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Abstract: When coupling data mining (DM) and learning agents, one of the crucial challenges is the need for the
Knowledge Extraction (KE) process to be lightweight enough so that even resource (e.g., memory, CPU etc.) con-
strained agents are able to extract knowledge. We propose the Stratified Ordered Selection (SOS) method for achieving
lightweight KE using dynamic numerosity reduction of training examples. SOS allows for agents to retrieve different-
sized training subsets based on available resources. The method employs ranking-based subset selection using a novel
Level Order (LO) ranking scheme. We show representativeness of subsets selected using the proposed method, its
noise tolerance nature and ability to preserve KE performance over different reduction levels. When compared to sub-
set selection methods of the same category, the proposed method offers the best trade-off between cost, reduction and
the ability to preserve performance.
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1. Introduction

Data Mining (DM)-integrated agent frameworks are appropri-
ate platforms for the realization of symbiotic integration [5] of
DM and intelligent agents. The frameworks enable intelligent
agents to use DM techniques to extract knowledge from training
examples. In a way, the integration [5] supplements agent’s de-
ductive logic with tasks like learning a classifier and association
rules. This integration, which helps to overcome the breakdown-
with-complexity problem of agent’s deductive reasoning logic,
faces two crucial challenges. The first is the need for the knowl-
edge extraction (KE) process to be lightweight enough so that
even resource (e.g., memory, CPU etc.) constrained agents are
able to extract knowledge. The second is a well designed mid-
dleware to bridge the gap between reasoning logics of DM and
agents. The scope of this paper covers the first challenge. There
are two approaches for achieving a lightweight KE; the use of
smaller training data (TD) sets or algorithm improvement. The
use of smaller examples subsets is facilitated by five categories of
data reduction approaches [15]; dimensionality reduction, feature
selection, numerosity reduction, data aggregation and discretiza-
tion. Whichever of the approaches used, studies have shown that
reducing TD sets beyond a certain level have negative effects
on KE [21]. In this paper we propose a numerosity reduction
method to realize the objective of achieving smaller TD subsets
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Fig. 1 Simplified taxonomy of data reduction approaches.

with either zero or minimum effects on KE. The method uses a
novel Level Order (LO) ranking scheme to rank examples within
classes and then stratified selections are made on these classes
to form smaller subsets. By ranking examples, the method pro-
vides room for class balancing which is necessary for highly im-
balanced dataset. This method’s preliminary versions appear in
[16], [17], [18]. In these versions, the method was not evalu-
ated extensively. For example, only C4.5 algorithm was used as
the KE algorithm. Also the critical steps of the method were not
explained explicitly and sufficiently. Moreover, the representa-
tiveness of the selected smaller subsets was also not shown.

The five data reduction approaches are shown in Fig. 1. We
have chosen to focus on the numerosity reduction approach be-
cause methods based on other approaches are too closely related
to specific data for a generic approach [15]. Among the numeros-
ity reduction methods, sampling-based ones are the most likely
appropriate candidates for lightweight KE in mining-based agent
learning due to two reasons. First, they are non-parametric and
therefore incur no extra cost of (re)creation of data estimation
models. Second, amongst non-parametric methods, sampling
cost increases linearly with sample size while costs in other meth-
ods increase exponentially. The proposed numerosity reduction
method is meant to make various machine learning and DM tasks
either possible or performance-improved for resource constrained
agents. These tasks include classification tasks and rule mining
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tasks, to mention a few. In these tasks, an agent learns mod-
els from TD examples using some learning algorithm. TD sets
are sets of data in a features-label format (xk, yk), where features
x1, x2, . . . , xn describe some past experience labeled y. The indi-
vidual instances of these experiences x1, x2, . . . , xk are refered to
as examples and their respective labels y1, y2, . . . , yk as classes.
It is this process of learning knowledge models from TD which
we are referring to as KE and the respective learning algorithms
as KE algorithms. Environments which involve resource con-
strained agents and the tasks, include wireless sensor networks
and smart homes and devices.

Section 2 of this paper covers related works and the position of
the proposed method. In Section 3, we summarize how mining-
based agent learning have been approached in existing multi-
agent frameworks. Our proposed method is presented in Sec-
tion 4 and evaluated in Section 5.

2. Data Reduction and Subset Selection

Sampling-based reduction approaches are characterized by the
following properties [4], [12].

( 1 ) Selection method: A method for selecting examples when
forming a TD subset, e.g., random selection.

( 2 ) Selection type: This tells whether a method seeks to retain
boundary examples in a TD set (condensation type) or cen-
tral examples (edition type) or both (hybrid).

( 3 ) Fitness function or test: A criteria which the selected ex-
amples are supposed to meet.

( 4 ) Search direction: Incremental or decremental subset forma-
tion or representatives identification.

( 5 ) Stratification: When examples are independently selected
from individual strata or classes of examples, then the se-
lection is said to be stratified.

( 6 ) Other properties: Related to the used KE algorithm, e.g.,
distance function.

Subset selection approaches are presented, discussed and com-
pared using these properties. This paper’s related works have
two viewpoints. One is subset selection (or sampling) which
is discussed in this section together with benchmarking choices
(for evaluation) using the above properties. Another one is DM-
integrated agent framework approaches discussed in Section 3.

