Vol. 2 No. 6

New Illinois Computer

New Illinois Computer*

D. E. Muller**

1. History and Introduction

In 1957 a report (1) describing the general
plan for the design of a very high speed com-
puter was completed by members of the Digital
Computer Laboratory at the University of Illinois.
This report was the culmination of a study pro-
gram which had been begun in 1956 and which
had as its purpose the investigation of the feasi-
bility of comstructing a computer which was
about one hundred times as fast as the computers
which were then in use.

Already as early as 1954, two years after the
completion of the presently operating computer
Illiac at the University of Illinois, the desirability
of such an investigation was apparent because
the possibility of using high speed transistor
circuitry enabled one to construct much faster
basic logical elements—flipflops, AND, OR, and
NOT elements—than had heretofore been used.
Furthermore, many important scientific problems
are of such a nature that they require excessive
amounts of numerical calculation, and for this
reason could not easily be solved, if at all, with
existing computers. Therefore, it was proposed
(1) that a computer be built for use in scientific
research which would embody circuit and logical
design techniques to give it as high a calculation
speed as possible.

Naturally, there were certain difficulties
inherent in such a plan. Assuming that an ex-
tremely fast arithmetic unit could be constructed
by combining the best circuit and logical design

methods, it was not possible to make nearly as

* An invited talk presented at the second annual
meeting held in Tokyo November 16, 1961.

** Visiting Professor at the University of Tokyo on
leave from the Digital Computer Laboratory, Uni-
versity of Illinois, U.S.A.

305

great an improvement in the speed of the memo-
ry. Hence, for certain types of problems the
computer would be “ memory limited” and the
increased arithmetic speed would fail to yield a
corresponding improvement in the overall speed
of calculation.

Two methods were to be used to overcome
the memory limitation. First, it was broposed
that a heirarchy of memories be used rather
than a single memory. The smallest memory
would consist of flipflops or of some similarly
fast, but possibly expensive storage units. This
memory could be used for the temporary storage

of instructions, addressi nformation, and arith-

was increasingly further removed from the por-
tion of the calculation being currently performed.
Thus, it was hoped that the actual time required
for memory use would be nearer to that required
by the high speed memory than to the time which
would be required if all of the computer’s stor-
age were of the slower type.

The second method for counteracting the
effect of the memory limitation was to be the
overlapping of time required for memory use
with the time required by the arithmetic unit
for numerical calculation. Two interlocked con-
trols would be necessary so that the arithmetic
unit and other portions of the computer could
function concurrently. Thus, while the arithme-
tic unit was performing some calculation with
a given set of numbers, the computer could pro-
ceed with the construction of addresses for
operands which would be required in future
calculations, and these operands could then be
obtained from the store. The control for super-

vising the nonarithmetic portions of instructions



306 i)

“

was called “advanced control” because it was
to be capable of advancing several instructions
ahead of the control which supervised the func-
tioning of the arithmetic unit. This latter control
was called “delayed control” and the two con-
trols are commonly abbreviated A.C. and D.C.
In the case of those problems which were domi-
nated by arithmetic calculations, it was thought
that the bulk of memory use couid thus be
performed during the time that lengthy arithme-
tic operations were taking place and therefore
the effect of having a relatively slower memory
would be correspondingly reduced.

In 1958 the preliminary work on the design
and construction of the new Illinois computer
was begun. Additional work was done on the
organization of the computer and on the basic
circuits which were to be used. The number of
people involved in this effort was so large that
it is impossible for me to mention here the names
of all the people who made important contribu-
tions in the several areas of work. However, 1
should point out that the computer project as a
whole has been under the direction of J.E.
Rob ertson. Work on the organization and
logical design of the control has been directly

super vised by D. B. Gillies.

II. The Main Arithmetic Unit

Figure 1 shows a block diagram of the
arit hmetic unit of the new Illinois computer.
Blocks labelled A, S, Q, R and M represent regis-
ters for numbers. Associated with each register
is a gate which allows passage of information into
the register. When the gate is closed information
remains stored in the register and may be used
by other sections of the arithmetic unit, but when
the gate is opened the contents of the register
are, in general, changed and the information
present on the lines going into the register
replaces whatever was previously in the register.

