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go string liberty” tree is a GPF.
For instance, to find a ladder solver in Com-

puter Go: Firstly, The base layer uses the
normal Genetic Programming Algorithm. One
case is to generate a GPF “Check a Go string
liberty”. The fitness will be like “choose first
stone in this string”,“check the neighbors if
it’s empty” and so on. The Genetic program-
ming tree is generated as “stone1 + checkneigh-
borspace + stone2 + ...”. Secondly, in second
layer using Modified Genetic programming al-
gorithm, the function set will be same as first
layer, and the first layer GPF is treated as
a terminal set with fitness which equals to 2
if it succeeded. Therefore, one of the second
layer GPF Atari1 is generated as “Checklib-
erty(a GFP from the base layer) + iflibertye-
qual2 + choosethelibertyposition1”. Thridly,
as the same method, the Atari2, Escape and
Capture GPFs in the second layer can be gener-
ated. Fourthly, for a ladder solver, it has three
layers. Using GPF Atari1, Atari2, Escape and
Capture with fitness which equals to 4, it finds
a tree to solve all the ladder problems after be-
ing trained with some ladder problems. Lastly,
Save this tree back to the Genetic Programming
Set pool.
The terminal sets are the basic items from

the global terminal set pool with fitness which
equals to 1 or the advanced GPFs with var-
ied fitness value. For a ladder solver, Atari1,
Atari2, Escape and Capture are necessary. Be-
cause of fitness which equals to 4, it is easier to
generated the correct solution such as Atari1 +
Escape + Atari2 + Escape + ... + Capture.
The fitness settings for GPFs must set double
in each layer. For example, the fitness in base
layer is 1; The fitness in second layer is 2; The
fitness in third layer three is 4; ... The fitness
for global terminal set is assigned to 1 because
it provides each set selected opportunely. In
order to prevent GPFs from growing exponen-
tially, limiting the depth of the tree can increase
the chance to find the optimums solution. The
fitness must be set to bigger and shorter are bet-
ter. In the ladder case, the fitness is known; On
the cotrary, most situations are difficult to find
the “global optimum” or “correct answer”. As
a result, considering the bigger fitness in each
layer will find the relative best solution tree.
When the above layer uses the relative best so-
lution tree(GPF) as a terminal, it considers if
it works or not. In addition, the fitness value is
recounted which layer it is on, which will solve



“choosing the costant factor value” issues.
The Genetic Programming Alogirthm is dif-

ficult to find a solution when a lot of steps are
required. In this framework, it combines simple
procedures to form a complex tree, so a diffi-
cult problem can be solved such as Computer
Go Semeai problems. For example, Semeai is
connected with two groups, and two groups are
connected with killing and escaping... After
combing simple steps, it can solve a complex
task. After this framework gets a new situa-
tion such as a new problem, it checks from the
base genetic programming node to ver if this
new problem is the similar pattern and can be
solved with few adjustments. If it doesn’t, it
keeps checking from bottom to up. Afterwards,
if the fitness value is not better than the top
layer GPFs, it will combine with previous GPFs
and global terminal sets to form a better solu-
tion and save it back as a new GPF.
Before this framework, generating a tree to

solve all the Computer Go Semeai problem is
highly difficult. With this one. All GPFs
are adjusting dynamically. This can overcome
strong disadvantages of difficulty of implement-
ing exponential heuristic knowledge because it
can learn new GFPs by itself with new data
feeds in and maintain generalization.
Time control:
Usually Genetic programming is computa-

tionally intensive; Therefore, Multi-layer Ge-
netic Programming becomes slow and unpracti-
cal. Especially, in the Computer Go, each move
needs to be played in few minutes. When the
“learning” method is turned off(only GPFs are
used), the speed is accepted in realtime applica-
tions. This is the “Memory” mechanism. De-
pending on the time constraits, GFPs can be
turned on from the top layer and go down.

3. Experimental Result

To kill the four black stones marked with tri-
angles in Figure 2, the next white move needs to
interfere with the two black groups marked with
squares which leads to more than four group se-
meai problems. Similarly, to kill the six white
stones marked with triangles in Figure 3, the
next black move needs to use the four white
stones marked with squares. To kill the four
black stones marked with triangles in Figure
4, the next white move needs to consider the
two black stones marked with squares which
leads huge searching nodes if the two groups get
connected. To kill either the two black stones
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marked with triangles or squares in Figure 5
requires more than thirty searching depth, this
can not be solved even with millions simula-
tions of Monte-Carlo tree search. To kill black
stones marked with triangles in Figure 6 and
white stones marked with triangles in Figure 7
requires fifteen to twenty searching depth. In
an Intel Core 2 Duo E6550 2.33GHz machine,
Setting two semeai groups for the initiation of
the algorithm (excluding other heuristic rules)
and using our method with single core; Figures
2,3 and 4 can be solved in less than one second;
Figure 5,6 and 7 can be solved in two seconds.
Thirty Japanese 3-5 dan open boundary se-

meai problems were selected from [4]. These



problems can be solved within two seconds
by our method. The average/minimum/
maximum number of searched nodes are
239.05/29/1398, respectively. Furthermore, by
implementing this algorithm to solve new open
boundary semeai problems, in most cases, it
can adapt well without any algorithm modifi-
cation; even with a new wider branching factor
problem, it can use prior knowledge to create a
modified algorithm to solve the problem.
Another advantage for this framework is that

the requirement for the runtime memory and
the program size is only few kilo bytes. In some
experimental tests, it could speed up dramat-
ically when it fits to the L3 cache in a cpu.
Likewise, it can run on the mobile phone in an
acceptable time.

4. Conclusions

With such high efficiency to solve open
boundary semeai problems, this algorithm can
be combined with the Monte-Carlo tree search
with virtually no penalty. This can overcome
MCTS’ weaknesses and dramatically reduce un-
necessary simulations to concentrate all the
computing power on useful play-outs. In the
future, solving Seki and open boundary semeai
life-death problems will be the next goal. The
auto learning and memorizing framework can
be used in other domains to deal with compli-
cated problems such as adaptive learning and
multi-dimensional job scheduling.
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