2.1 Sampling-based Selection
Among the three non-parametric categories in Fig. 1, sampling

has the advantage that the cost of obtaining a subset sample is pro-
portional to the subset size as opposed to the TD set size in other
methods. Other non-parametric methods require at least one com-
plete pass through the TD set in every selection [15]. Therefore,
for the same subset size, selection complexity has a linear rela-
tionship with TD subsets’ dimensions in sampling-based meth-
ods whereas in other methods (e.g., histograms) complexities in-
crease exponentially with TD dimensions.

Table 1 Sampling-based methods and characteristics.

Characteristic Cluster SRS RMHC SOS

Selection Method random random random ordered

Selection Type - - - hybrid

Fitness Test - - accuracy -

Stratification yes yes no yes

Search Direction increm. increm. increm. increm.

Other properties n/a n/a Manhattan Minkowski

Table 1 shows three classical sampling-based methods for se-
lecting subsets (Cluster, SRS and RMHC) plus the proposed
method, Stratified Ordered Selection (SOS). The three meth-
ods are incremental and random-based. One crucial shortfall of
random-based sampling methods is that they are not very reliable.
There is no guarantee that they will always give performance en-
hancing (or preserving) subsets when applied on the same TD
sets. For instance, SRS (Stratified simple Random Sample) [15]
involves random selection of examples from each of the mutu-
ally disjoint strata (classes) of a TD set. While SRS ensures a
representative subset like its derivatives SRSWOR (Simple Ran-
dom Sample Without Replacement) and SRSWR (Simple Ran-
dom Sample With Replacement), it neither can regenerate the
same result nor does it explicitly attempt to retain decisive ex-
amples of a class (e.g., boundary and central). Cluster (cluster
sample) is very similar to SRS. The only difference is that in
cluster sample if there are C mutually disjoint strata, the exam-
ples selection can result into s clusters, where s < C. This is
not allowed in SRS where the number of strata should always be
preserved.

Methods like RMHC (Random Mutation Hill Climbing) [4],
[9], [28] improve reliability by using a fitness test. In RMHC,
although randomly selected, examples are only kept if they en-
hance or preserve accuracy. The use of fitness test during subset
selection imposes extra computational cost which in mainstream
learning is not a big problem because selection is only done once
for a TD set (mainly for noise removal). However, in resource
constrained environments where learning agents have differing
resources, selection is done many times with varying subset sizes.

The proposed method, SOS, for numerosity reduction in a re-
source constrained environment, has two main potentials over
others. It improves reliability of KE by selecting examples in
an orderly manner. Another potential is that examples are ranked
before selection. In terms of the above properties and in addition
to using ordered selection, the proposed method does stratified
selection, it is incremental and of hybrid selection type. We have
summarized how the proposed method is characterized by calling
it the Stratified Ordered Selection (SOS) method and we will use
the name henceforward.

SOS addresses the above-described shortfalls of other sam-
pling methods. It uses examples ranking and ordered selection in
order to improve reliability. However, the method does not em-
ploy fitness tests at selection time in order to keep the cost low. It
is both a condensation and an edition type method so that the gen-
erated subsets enhance or preserve KE performance even better.
To ensure representativeness of the formed subsets, the method
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also employs a stratification approach. SOS also provides room
for on the fly class balancing. Class imbalance is a well known
problem, in learning, with negative effects on KE [13], [27].

2.2 Benchmarking
Evaluation works (Refs. [12], [26]) appearing in literature re-

veal that RMHC and other two non sampling-based methods,
AkNN (All k-NN) [31] and DROP3 (Decremental Reduction Op-
timization Procedure 3) [32], offer excellent balance between size
reduction and accuracy. Both, AkNN and DROP3, build on top
of ENN (Edited Nearest Neighbor rule) [31] which edits out noisy
instances from datasets and leaves smoother decision boundary.
AkNN extends ENN by employing a loop of ks and DROP3 em-
ploys a noise filtering pass similar to ENN.

Due to the expensiveness of non sampling-based methods, we
have chosen (from these methods) RMHC as our candidate for
benchmarking. It is the method which is the most similar to SOS
and the least expensive one (among the three). Additionally, we
also use SRS because of its inexpensiveness, its simplicity and
its ability to generate representative subsets. Moreover, SRS, like
SOS, provides room for on-the-fly class balancing. Nevertheless,
for further clarity, we also conduct experiments to compare the
proposed SOS with AkNN and ENN.

3. Mining-based Agent Learning

In an agent-based application, agents are either created with
some initial intelligence or sent out to learn by themselves
through interaction with their peers. Both, initial intelligence and
agent’s self-acquired intelligence can be extracted or mined from
federated information repositories containing various experiences
of agents [29]. Since these federated information repositories
contain agents’ life time experiences, they might grow tremen-
dously in size and make it difficult for automated knowledge
extraction by agents, e.g. in agent-based home automation sys-
tems [14]. Although DM-integrated agent frameworks and plat-
forms to realize this extraction exist (e.g., ABLE [3] and Agent
Academy [22]), provisionings to deal with data size in presence
of noise based on agent’s available resources are not available.
Unfortunately smaller (agent-affordable) data size is crucial in
achieving lightweight KE. In ABLE, the idea of lightweight KE
is only highlighted without further details. In Agent Academy,
the data miner provides few TD sets reduction functionalities
which are insufficient as far as lightweight KE is concerned.
Since tasks like example (instance) ranking and subset selec-
tion are not in database management system’s agenda, achieving
lightweight KE through the use of smaller subsets has entirely
been left to manual intervention. Existing frameworks rely on
SQL’s abilities to manipulate database pages. These abilities, un-
fortunately, are only limited to the following.

