
IPSJ Transactions on System LSI Design Methodology Vol.6 60–70 (Feb. 2013)

[DOI: 10.2197/ipsjtsldm.6.60]

Regular Paper

A Method to Reduce Energy Consumption of
Conditional Operations with Execution Probabilities

Kazuhito Ito1,a) Kazuhiko Kameda1,†1

Received: May 25, 2012, Revised: August 31, 2012,
Accepted: October 30, 2012, Released: February 15, 2013

Abstract: In conditional processing, operations are executed conditionally based on the result of condition opera-
tions. While the speculative execution of conditional operations achieves higher processing speed, unnecessary energy
may be consumed by the speculatively executed operations. In this paper, reduction of the energy consumption of
conditional processing is considered for time and resource constrained processing. An efficient method to calculate
the probability of operation execution is presented. Based on the probabilities of execution, a scheduling exploration
with the simulated annealing and a heuristic scheduling algorithm are proposed to minimize the energy consumption
of the conditional processing by reducing unnecessary speculative operations. The experimental results show 5% to
10% energy can be reduced by the proposed methods for the same configuration of resources.

Keywords: conditional operation, speculative execution, scheduling, low energy

1. Introduction

In general processing algorithms, the execution of operations
are controlled by the results of other operation(s) [1]. In Fig. 1 (a),
the operation A, for example, is a comparison between two data.
If the comparison result is TRUE(T), the operation B is executed.
Otherwise, i.e., the comparison result is FALSE(F), the operations
C, D, and E are executed. The operation A in Fig. 1 (a) is called a
condition operation, and the operations B to E are called condi-

tion dependent operations. The processing algorithm with condi-
tion operations and condition dependent operations is called pro-

cessing with conditional operations or conditional processing.
There are data dependencies and conditional dependencies

among operations. In Fig. 1 (a), the operation D uses the result
of the operation C. This is a data dependency of D on C and it
imposes the precedence constraint such that C must be executed
before the execution of D. Figure 1 (b) shows a possible time
chart of the execution of operations by assuming each operation
takes one control step to execute. By the way, the condition de-
pendency does not impose the precedence constraint. For exam-
ple, C can start at the same time as A because no data dependency
exists between A and C [2]. In that case, C is executed uncondi-
tionally about A and the result of C is discarded when A is com-
pleted to be T. Let it be said A is resolved as T. Such execution
of condition dependent operation before the condition is resolved
is called a speculative execution of operations [3]. By the spec-
ulative execution, the processing of Fig. 1 (a) can be completed
within the smaller number of control steps as shown in Fig. 1 (c).

There have been much research on the high-level synthesis

1 Saitama University, 255 Shimookubo, Saitama 338–8570, Japan
†1 Presently with Honda Motor Co., Ltd.
a) kazuhito@ees.saitama-u.ac.jp

(a) (b) (c)

Fig. 1 An example of processing with conditional operations. (a) CDFG.
(b) A time chart of the execution of operations without speculation.
(c) Execution with speculation.

of conditional processing [1], [2], [3], [4], [5], [6], [7], [8], [9],
[10], [11], [12]. The basic scheduling algorithms are proposed in
Refs. [1], [4], [5]. The speculative execution of operations is con-
sidered in Refs. [2], [3], [6], [7], [8], [9], [10], [11]. The objective
in these work is to minimize the required number of functional
units by conditional resource sharing, or to minimize the neces-
sary control steps to execute the processing by resource sharing
and/or speculative execution. In Ref. [12], the energy consump-
tion of conditional processing is evaluated in the context of opti-
mizing the average control steps to execute the processing proba-
bilistically based on the conditional branches. However the spec-
ulative execution is not taken into account in Ref. [12]. Some
commercial synthesis tools accept descriptions in high-level pro-
gramming languages, such as C and C++, and support condi-
tional operations [13], [14]. Though these tools perform many
kinds of optimization, minimizing energy consumption with re-
spect to the speculative execution is not mentioned.