This system contrasts with that used in many
computers in which a given register may have

several gates, the choice of gate determining the

#® o =

Nov. 9161

S22 1748, 8. 43,

[ Adder ]

Sg:-2M, M. M, IM

(S5-I, -M.CeH. M

Fig. 1. Arithmetic unit

source of the information passing into the regis-
ter. In the present system, on the other hand,
the source of information is determined by an-
other unit, called a selector. A selector unit is
usually associated with each gate, but it also may
be used separately, and always requires separate
control signals for its operation. Of the many
inputs to a selector only one is allowed to pass
to the output, the choice depending upon which
control signal is applied to the selector.

Use of gates and selectors, rather than simply
gates, is occasioned by certain practical consider-
ations relating to transistor circuitry used in
the flipflops and other elements which form the
registers. Each flipflop requires the use of a gate
signal g and an input signal z.If g=1 then =z is
gated into the flipflop, while if g=0 the flipflop
retains its previous digit. This circuitry will not
be described in detail here, but it is interesting
to note that the system requires the use of a
source (selector) and destination (gate) signal
It differs

slightly from the usual source-destination scheme,

for each transfer of information.



Vol. 2 No. 6

however, in that the selector signal must be pres-
ent during the entire period of gating, since if
no selector signal is supplied the effect will be the
same as if the signal zero were applied to all
flipflops in the register. Thus, whenever possible,
the selector signals are set, and allowed to remain
fixed, while a number of gating operations is
performed. For example, during a left or right
shift, which may take place during addition,
multiplication, division, or normali zation, it is
possible, to set the selectors so that the shifting
occurs in the proper direction. The only signals
that then need be changed while the shift is tak-
ing place are those which are applied to the gates.

The principal type of number representation
used within the computer is a floating point rep-
resentation which may be thought of as binary,
but which is perhaps most accurately described
as base 4. In this scheme, 45 of the 52 binary
digits in a word are allotted to the fractional
part of the number, while the remaining 7 form
the exponent. A twos complement system is used,
with the first binary digit of the fractional part
giving the sign and the remaining 44 binary
digits (or 22 base 4 digits) completing the frac-
tion. The exponent determines the power of 4
by which the fraction should be multiplied.

A double length accumulator, consisting of
89 binary digits for holding the fractional parts
of numbers, is used in the arithmetic unit. The
registers shown in figure 1 forming the double
length accumulator are A, S, Q and R. A and
S together act as a shifting register for the most
significant 45 bits and Q and R as a shifting
register for the 44 least significant bits. During
addition, the fractional part of the augend is held
in double precision in this register, while its 7
bit exponent is held in a register in the exponent
arithmetic unit. A single precision floating point
number acts as the addend. It may be brought
into the M register either from the core store or
from one of the temporary storage registers.
After addition has taken place the sum appears

as a double precision number in the accumulator.

New Illinois Computer 307

In order to carry out addition with the rather
small number of registers in the arithmetic unit,
it is necessary to consider several separate pro-
cesses depending upon the relative magnitudes
of the exponents of the two numbers being added.
In all, five cases occur, each with a somewhat
different addition sequence. Hence, the addition
operation requires more control complexity than
would be needed if only single precision addition
were provided. However, by using double pre-
cision accumulation, the roundoff error may be
greatly reduced when a series of numbers, pos-
sibly of varying sign, are added together. Also,
double precision accumulation of products is
greatly simplified as a result of this feature, and
complete double precision floating arithmetic
may even be programmed with relative ease.

Prior to multiplication the multiplier is held
in the accumulator. In this case, just the rounded
most significant 45 bits are used as the multiplier.
During multiplication this multiplier is held in Q,
R and is shifted to the right as the product dis-
places it. A decoding of the digits of the multi-
plier takes place at the least significant end of Q
and R so that they may be reinterpreted as having
weights —1, 0, +1 and +2. Each repetitive step
of multiplication then consists of shifting the con-
tents of A, Q to S, R or of shifting the contents
of S, R to A, Q and a total of two binary places to
the right. During this shift the most significant
45 digits are passed through one of the two
adders (the other being used on alternate steps)
and depending on the reinterpreted multiplier
digit either: (i ) the multiplicand is subtracted
from the partial product or (ii) nothing is
added to the partial product as it passes through
the adder or (iii) the multiplicand is added to
the partial product or (iv) twice the multiplicand
is added to the partial product. The input to the
adder at the output of the M selector is made
equal to the appropriate multiple of the multi-
plicand by the proper setting of the M selector.