( 1 ) Simple filters: i.e. numerosity reduction
- e.g., WHERE colA = value1

( 2 ) Simple reducers: i.e. dimensionality reduction
- e.g., colA + colB AS colNew

( 3 ) Simple aggregators: i.e. data aggregation

- e.g., GROUP BY colA

( 4 ) Selectors: i.e. feature selection
- e.g., SELECT colA, colB, ....

SOS advocates WHERE’s role in these frameworks by mak-
ing dynamic numerosity reduction possible, only that unlike
WHERE, SOS offers much smarter, non-blind and performance-
preserving reduction.

4. Stratified Ordered Selection

Stratified Ordered Selection (SOS) aims at enabling the re-
trieval of TD subsets of varying sizes based on available re-
sources. SOS-selected subsets are representative and perfor-
mance preserving. Two main concepts behind SOS are exam-
ple ranking and ordered sampling. As highlighted in Table 1,
ordered sampling (selection) based on example ranking differen-
tiates the proposed SOS method from the others which either em-
ploy exhaustive fitness test (everytime an example is selected dur-
ing sampling) or conduct random sampling. The concepts, with
an extra functionality of class balancing as previously mentioned
in Section 2.1, are together integrated into a retrieval intermediary
shown in Fig. 2.

The retrieval manager implements sampling (or selection)
functions as well as facilitating communication with the outside
world (i.e., intelligent agents). During subset retrieval process, as
will be described in Section 4.1, the retrieval manager selects sub-
sets based on ordered sampling using the ranking function pro-
vided by the ranking module of the retrieval intermediary. Subset
selection by ordered sampling is described in Section 4.2. Rank-
ing function is based on a novel scheme called Level Order (LO)
ranking scheme, described in Section 4.3.

4.1 Subset Retrieval Process
The retrieval intermediary implements a four-step subset re-

trieval process. In this paper’s context, the four steps are basi-
cally negotiations about subset specifications between an agent
(lightweight KE) and the retrieval manager. They are as follows:

1. Request: An agent sends its desired size and class balance to
the manager.

2. Verification: The manager verifies the desired size and class
balance. The manager checks whether the desired size is
achievable and the amount of sampling (needed to achieve
the desired size) is reasonable and (re)adjusts the specifica-
tions accordingly. The desired size is limited in such a way
that no oversampling is allowed on the larger, majority class.
Reasonable sampling is limited to undersampling of the ma-
jority class and oversampling of the minority to a 50:50 bal-
ance. Finally, the new or verified subset specifications are
sent to an agent.

Fig. 2 Retrieval intermediary.
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3. Retrieval: The manager selects and retrieves the desired sub-
set using SOS as will be described in Section 4.2.

4. Acknowledgement: An agent acknowledges if it is satisfied
with the new or verified specifications. Otherwise it goes
back to step 1 above.

In step 2, verification is done using TD set information like size,
class proportions and pre-defined sampling limits, explained fur-
ther in the next subsection.

4.2 Subset Selection
Examples which make a subset are incrementally selected from

the individual strata or classes of examples, contained in the orig-
inal TD set, to meet the desired number of class quota which is
necessary to achieve the desired class balance. Examples within
classes or strata are pre-ranked using the LO ranking scheme (de-
scribed in Section 4.3) and therefore the selection task is brought
down to either ordered undersampling or synthetic oversampling
of the individual classes or strata from the view point of the orig-
inal TD set. Ordered undersampling basically means selecting
the desired number of highly ranked examples. Synthetic over-
sampling is achieved by creation of synthetic examples using the
SMOTE technique [6]. The process of creation of synthetic ex-
amples based on SMOTE implementation involves the following
four steps.

1. An example is chosen at random from within the class to be
oversampled.

2. 5 nearest examples to the chosen one (in step 1) are identi-
fied. 5 is the value used in the current implementation [6].

3. Desired number of points are selected at random along the
line segments joining the randomly chosen example and any
two of its nearest neighbors.

4. New examples are synthetically created at each of the se-
lected points in step 3.

In Ref. [6], results showed that the SMOTE approach can improve
the accuracy of classifiers for the minority class. The combination
of SMOTE and undersampling was found to perform even better
than plain undersampling. In the proposed SOS, subsets are dy-
namically selected by ordered (Section 4.3) undersampling of TD
sets. During selection, on-the-fly class balancing is possible. This
is achieved by increasing the minority class of the unbalanced
subsets through synthetic oversampling using SMOTE. To avoid
overfitting [20] and concept drift [11] problems, oversampling is
limited to the minority class of the original TD sets.

4.3 Level Order ranking
Level Order (LO) ranking is an intra-class ranking scheme that

seeks to identify representatives which broaden class representa-
tion by retaining both central and boundary examples. Represen-
tatives are selected in levels determined by recursive partition-
ing of the distance space of examples. In each level, except level

zero which reflects the initial space, partitions’ representatives are
identified as follows.