There also have been much research on power- or energy-
aware speculation in processors [15], [16], [17], [18], [19]. In
Ref. [15], improvement of the speed performance is the target and
hence the energy is increased in most cases. Reference [16] pro-

c© 2013 Information Processing Society of Japan 60

IPSJ Transactions on System LSI Design Methodology Vol.6 60–70 (Feb. 2013)

poses a branch prediction method to reduced unnecessary power
consumption. In Refs. [17] and [18], the prediction of branch and
speculating thread is considered to reduce the energy consump-
tion at the cost of latency degradation. In Ref. [19] a special data
driven architecture is targeted. These techniques are difficult to
apply to minimizing the energy consumption of operations with
the constraints of time and resources.

The resource constrained list scheduling [20] is an efficient
scheduling method and is extended to take conditional resource
sharing into account [11]. In this scheduling, the operation k is
executed as soon as (1) the preceding operations on which k is
data dependent are executed and (2) a resource is available ei-
ther unconditionally or conditionally sharable with other opera-
tion(s). This results in unnecessary speculative execution of op-
erations and much energy will be consumed for operations whose
results would be eventually discarded when conditions are re-
solved. Hence it is important to reduce unnecessary speculative
executions to minimize the energy consumption.

In this paper, a high-level synthesis method is proposed to
minimize the energy consumption of conditional processing with
time and resource constraints. To precisely evaluate the energy
consumption of conditional operations, a technique to efficiently
calculate the probability of operation execution is proposed. Then
two scheduling methods, one is by exploration and the other is by
heuristics, are presented.

This paper is organized as follows. A motivating example is
given in Section 2. A hardware model is presented in Section 3.
Section 4 describes the technique to calculate the probabilities of
execution of operations, and the scheduling methods are proposed
in this section. The experimental results are given in Section 5.
Section 6 concludes the paper.

2. Motivating Example

The conditional processing is given by the control data flow
graph (CDFG) as shown in Fig. 2. The node represents an op-
eration. A data dependency and a conditional dependency are
represented by a solid arrow and a broken arrow, respectively. A
character ‘T’ (TRUE) or ‘F’ (FALSE) near a broken arrow indi-
cates which branch is taken depending on the condition. Where
the branches join, a join node is placed. It is shown by a box in
Fig. 2. A join node is used only to indicate the control flow and
hence consumes no time and no energy. In addition, the join node
J in Fig. 2 indicates that the condition among the results of C, D,
and G is selected according to A and B.

The representative examples of condition operation are a com-

Fig. 2 An example of CDFG.

parison and an overflow detection. A comparison can be imple-
mented by a subtraction. An overflow detection can be taken from
the result of an addition. Therefore, the condition operations are
considered in the same way as the operations in scheduling and
evaluation of energy consumption.

It is important to note that there are two kinds of probabilities
in the conditional processing. One is the probability of branch
(PB), which is the statistical probability of a condition resolved as
either T or F. Let PBm,T and PBm,F denote the PB of condition op-
eration m to be resolved as T and F, respectively. The PBs depend
on the given processing algorithm and the input data. Thus, the
PBs are profiled over the input data space in advance and are as-
sumed to be known when the scheduling is considered. The other
is the probability of execution (PE) of operations. Let PE(n) de-
note the PE of operation n. While PBm,T and PBm,F are constant
for the given processing, PEs vary depending on the schedule of
operation execution.