At the conclusion of the multiplication pro-
cess the double precision product appears in the



308 W

accumulator. However, during both addition and
multiplication, actual addition is only partially
performed, in the sense that the carrys in the
addition process between base 4 digits, instead of
being assimilated into the sum, are preserved in
special 22 bit registers forming special parts of
A and S. These digits must
as further inputs to the adders. In order to speed
addition the carrys are allowed to remain unas-
similated as long as possible, so assimilation is
only performed during division and when a
number is brought out of the accumulator.
Normalization of the contents of the accu-
mulator is another process which need not ac-
company every arithmetic operation. Thus, after
addition and multiplication no normalization oc-
curs, but if desired, the contents of the accumu-
lator may be normalized at the time they are
stored. In this instruction, roundoff is also per-
formed, and the single precision representation
is obtained which is closest to the original con-
tents of the double precision accumulator. After
normalization, the fractional part of the num-
ber in the accumulator lies in the range; —1<f
<—1/4, f=0, or +1/4<f<+1. The roundoff
process may produce both exceptional cases f=
—1/4 and f=+1 lying outside of the given
range. When f= —1/4 nothing further is done and
the number is still regarded as properly normal-
ized, but in the latter case, since f=+1 cannot
be represented as a fraction in the memory,
the fraction +1/4 is stored instead, and the
exponent which is stored is made one greater
than the exponent which resulted from the
normalization process.
Various special arithmetic instructions are
provided in the instruction code. These include:
1. Inverse divide (as well as conventional
division) in which the divisor is in the
accumulator and the dividend is brought
from the memory.
2. Exchange accumulator and memory.
3. Double accumulator (most significant
part only). This is regarded as a logical

an i

Nov. 1961

instruction and does not involve changing
the exponent or setting an overflow flipflop
even if the contents of the accumulator
overflow during the doubling process.

4. Various types of store instructions. Both

normalized and unnormalized store inst-

“fixed point” store instruction in which
the number, instead of being normalized,
is first converted to one in which the
exponent has the value zero (or possibly
some other chosen value) before sioring
takes place. One of the most useful in-
structions for double precision work and for
programs in which the roundoff error must
be estimated,is the “store clear” instruc-
tion. The effect of this instruction upon
the memory is the same as that of the
normalized, rounded store instruction, but
the accumulator is left with a residue
which is equal to the difference between
its original double precision contents and
the quantity stored.

(3]

A set of logical instructions, all acting
upon the contents of the accumulator.
6. A variety of instructions affecting just
the exponent. These include add, subtract,
clear add, clear subtract, and store. A
complete list of arithmetic instructions is
given in a recent report (4). Most of the
specialized features of this part of the
instruction code result from the properties
of the high speed storage which is used
in conjunction with the arithmetic unit,
and from the form of address construction
which is used.
III. Order Structure
In table 1 there is described a ten word
“flow gating ” memory which is ussd to reduce
the number of accesses to the main core store.
The first eight words of this small, but very
fast, memory are directly addressable, and the
last two words are used as instruction registers.

In favorable cases, it is possible to program a



Vol. 2 No. 6

loop of instructions so that all the instructions
required by the loop will fit into the two instruc-
tion registers. Then, during the execution of
the loop it is not necessary to bring instructions
from the core memory. For this reason and in
order to save instruction accesses in general,
the order structure of the Illinois computer is
made as compact as possible. Each order con-
sists of a 13 bit (1/4 word) instruction part,
which may or may not be followed by a 13 bit
address. Thus, there are two types of instruc-
tions, “ short ” or 13 bit instructions, and “long”
or 26 bit instructions, consisting of two 13 bit
control groups, the second control group being
used during the address construction process.
The 13 bit control groups follow each other from
left or right in a word and the words of instruc-
tion in successive locations in the memory unless
a jump instruction occurs. Therefore, a long
instruction may be split between two words, but
its operation is in no way changed when this
happens.