Suppose N class examples in their distance space where Ix is

Fig. 3 Level Order ranking.

Fig. 4 Median example in a distance space.

the xth example at a distance dx from the centroid of the class
(The centroid can be computed using simple k-means with num-
ber of classes set to one). We refer to this as level zero of
representation where the prime central example is the closest-
to the centroid (Imin : dmin = minimum{d1, . . . , dN}) and the
prime boundary example is the furthest-from the central exam-
ple (Imax : dmax = maximum{d1, . . . , dN}). This scheme consid-
ers Imin and Imax as level zero representatives, as shown in Fig. 3.
In the higher levels, we want to identify the most representative
example for each partition. We first considered the measure of
central tendency, median, expressed by the expression below.

∃Ix : dx = d N
2
∀N ∈ even, dx = d N+1

2
∀N ∈ odd

However, since SOS seeks to retain boundary examples as well,
and the median is not necessarily at the boundary of a cluster of
examples, the median does not suffice. Consider the examples in
the distance space in Fig. 4 with the centroid at distance zero. The
median is not at the boundary but an example next to it is.

E(Ix) = [dx+1 − dx] × minimum(size of pi1, size of pi2)
maximum(size of pi1, size of pi2)

(1)

Decision boundaries are affected by not only where examples (in-
stances) of one class lie, but where those of other classes lie as
well [32]. Because of this and the fact that it takes a large num-
ber of boundary examples to completely define a boundary, it is
important that selected representatives keep decision boundary in
the correct vicinity. We achieve this in two ways. One way is to
ensure that partitioning does not take place through high density
areas by targeting examples Ix for which dx+1 − dx is the largest.
Second way is by targeting examples which are at the median
of the partitions so that the general vicinity within the class is
maintained. These are examples which divide partitions as pro-
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(a) SOS - 0% (b) SOS - 30%

(c) SOS - 50% (d) SOS - 90%

Fig. 5 Representativeness per reduction percentage.

portionally as possible.
We combine these two ways into a measure E(Ix), Eq. (1), and

use it to select representative examples during partitioning. In
each partition, a representative is an example Ix=i which maxi-
mizes E(Ix=i) and subsequently divides the distance space into
partitions pi1 and pi2 as shown in Fig. 3.

To sum up, representatives are established as follows:

Level one representative: An example I1 which maximizes the
measure shown in Eq. (1) is identified as a representative which
consequently divides the space into p11 and p12.

Level two representatives and above: The Level one process is re-
peated on partitions p11 and p12 separately to obtain I2 and I3 as
level two representatives which consequently divide their respec-
tive partitions into {p21 and p22} and {p31 and p32} respectively.
This is then repeated recursively until all examples are seen.

With the exception of level zero, every time a representative is
identified, it is made into a binary tree using its respective dis-
tance. The root node of the binary tree, shown in Fig. 3, is the
level one representative. Finally, example rankings are deter-
mined according to level order traversal of the tree. The complete
ranking order, shown below, is obtained by first taking level zero

representatives and then level-order traverse the tree as shown by
the dashed line in Fig. 3.

Imin, Imax, I1, I2, I3, I4, · · ·
We have adopted a binary tree approach for two reasons. The

first reason comes from our partitioning approach in which we
divide partitions into two. This partitioning follows a binary tree
pattern. The second reason is the flexibility which binary tree
brings during implementation. For instance, a binary tree which
is implemented as a queue is less expensive than one which is
implemented using functions.

As demonstrated in Fig. 5, the LO ranking enables retrieval in-
termediary to hold key boundary examples longer during subset
formation (or during reduction from the view point of the original
TD set). The plots in Fig. 5 show two principal components of
experimental machine learning spam data subsets (DS4 in Sec-
tion 5) obtained after the indicated percentage reduction of the
original set using SOS. Notice examples at minimum and max-

imum principal component values being maintained even after
90% reduction.

The LO ranking uses the Minkowski distance (Eq. (2)). Our
choice is due to the fact that two of the commonly used distance
functions (Manhattan and Euclidean) are contained in it. There-
fore we get more flexibility during experimentation. Also, the
Minkowski assigns more weight onto features on which data ob-
jects differ most [8]. This makes identification of boundary ex-
amples easier.

D(x, y) =

⎡⎢⎢⎢⎢⎢⎣
n∑

i=1

|xi − yi|p
⎤⎥⎥⎥⎥⎥⎦

1
p

, (2)

where x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) and

p is the order of the Minkowski metric.

The ranking style of the LO ranking scheme resembles Mini-
mum Enclosing Ball (MEB) [2], [19], [23], [30]. However the
core concepts and computational problems which each addresses,
are significantly different. Most parametric MEB algorithms
and their implementations compute the smallest enclosing balls
of point sets in Euclidean spaces [2], [23]. As highlighted in
Ref. [23], application of MEB in other spaces is still an open is-
sue. Although, theoretically, MEB can be used to dynamically
reduce numerosity of data for a generic use, it is bound to be
costful and we have not come across an implementation which
does so. Applications of MEB have so far been in areas like
gap tolerant classifiers, clustering and tuning Support Vector Ma-
chine [19]. Non-parametric LO ranking is designed to work with
any distance space and focuses on identification of representa-
tives of level-based partitions in order to form subsets dynami-
cally.