Let EC(n) denote the energy consumed by executing operation
n. Then the energy consumption EC of the processing is calcu-
lated as

EC =
∑
n∈N

PE(n)EC(n) (1)

where N is the set of operations in the processing.
For simplicity, it is assumed that an operation takes one con-

trol step (CS) and EC(n) = 1 unit of energy (u.e.) for all n ∈ N.
Without the speculative execution, 4 CSs are necessary as shown
in Fig. 3 (a). Assuming the PBs as Case I shown in Table 1, the
PEs are PE(A) = 1, PE(B) = 0.8, and PE(D) = 0.08. This is
because A is always executed, B is executed when A is resolved
to branch to B with the probability of 0.8, and D is executed when
both A and B are resolved to branch to D with the probability of
0.8 · 0.1 = 0.08. PEs of other operations can be derived similarly,
and the total of consumed energy is 4.00 u.e. as shown in Table 2.
The detail of calculating the PE is described in Section 4.2.

Schedules with 3 CSs are possible by the speculative execu-
tion. In the schedule shown in Fig. 3 (b), operation B is specula-
tively executed before the condition operation A is resolved. In

(a) (b)

(c) (d)

Fig. 3 Schedules of the CDFG shown in Fig. 2. (a) Without speculative
execution. (b)(c)(d) With speculative execution.

Table 1 Probabilities of condition to branch.

Case I Case II
A PBA,T = 0.8, PBA,F = 0.2 PBA,T = 0.2, PBA,F = 0.8
B PBB,T = 0.9, PBB,F = 0.1
C PBC,T = 0.6, PBC,F = 0.4
D PBD,T = 0.9, PBD,F = 0.1
G PBG,T = 0.7, PBH,F = 0.3

c© 2013 Information Processing Society of Japan 61

IPSJ Transactions on System LSI Design Methodology Vol.6 60–70 (Feb. 2013)

Table 2 Energy consumption of schedules in Fig. 3.

Case I Case II
Schedule (a) (b) (c) (a) (b) (c)

A 1.000 1.000 1.000 1.000 1.000 1.000
B 0.800 1.000 0.800 0.200 1.000 0.200
C 0.720 0.720 0.800 0.180 0.180 0.200
D 0.080 0.080 0.080 0.020 0.020 0.020
E 0.200 0.200 1.000 0.800 0.800 1.000
G 0.200 0.200 0.200 0.800 0.800 0.800
H 0.644 0.704 0.652 0.686 0.926 0.688
I 0.356 0.496 0.428 0.314 0.874 0.332

Total 4.000 4.400 4.960 4.000 5.600 4.240

Fig. 3 (c), operation C is speculatively executed before the condi-
tion operation B is resolved. Operations H and I are also specula-
tively executed in these schedules. In Fig. 3 (b), PE(B) = 1 since
B is always executed. In Fig. 3 (c), PE(C) = 0.8 since C must be
executed when A is resolved as T with PBA,T = 0.8. The totals of
consumed energy are 4.40 u.e. and 4.96 u.e. for Fig. 3 (b) and (c),
respectively.

When PBs are given as Case II in Table 1, where the PB of
A is changed, the totals of consumed energy for the schedules of
Fig. 3 (b) and (c) are 5.60 u.e. and 4.24 u.e., respectively. Here the
schedule of Fig. 3 (b) is preferable in Case I because the schedule
achieves less energy consumption than the schedule of Fig. 3 (c).
On the other hand in Case II, the schedule of Fig. 3 (c) is prefer-
able. This example suggests that (1) the schedule to achieve
the least energy consumption varies depending on the given PBs
and (2) precisely calculating the PEs for the operation execution
schedule is the key to minimize the energy consumption.

3. Hardware Model

The hardware model of the datapath is shown in Fig. 4. A func-
tional unit FUi (1 ≤ i ≤ K) receives data from either registers
Reg j (1 ≤ j ≤ M) or the external input(s). Multiplexors are used
to select the source of the data. The FU has transparent latches
(TLAT) at the input. A TLAT passes the input data to the out-
put when enabled and keeps the output when disabled. Thus the
FU works and consumes dynamic energy only when an opera-
tion is requested by enabling the TLAT. The FU does not have
any output register and the operation result is stored in one of the
registers Reg j.