A 13 bit instruction consists of three fields,
called F, B, and C which consist of 7, 4, and
2 bits respectively. The type of operation to be

erformed is determined by the 7 bit field F,
while the other fields determine the way in
which the address is constructed. The 4 bit
field B usually refers to one of 16 index regis-
ters of 13 bits each which are formed from the
four flow gating registers F4 through F7. If
C=0 or 1, the contents of this index register
are taken as the address of the instruction and
hence the instruction is of the short, or 13 bit
type. By making C=1 the corresponding index
register is automatically advanced by 1 after
the completion of the instruction. The advantage
of this type of address construction is twofold.
First, some storage space in the high speed flow
gating memory is saved because the instructions
used are all “short” instructions not requiring
separate addresses, and although more index
registers are required, there is a net saving in

high speed storage, and hence a greater likeli-

New Illinois Computer 309

hood that a loop of instructions can be stored
completely within the high speed memory and
executed without repeated references to the core
memory for instructions. Second, time is also
saved during the construction of addresses, since
within a loop the only addition required is that
occurring when the the address is advanced.
In order to perform multiple modification of
addresses, one may make use of an “add to
next ” or “subtract from next” instruction which
affects the way in which the address of the next
order is formed. In fact, a large set of arith-
metic and logical operations may be carried out
by the address arithmetic unit upon 13 bit oper-
ands. Furthermore, all such operations take
place without interfering with the concurrent

functioning of the arithmetic unit.

IV. Control System

Operation of delayed control, that portion of
the control which supplies the gate and selector
signals to the main arithmetic unit, may be
thought of as consisting of a sequence of control
steps. During each control step several gate or
selector settings may take place concurrently,
and the following control step may depend upon
the presence of various control signals. But in
general more than one control sequence will not
be going on within delayed control at a given
time. This feature of delayed control has per-
mitted the design of delayed control by means
of flow charts indicating (i) which gates and
selectors are set at any given control step and
(ii) which control steps may follow the given
step as well as (iii) what conditions determine
the choice of the next control step.

Such flow charts make more precise the
usual verbal description or outline used to ex-
press control sequencing. However, they have
another use as well, for rules have been develop-
ed for carrying out the replacement of the sym-
bols of a flow chart with suitable logical blocks
which combine to form a circuit to carry out the

actions indicated by the flow chart.



310 %

Flow charts describing control sequences
must be written in accordance with certain rules
if they are to be used directly for logical design
purposes (5b, ¢). A distinction is made between
four types of operations which may be perform-
ed in any given control step. These are: (i)
operation of gates, (ii) setting of selectors which
feed gates directly, such as those appearing at
the adder outputs, (iii) setting of selectors which
feed logical networks such as those connected to
the output of the M register which in turn feed
the adders, and (iv) setting of flipflops which are
used for control purposes at a later point in the
sequence.

In the case of gates, two end signals are
provided, one to indicate that the gate was turned
on, and a second to indicate that the gate was
turned off. These two signals appear on a single
line and are opposite in direction, that is, one
is represented by the signal transition 0 to 1 and
the other by the signal transition 1to 0. In the
case of selectors and control flipflops, two end
signals also occur. The first indicates that the
selector was set, or that the information was
gated into the control flipflop; the second indi-
cates that the logic from which the information
flowing into the selector or control flipflop was
derived, has been cleared.

A control flipflop is designed so as to be
capable of giving a definite indication that its
setting is complete, and also a definite indication
that its inputs have been cleared. There is,
however, no similar check made upon the logic
which occurs at the output of such a control
flipflop. Hence, it is necessary to insert sufficient
delay in the logic of the control so that all
combinational circuitry which follows such a
control flipflop has sufficient time to reach equi-
librium before the outputs from such circuits
are used for later control purposes.

Similarly, end signals which indicate the
conditions of gates and flipflops are not taken
from all the register positions to which gate

and selector signals are supplied. Instead, a

®oon =

Nov. 1961

suitable delay is ailowed for the transmission
of such signals to the registers and the signal,
thus delayed if necessary, is used as the end
signal to initiate the next operation.

Except for the introduction of such bypass-
es in which the operation of some portion of
the arithmetic unit is not directly checked, there
is speed independent operation within the con-
trol in the sense that its correct functioning does
not depend upon the relative speeds of the
logical elements from which it is formed. Thus,
a central section of the control forms a speed
independent core. This central section supplies
signals to other sections of the computer which
operate with delays lying within prescribed
limits.