5. Experiments and Evaluation

Three experiments were conducted as follows.

5.1 Experiment 1
5.1.1 Overview

The objectives of this experiment are:

• To investigate the capabilities of SOS in terms of formation
of subsets which preserve performance.

• To compare the proposed SOS with bechmarking methods
(SRS and RMHC).

To achieve the above objectives, we used the proposed SOS and
the two benchmarking methods to form different sized subsets
from sets of well known datasets (in machine learning commu-
nity). The formed subsets were used to learn classification models
(using the WEKA environment [33]) which were then compared
to baseline models, to check by how much they preserved perfor-
mance, and among them to check which are best models. A nu-
merosity reduction method (SOS or SRS or RMHC) which leads
to the best models is considered more performance-preserving
than the others. Overall, a method is considered better than oth-
ers if it offers the best trade-off between performance preserva-
tion, numerosity reduction and cost.
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Table 2 TD sets.

Name ID Size Balance No. of Features

Page-blocks DS1 5472 10:90 10 (4/6/0)

Pima DS2 768 35:65 8 (8/0/0)

Segment DS3 2308 14:86 19 (19/0/0)

Spam DS4 4597 39:61 57 (57/0/0)

Yeast DS5 1484 11:89 8 (8/0/0)

In Section 5.1.2, we explain algorithms used to learn classifica-
tion models and performance metrics which were used for eval-
uation when investigating the above objectives. In Section 5.1.3,
we provide a description of the used datasets. In Section 5.1.4,
we explain the employed methodology. In this Section, we de-
scribe the agent-based experimental setup. We also explain how
the training sets were formed and provide the parameters which
were used. We present the results and analysis in Section 5.1.5.
5.1.2 Algorithms and Evaluation Metrics

The machine learning models were built using three algo-
rithms: C4.5 [25], Naive Bayes (NB) and Support Vector Ma-
chine (SVM) [7]. C4.5 is one of the most popular algorithms
based on the concept of information gain. NB is a probabilistic
classifier based on Bayes’ theorem. SVM is a non-probabilistic
binary linear classifier which is one of the best performing algo-
rithms. We use Sequential Minimal Optimization (SMO) imple-
mentation of SVM by Platt [24]. Since we used C4.5, NB and
SVM algorithms, classification accuracy is the most important
metric for KE performance, provided that classes are not highly
imbalanced. This is also argued by Ref. [26]. Nonetheless, we
also investigated the F-Measure of the classifiers in order to com-
pare them in case the classes are highly imbalanced. F-Measure
is a single numerical metric commonly used to compare model
performances [15], [33]. Equation (3) shows the formula for F-
Measure where β is a positive real number which is used to put
more emphasis on one of either recall or precision. We put equal
emphasis on both recall and precision by setting β = 1. More-
over, we recorded the times which each method took to form the
subsets.

F − Measure =
(1 + β) × precision × recall
β2 × precision + recall

(3)

These metrics were used in investigating the following:

• Baseline performance values on the original datasets.

• Optimal value of the order of the Minkowski metric (p in
Eq. (2)) for use in SOS method.

• Effects of SOS on knowledge extraction (KE) in order to un-
derstand its capabilities in terms of formation of subsets and
performance preservation.

• Comparison between SOS, SRS and RMHC in order to find
out the method which offers the best trade-off between per-
formance preservation, numerosity reduction and cost.

5.1.3 Datasets
Experiments and simulations were conducted on five well

known machine learning datasets, shown in Table 2. Different

datasets were used so that our evaluations are not influenced by
any particular characteristics of datasets. Page-blocks (DS1) is
a dataset of document page layouts. Pima (DS2) is a dataset of
diabetes data. Segment (DS3) is a dataset of image segmenta-
tion data. Spam (DS4) is a dataset of spam mail filtering data.
Yeast (DS5) is a dataset of cellular localization sites of proteins.
These are all two-class problem sets from the repository of the
University of California, Irvine [10]. There are only two classes
of examples in the sets (the minority and the majority class). The
minority-majority classes ratio is called class balance (indicated
as “Balance” in the table). In the last column of the table, the
numbers of features in the datasets are listed. In brackets, af-
ter the number of features, the numbers of real-valued, integer-
valued and nominal features are included in respective order.

For investigation of dimensionality effects, datasets in Table 7
were used. The datasets have up to about 300 dimensionality.
5.1.4 Methodology and Parameters

Three agents were setup using the ABLE framework [3]. A
Retrieval Intermediary Agent (RIA) implements functions of the
retrieval intermediary (SOS) and the two benchmarking methods,
SRS and RMHC. RIA has access to a DB which stores train-
ing and testing partitions of the TD sets. A Learning Agent (LA)
simulates different levels of resource constraints by demanding
specific TD sets requirements (size and class balance). Lastly, an
Evaluation Agent (EA) provides evaluation services to LA. For
convenience, only three agents were used. RIA comes naturally
from Fig. 2. Separation into EA and LA enables LA to be dedi-
cated to learning for better performance monitoring.

During simulation, first, RIA is initialized. Initialization in-
volves preparation of training and testing partitions and calcula-
tions of LO rankings. Second, LA simulates the different levels
of resource constraints. At each level, the following steps are fol-
lowed for each set of the TD partitions.