Figure 5 (a) shows a schedule of the CDFG shown in Fig. 1 (a).
The operations C and D are executed speculatively before the
condition A is resolved. The operation result of C is produced in
CS 0, stored in a register at the end of CS 0 (at the beginning of
CS 1), used by the operation D in CS 1, and the data becomes
unnecessary at the end of CS 1. The lifetime of the data is rep-
resented with an arrow as shown in Fig. 5 (b). The speculative
operation D is executed in CS 1. The condition A is also executed
in CS 1 and if it resolves to TRUE, the data produced by D is
unnecessary and needs not to be stored into a register. Because A

is TRUE, the operation B is executed in CS 2 and the operation F

is executed with the data produced by B. On the other hand, if A

resolves to FALSE, the data produced by D is stored in a register,
used by the operation E, and the operation F is executed with the
data produced by E.

Consequently, the data produced by the operations specula-

Fig. 4 A hardware model.

(a) (b)

Fig. 5 Conditional operation execution and the lifetime of data.

tively executed before the condition (e.g., the operation C before
A) are always stored into registers. If the condition resolves at the
same time of speculative operations and the condition says the
data are not necessary (e.g., the operation D when A is TRUE),
the data are not stored into registers. This saves energy consump-
tion of registers by avoiding unnecessarily altering the data in the
registers.

4. Scheduling for Energy Minimization

4.1 Preliminary
The CDFG is given as (N, E), where N is the set of operations

and E is the set of edges. The set E is divided into two subsets
ED and EC . ED is the set of the data dependency edges and EC is
the set of condition dependency edges. While a data dependency
edge (n,m) imposes the precedence of n over m, a condition de-
pendency edge does not impose any precedence. The set N is
divided into two subsets NT and ND. NT is the set of operations
which have no incoming data dependency edge. ND is the set of
remaining operations, i.e., the operations with at least one incom-
ing data dependency edge. The join node is included in ND. Let
NC ∈ N denote the set of condition operations. For example in the
CDFG shown in Fig. 2, ND consists of operation G and the join
node J, and NT consists of the remaining operations. NC consists
of A, B, C, D, and G.

4.2 Calculating Probability of Execution
Let the notation x ⇒ T (x ⇒ F) denote that the condition x is

resolved as TRUE (FALSE).
For the example CDFG shown in Fig. 2 and the statistical prob-

abilities of branch given as Case I in Table 1, the condition B is
executed at the statistical probability PBA,T = 0.8, and the opera-
tion C is executed at PBB,T = 0.9. Therefore, if both A and B are
resolved before C, PE(C) is PBA,T × PBB,T = 0.72. If A is not yet
resolved when C is executed, PE(C) = 1 × PBB,T = 0.9. If B is
not resolved, PE(C) = PBA,T × 1 = 0.8. If both A and B are not
resolved when C is executed, PE(C) = 1.

Consider calculating PE(H) for the same CDFG. When a
schedule shown in Fig. 3 (a) is given, all the conditions on which
H depends are resolved before H. Then PE(H) is calculated as
the sum of the probabilities (A ⇒ T, B ⇒ T, C ⇒ T), (A ⇒ T,

c© 2013 Information Processing Society of Japan 62

IPSJ Transactions on System LSI Design Methodology Vol.6 60–70 (Feb. 2013)

(a) (b)

Fig. 6 CDPGs of operations in Fig. 2. (a) For the target operation C. (b) For
the target operation H.

