated.

A.2 G-factor Evaluation

The direct light component can be described by

I′(z, s) = δ(s − s0) exp(−σtz),

where s0 denotes the incident light direction (Fig. A·1). By sub-
stituting this into Eq. (25), we have:

δI(P, B1) = exp(−σtz0/ cos θ)(1.0 − E(h;σt/ cos θ0, σt/ cos θ)),

and

Gsi = (1.0 − E(h;σt/ cos θ0, σt/ cos θ))

(1.0 − E(z0;σt/ cos θ0, σt/ cos θ)), (A.3)

where the function E is defined by Eq. (A.1).
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