1. LA requests TD subsets of the desired size and class balance
from RIA based on simulated available resources.

2. RIA prepares training subsets using SOS, SRS or RMHC
and in turn sends them to LA. For each subset sent, the cor-
responding testing subset is sent to EA.

3. For each subset, LA performs KE using KE algorithms un-
der the WEKA environment and sends the learnt models to
EA for testing and evaluation.

4. EA evaluates the learnt model. The rationale of evaluating
learnt models outside LA is that for same pairs of models and
testing data subsets, results do not depend on where evalua-
tion is conducted. For convenience we evaluate models using
EA which is dedicated to the task.

The partitions were obtained using a 10-fold cross validation pro-
cedure. A TD set is randomly divided into 10 disjoint sets of
same size. In turn, each of the disjoint sets becomes a testing
partition while a union of the rest of the disjoint sets becomes a
training partition on which SOS, RMHC and SRS are applied to
obtain the subsets. From the training partitions, 20 subsets (in-
cluding 0% reduction) were formed by recursively reducing the
partition by 5% of the original size. When a balance (other than
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Table 3 Simulation parameters and environments.

Parameter/Environment Values

KE algorithm
C4.5 (J48)

Naive Bayes (NB)

Support Vector Machines (SVM)

Training partitions 0 to 95% of the original TD sets

Model Validation 10-fold cross validation

Order of Minkowski metric 1, 2, 3, 5 and 7

Class balance original balance and 50:50

OS Ubuntu x86 64

Programming JAVA 1.6

Learning WEKA 3.7.1

Agent framework ABLE 2.3.0

Table 4 Baseline performances on original TD sets.

Avg. Accuracy Avg. F-Measure

TD set C4.5 NB SVM C4.5 NB SVM

DS1 97.13 89.74 94.13 0.971 0.897 0.932

DS2 73.70 75.45 77.47 0.735 0.750 0.764

DS3 99.31 84.30 99.65 0.993 0.862 0.996

DS4 93.24 79.22 90.85 0.932 0.794 0.907

DS5 76.01 75.00 74.37 0.754 0.743 0.685

Avg 87.87 80.74 87.29 0.877 0.809 0.857

Table 5 Average accuracy values on TD sets for p = 1, 2, 3, 5 and 7.

TD set p=1 p=2 p=3 p=5 p=7

DS1 97.03 97.15 96.87 96.63 96.96

DS2 79.31 76.90 77.72 79.66 78.26

DS3 99.27 98.79 99.09 99.28 99.14

DS4 93.20 93.30 93.64 93.65 93.56

DS5 78.04 78.24 78.67 79.13 78.77

the original balance) is desired, we use the SMOTE technique
to oversample the minority class. The paramaters, environments
and algorithms used are all listed in Table 3.
5.1.5 Results and Analysis
Baseline performance:
For comparison purposes, we first calculated baseline perfor-
mance values of the KE algorithms on the original TD sets. These
are shown in Table 4. For baseline performance, models were
learnt from the original unaltered sets. Note that this is different
from 0% reduction. 0% reduction by a reduction method returns
a maximum subset that the method can produce, which is not nec-
essarily the same as the original unaltered set because some noise
and redundances are removed.

Optimal value of the order of the Minkowski metric, p:
Table 5 summarizes our findings when C4.5 models were learnt
from subsets formed by SOS using various values of the order of
the Minkowski. p = 5 was marginally found to be an optimal
value for p. Similar observations were made with NB and SVM.
This value was therefore used for the rest of our simulations.

Effects of SOS on KE performance:
The performance of SOS on datasets for the three algorithms can

(a) C4.5

(b) NB

(c) SVM

(d) Effects of Class Balancing

Fig. 6 Results on DS1.

be seen in subfigures (a), (b) and (c) of Fig. 6, Fig. 7, Fig. 8, Fig. 9
and Fig. 10. Evidently, SOS maintains accuracy values close to
the baseline values. The accuracy values are almost the same
as the baseline values at least up to close to 50% reduction in
most cases with few cases going up to 90%. Occasionally (e.g.,
Fig. 6 (b)), SOS enhances performance beyond the baseline. This
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(a) C4.5

(b) NB

(c) SVM

(d) Effects of Class Balancing

Fig. 7 Results on DS2.

is attributed to the fact that in addition to scaling down of datasets,
SOS acts like a systematic randomization method as well. The
observation of utmost importance is that SOS is able to scale
down all datasets without compromising KE performance (accu-
racy). Class balancing does not seem to bring a great deal of im-
provement for the datasets we have investigated. But it does lead

(a) C4.5

(b) NB

(c) SVM

(d) Effects of Class Balancing

Fig. 8 Results on DS3.

to better classifiers for highly imbalanced datasets (DS1, DS3 and
DS5) as can be seen in Fig. 6 (d), Fig. 8 (d) and Fig. 10 (d).