Speed independent design of the central sec-
tion of the control is achieved, in the case of
delayed control, by following rigid rules for the
replacement of sections of the flow chart by
logical circuitry. These rules were developed
heuristically,but were tested rigorously,using the
present computer Illiac, to make certain the
resulting circuits carried out the sequencing
described by the flow charts, and that this se-
quencing will occur regardless of what relative
speeds are assumed for the various logical ele-
ments.

In the case of advanced contorol, it is no
longer possible to describe the control operation
in terms of a sequence of control steps. Instead,
one must think of the operation of advanced
control as being made up of a number of con-
currently acting sequences, which are carried
out by semi-autonomous subcontrols to perform
its various functions. Thus, separately acting
sections of advanced control regulate such things
as access to the core memories, acceptance of
information from the OUT register FO, index
arithmetic and address construction, and various
other operations having to do with the decoding
and sequencing of instructions.

As advanced control proceeds, it processes

one instruction after another. Instructions not



Vol. 2 No. 6

requiring the use of the arithmetic unit may
be completely executed by advanced control, and
when this is possible advanced control passes
on to the next instruction. In other cases ad-
vanced control starts the execution of the in-
struction and then passes the residue on to its
subcontrols and to arithmetic control. Advanced
control, however, never proceeds with any op-
erations which are conditional upon calculations
which have yet to be made and which might have
to be undone at a later time depending upon
the outcome of such calculations. Thus, it stops
upon encountering a jump which is conditional
upon the outcome of an arithmetic calculation
rather than proceeding with a possibly unnecces-
sary calculation or use of the memory. Ad-
vanced control also stops if it requires inform-
ation which has not been supplied, or if some
register or other unit which it must use is occu-
pied with another calculation. It proceeds there-
fore, as far as possible within the limitations
of the equipment which it controls and equipment
adjacent to that which it controls.

Yet a third control unit in the Illinois com-
puter is called “interplay ”. This control deals
with the transfer of information between the
core memories and drums, magnetic tape units,
and input-output devices. Such transfers take
place in blocks of 256 words each and proceed
while other instructions are being executed. Also,
because of the synchronous nature of these devi-
ces, their use of the core memory, though infre-
quent, cannot be postponed. For this reason
the system of priorities is such that interplay is
granted core memory access whenever this access
is necessary for the correct functioning of the
auxiliary memories and the input-output equip-
ment. During the transfer by interplay to the
core memory of a block of words, these words
must not be used by advanced control, since
one cannot be certain whether or not the trans-
fer has taken place. Similarly, when a block
is transferred from the core memory, these

words must not be modified by information

New Illinois Computer 311

coming from other units such as the flow gating
memory, since such modification could take
place either before or after the transfer. Thus,
to preserve speed independence, the section of
the core memory involved in the block transfer
is “locked out” so that access, other than that
concerned with the block transfer, cannot take

place within the section.

V. Circuitry and Physical Construction

Although it is not the purpose of this de-
scription to consider details of circuit design, it
is perhaps worth pointing out that certain spe-
cial problems are encountered when circuits are
to be designed so that they may be used in a
speed independent control.

As is the case in synchronous computers as
well, the principal logical delay in this com-
puter occurs in signal paths requiring a large
amount of amplification. Signals from arith-
to all the digits in the arithmetic registers.
Large amplification is required because these
signals must be sent through relatively long
distances and must fan out to a large number
of points. Effort in circuit design was therefore
concentrated on the design of drivers for ca-
bles and drivers for gates, so as to make these
critical elements as fast as possible. Since the
distances over which the control signals are

transmitted are comparable to the wavelengths
of these signals, there is difficulty in making

certain that the signals remain faithful and
that spurious oscillations and noise are not in-
troduced.

The physical layout of the main section of
the computer is shown in figure 2. When looked
at from above it has the general shape of the
letter T. In the lower six feet of the T is found
the arithmetic unit and its associated control.
The arithmetic unit which occupies the body of
the T is folded so that the first and last digits
lie next to the bar of the T which contains
delayed control. Those sections of delayed con-



312 tH # i i Nov. 1961

trol which are considered to be the most used
during computation are placed nearest to the
arithmetic unit, while those having lower duty
cycle are placed farther away in the bar of the
T. Directly above delayed control and the arith-
metic unit, is placed advanced control and the
flow gating memory, and in a separate rack
next to the main section is placed the core store
and the interplay control.