Comparison between SOS, SRS and RMHC:
Subfigures (a), (b) and (c) in Fig. 6, Fig. 7, Fig. 8, Fig. 9 and
Fig. 10 also, comparatively, show accuracy levels of TD subsets
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(a) C4.5

(b) NB

(c) SVM

(d) Effects of Class Balancing

Fig. 9 Results on DS4.

formed by using SOS, SRS and RMHC for C4.5, SVM and NB
algorithms. In general all algorithms greatly preserve perfor-
mance closer to the baseline. In three datasets (DS1, DS2 and
DS4), SOS and RMHC outperform SRS while SOS slighty edges
RMHC. Mostly, SOS slightly edges RMHC at lower reduction
levels while slightly lags behind at higher reduction levels. These

(a) C4.5

(b) NB

(c) SVM

(d) Effects of Class Balancing

Fig. 10 Results on DS5.

observations reflect the noise reduction ability of RMHC and
noise tolerance ability of SOS. By imposing fitness test during
selection, RMHC manages to get rid of many noisy examples,
the effect of which is more noticeable on smaller subsets. This
also implies that since SOS is doing better than RMHC at lower
reduction levels, without getting rid of noisy examples, it tore-
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Table 6 Comparison between SOS, SRS and RMHC (C4.5).

Metric DS1 DS2 DS3 DS4 DS5 Avg.

SOS-Selected Subsets

Accuracy 96.62 78.84 99.37 92.27 74.75 88.37

F-Measure 0.952 0.791 0.994 0.923 0.746 0.881

Time(ms) 158.22 41.97 49.77 229.15 40.41 103.90

SRS-Selected Subsets

Accuracy 82.33 73.01 90.27 78.96 75.19 79.95

F-Measure 0.852 0.734 0.913 0.783 0.741 0.805

Time(ms) 140.24 16.74 45.78 129.97 28.45 72.24

RMHC-Selected Subsets

Accuracy 97.00 76.57 99.18 92.14 77.38 88.45

F-Measure 0.918 0.734 0.983 0.918 0.701 0.851

Time(ms) 35660 2300 10560 147570 4120 20042

Table 7 TD sets for dimensionality test.

Name ID Size Balance Dimensionality

Page-blocks DS1 5472 10:90 10

Twonorm DS6 1729 49:51 20

Satimage DS7 1720 44:56 36

coil DS8 1767 6:94 85

Yeast DS5 1739 11:89 103

Scene DS9 1732 19:81 294

lates noise better than RMHC. The unreliable nature of the SRS
method is evident in Fig. 6, Fig. 7 and Fig. 9. Accuracy values
of the SOS and RMHC are much steadier than those of SRS in
these figures. SRS happens to perform better than the others on
one TD subset (Fig. 8) by the NB algorithm. This is because DS3
has many features and is highly imbalanced. Overall, SOS and
RMHC are the best performers although SOS marginally edges
RMHC as can be observed by F-Measure values shown in Ta-
ble 6 for the C4.5 algorithm. Results on the other algorithms
follow the same pattern. In this table, the best performance val-
ues are shown in bold. Table 6 also shows how expensive RMHC
is compared to the other two methods. RMHC is hundreds of
times more expensive than the others. Therefore, from these ob-
servations, the best trade-off between cost, reduction ability and
performance preservation is achieved when using SOS.

5.2 Experiment 2
5.2.1 Overview

In this experiment, we investigate the effects of dimensional-
ity and how the proposed method performs when used against
multimodal dataset. Three performance indicators are used: av-
erage drop in accuracy after reduction, drop in F-Measure and
average CPU time taken to form subsets. For testing dimension-
ality, datasets of six different dimensionality levels from UCI [10]
and KEEL [1] are used. The datasets are shown in Table 7. For
multimodal test, we used a subset of ‘Opportunity Challenge’
dataset [34] which comprised of two activities Locomotion and
Gestures. Table 8 describes this dataset.

The datasets are prepared in a similar way as described in Ex-
periment 1 and similar methodology is used. For multimodal

Table 8 ‘Opportunity Challenge’ Multimodal dataset.

Dimensionality Size Activity Modes (Classes)

46 4501

Locomotion Stand, Walk

Gestures

Open Door,Close Door

Close Door,Open Fridge

Close Fridge,Open Washer

Close Washer,Open Drawer

Clean Table,Drink Cup

(a) Performance Degradation

(b) Subset Formation Time

Fig. 11 Effects of Dimensionality.

dataset, we use ‘Locomotion’ modes to reduce numerosity and
then test for classification performance against both ‘Locomo-
tion’ and ‘Gestures’ modes. Performance test is done using C4.5
and SVM (SMO implementation).
5.2.2 Results and Analysis
Effects of dimensionality:
Figure 11 (a) shows accuracy drops for SOS, SRS and RMHC
approaches when tested against datasets in Table 7. Higher di-
mensional datasets led to more performance degradation for all
methods. Figure 11 (b) shows how much time, on average, each
method took to form the subsets. The results show that it takes
longer with higher dimensionality for all methods.

From these results, a number of observations can be made. In
Fig. 11 (a), although performance degraded, some high dimen-
sion datasets led to less degradation than their predecessors (e.g.,
dataset with dimensionality 294 against 103 and 85). This is be-
cause performance depends not only on dimensionality but also
on other factors like balance, types of features and other data spe-
cific characteristics. As was the case in Experiment 1, although
RMHC offers the least degradation in accuracy values, it con-
sumes much more CPU time than other methods. On the other
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Table 9 Multimodal dataset - C4.5.

Mode Type Approach Accuracy F-Measure Time (ms)

Locomotion

Benchmark 89.16 0.891 n/a

SOS 88.16 0.885 7,285

SRS 85.42 0.858 6,220

RMHC 89.36 0.892 19,909

Gestures

Benchmark 93.67 0.937 n/a

SOS 88.48 0.885 n/a

SRS 86.86 0.868 n/a

RMHC 90.78 0.908 n/a

Table 10 Multimodal dataset - SVM.

Mode Type Approach Accuracy F-Measure Time (ms)

Locomotion

Benchmark 83.20 0.823 n/a

SOS 80.08 0.809 4,172

SRS 79.69 0.806 4,775

RMHC 81.35 0.793 14,218

Gestures

Benchmark 92.73 0.927 n/a

SOS 89.99 0.899 n/a

SRS 90.06 0.900 n/a

RMHC 90.37 0.903 n/a

hand, SOS and SRS consume much less CPU time. However,
contrary to SRS, performance degradation by SOS is only slightly
higher than RMHC.
Performance on multimodal classes:
Tables 9 and 10 show results for SOS, SRS and RMHC ap-
proaches when tested using C4.5 and SVM respectively. In these
tables, the bolded values indicate the best performing approach
under each of the three performance metrics. We also show
benchmark values for each tesing algorithm. Since we used ‘Lo-
comotion’ modes to form the subsets (as stated above), subset
formation time is non-applicable (n/a) for ‘Gestures’ modes.

From these results, four main observations can be made. First,
all approaches have significantly preserved performance (close to
bechmarking values). Second, subsets by RMHC lead to the best
classification performances, in terms of accuracy and F-Measure.
Third, RMHC is too expensive compared to SOS and SRS which
take more or less similar times in forming the subsets. The fourth
observation, which is the key observation, is that although SOS
comes out second best, it offers the best balance between cost and
performance. Its performance is only slightly below RMHC and
takes only slightly more time than SRS in forming the subsets.
5.2.3 Conclusion

We conclude from our observations that the proposed SOS
scales well with dimensionality (at least up to about 300). This
means that the proposed SOS can also be used to reduce numeros-
ity of high dimensional data while significantly preserving per-
formance. Also the proposed SOS can be used with multimodal
datasets.

5.3 Experiment 3
5.3.1 Overview

In this experiment, we compare the proposed SOS against para-
metric approaches (ENN and AkNN). The datasets and method-

(a) Comparison with AkNN

(b) Comparison with ENN

Fig. 12 Effects of dimensionality.

ology of Experiment 1 are used. However, since ENN and AkNN
can only give one subset (the smallest), we only use the proposed
SOS to generate subsets which are similar in size with those of-
fered by ENN and AkNN.
5.3.2 Results and Analysis

Figure 12 (a) and (b) summarize experimental results which
compare the proposed SOS with AkNN and ENN respectively.
In these figures, shown next to datasets IDs (DS1 to DS5) are the
reduction percentages which were achieved by either AkNN or
ENN and subsequently used to generate equivalent subsets using
the proposed SOS.

It can be seen from the figures that the three methods (SOS,
AkNN and ENN) offer close performances. For datasets DS1,
DS2, DS4 and DS5, SOS (with balancing) outperforms both
AkNN and ENN. This implies that a statistical advantage goes
to SOS. In Experiment 1, it can also be seen that while SOS is
shown to be able to reduce the datasets to around 95%, AkNN
and ENN fails to reduce the datasets beyond 40% (at least for
the datasets we have tested). In fact, for some datasets (DS1 and
DS3), the reduction is even as low as 5%. This is because AkNN
and ENN are more of noise reduction methods than serious reduc-
tion methods. This observation is also made in Ref. [31] where
AkNN and ENN are seen to serve more as noise filters. These
results do not give a general comparison between these meth-
ods, but compare trade-offs between reduction and performance
preservation. Also, the observations assert the claim we made in
Section 5.2.2 that SOS is noise tolerant. This is verified by the
fact that it leads to even better performances than methods which
were specifically designed to remove noise.
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5.3.3 Conclusion
From these experimental results, SOS with balancing is the

better choice for reducing datasets in resource constrained en-
vironments while giving a good trade-off between reduction and
performance. We conclude that the proposed SOS leads to per-
formances more or less similar to parametric approaches.

6. Conclusion

In order to achieve lightweight KE from TD sets by the use of
smaller data subsets, a method to scale down the sets with the
best trade-off between cost, reduction ability and performance
preservation was proposed in this paper. The method (SOS) is
sampling-based and uses a novel ranking scheme called LO rank-
ing to pre-rank examples before sampling or selection. Sampling-
based methods are particularly good candidates when KE is tak-
ing place in a resource constrained environment because of their
inexpensiveness. We have shown how SOS evaluates against
baseline performances and how it compares against two classi-
cal sampling-based methods (SRS and RMHC). Our evaluation
results show that SOS offers the best trade-off when compared to
other methods. Moreover, SOS was shown to offer steadier per-
formance, enhance performance in some cases and tolerate noise
at lower reduction levels. We have also shown that the proposed
SOS scales well with dimensionality and can be used with multi-
modal datasets.

Some areas still need improvements and further evaluations.
These include the following. The first area is in experimentation
on real agent-based applications running in a resource constrained
environment, like automated smart homes and devices or sensor
devices. The second is further research on a different approach
to select representatives of the class partitions. The third is in re-
searching on other possible applications of the proposed method.
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