Present plans call for the completion of an
operational computer sometime early next year.
However, the completion of advanced control
will require additional time and at present the
computer will be tested with a simplified in-
struction sequencing control. Work on advanced
control will be carried out during 1962.

0
h - 7 Main frame of the new Illinois computer
j=———DELAYED CONTROL—— 2° as it appeared during construction in the sum-
i mer of 1961.
Sign I i 1 J
Digit HeauT
Bit O 1 1T
T =Bt 44
GORE i |
s
NOL2 | MALJ«
CORE —Bi3 25
STORAGE "
ONLT 2.5
NO.1 Bit 24
- Lower Level
—45 1530 7hFeet Above Floor
ADVANCED
CONTROL
FLOW
INTERPLAY GATING
INTERPLAY
Upper Level y
75%0 11 Feet Above Floor Secondary frame of the new Illinois com-

puter as it appeared during construction in the
Fig. 2. Layout of major units summer of 1961.



Vol. 2 No. 6

Table 1. Characteristics of the

General Properties
Transitorized.
Directly coupled.
Asynchronous.
Parallel.

Binary (52 bit word).

Single and zero address instruction code.

® e a0 TP

Floating point arithmetic.

Speeds (estimated)

a. Multiplication: 7 usec.

b. Addition: 2 psec.

c. Division: 16 psec.

d. Core memory interval: 1 to 2 psec.

Outstanding Features

a. Concurrent arithmetic, memory use, and
address processing.

b. Base four “carry save ” arithmetic.
Double precision accumulation of sums
and products.

d. Speed independent central control.

e. Use of rapid accesé registers for the
temporary storage of a loop of instruc-
tions.

Storage

.

a. Ten Word “flow gating” memory con-
sisting of flipflops with about 0.2 psec.
access time.

These ten words are allocated as follows:

1) Two buffer registers between the main

core memory and the arithmetic unit.
These registers, called OUT (F0) and
IN (F1), are respectively used for re-
sults passing from the arithmetic unit
to core storage, and for operands pass-
ing from core storage to the arith-
metic unit.

2) Two registers (F2 and F3) for tem-

porary storage of arithmetic results.

3) Four registers (F 4 through F7), each

of which may be used either as tem-
porary storage or as four index regis-

ters.

New Illinois Computer 313

4) Two registers (F8 and F9) for hold-
ing instructions which

ng truclions

being obeyed.

)

re currently

b. Two word arrangement core memories
of 22 words each. One memory is
referred to by even addresses and the
other by odd addresses. Access time per
memory is about 0.5 gsec., and cycle
time per memory is about 2.0 gsec.

c. Two drums of 2'° word each with a
word time of 7.8 psec., and a period of
17 msec. Block transfers of 256 words
are used between drums and cores.

d. Four magnetic tape units with provision
for adding more.

Bibliography

“On the Design of a Very High-Speed Com-

puter 7, D.B. Gillies, R.E. Meagher, D.E.

Muller,R.W. McKay, J.P. Nash, J.E. Robert-

son, and A.H. Taub. Digital Computer

Laboratory Report No. 80, October 1957,

revised in April 1958.

“Design of the Core Storage Unit”, S.R. Ray.

Digital Computer Laboratory Report No. 91,

August 1959.

“ Final Report-Flow Gating”, Henry Guck-

el, Toshiro Kunihiro, Ronald K. Crow.

Digital Computer Laboratory Report No.

106, March 1961.

“The Design of a Very High Speed Scien-

tific Computer 7, D.B. Gillies. Digital Com-

puter Laboratory File No. 376, June 1961.

Proceedings of the A.I.LE.E., Second Annual

Symposium on Switching Circuit Theory

and Logical Design, Detroit, Michigan,

October 15-20, 1961.

a. “Introduction to Speed Independent
Circuit Theory ”, R.E. Miller.

b. “A Flow Chart Notation for The De-
scription of a Speed Independent Con-
trol,” D.B. Gillies.

c. “One Method for Designing Speed In-
dependent Logic for a Control”, R.E.
Swartwout.

d. “Problems in the Physical Realization
of Speed Independent Circuits”, J.E.
Robertson.