B⇒ F, D⇒ T), and (A⇒ F, G ⇒ T). Therefore,

PE(H) = PBA,T · PBB,T · PBC,T + PBA,T · PBB,F · PBD,T

+ PBA,F · PBG,T

= 0.8 · 0.9 · 0.6 + 0.8 · 0.1 · 0.9 + 0.2 · 0.7
= 0.644. (2)

Figure 3 (d) shows another schedule of the CDFG where H is ex-
ecuted speculatively before the conditions B and G. If A⇒ T, the
result of either C or D is selected by B and used as the condition
to execute H. It implies that H must be executed to prepare to
the case that C or D would be resolved as T. A straightforward
method to calculate the PE(H) is to enumerate the possible com-
binations of resolution of conditions. Hence PE(H) for Fig. 3 (d)
can be calculated as the sum of the probabilities (A⇒ T, C ⇒ T,
D ⇒ T), (A ⇒ T, C ⇒ T, D ⇒ F), (A ⇒ T, C ⇒ F, D ⇒ T),
and (A⇒ F), and therefore

PE(H) = 0.8(0.6 · 0.9 + 0.6 · 0.1 + 0.4 · 0.9) + 0.2

= 0.968. (3)

The drawback of this method is that the number of combinations
of conditions grows exponentially to |NC | and thus requires many
calculations.

A method to efficiently calculate PEs of operations for the
given PBs and schedule is considered here. For each operation
to calculate the PE, the condition dependency graph (CDPG) is
constructed. A CDPG is a directed graph given as (V, ER). V is
the set of nodes representing the operation to calculate the PE (tar-
get), the condition operations on which the target depends condi-
tionally, and the necessary OR nodes. The OR node is explained
later. ER is the set of edges which represent the conditional de-
pendencies among the nodes in V . Figure 6 (a) shows the CDPG
for the target operation C of the example CDFG shown in Fig. 2.
The target C depends on the condition operations A and B, and
the condition to execute C is A ⇒ T and B ⇒ T. The and rela-
tion is denoted as {A ⇒ T, B ⇒ T}. V includes A, B, and C, and
the edges (A, B) and (B,C) are included in ER. The and combina-
tion of conditions is represented with a series of edges connecting
the conditions one after another as shown in Fig. 6 (a). The order
of the conditions in the series of edges is arbitrary and does not
affect the PEs. The edge (u, v) drawn as a solid (dashed) arrow
means that v is executed when u ⇒ T (u ⇒ F). Shown near the
edge (u, v) is the PB of the condition u.

The condition to execute the target H in Fig. 2 is {A ⇒ T,
B⇒ T, C ⇒ T} or {A⇒ T, B⇒ F, D⇒ T} or {A⇒ F, G ⇒ T}.
Here, ‘and’ terms are combined by ‘or’ relations. The CDPG is
constructed as shown in Fig. 6 (b). The or relation is represented

(a) (b)

Fig. 7 CDPGs for target d. (a) For the condition {(a⇒ F, b⇒ T) or c⇒ T.
(b) For the condition {a⇒ T, (b⇒ F or c⇒ T)}.

as multiple incoming edges to node(s).
In the case of H mentioned above, the conditions A and B

are commonly included in the and terms and hence V includes
only the target and the condition operations. If and terms do not
include any common condition, then OR nodes are introduced.
Suppose that the condition to execute a target d is {a⇒ F, b⇒ T}
or c ⇒ T. In the CDPG, {a ⇒ F, b ⇒ T} is denoted by the
edge (a, b). Again, the order of a and b is arbitrary. As shown
in Fig. 7 (a), the or relation is denoted by an OR node L and
the bold edges (L, a) and (L, c). If the condition to execute d is
{a⇒ T, (b⇒ F or c⇒ T)}, the CDPG is constructed as shown in
Fig. 7 (b). An OR node L is used to denote the or relation between
b and c, and the edge (a, L) denotes the and relation.

There exists a node with no incoming edge in the CDPG cre-
ated as mentioned above, and is called the root of the CDPG. The
root is A in both CDPGs in Fig. 6. The roots are the OR node and
a for CDPGs in Fig. 7 (a) and (b), respectively.

The PE(d) of the target d for Fig. 7 (a) is calculated as follows.
Here it is assumed that all the conditions are resolved before the
execution of d. Starting from the target operation d, the CDPG
is traversed in the opposite direction of arrows in the breadth first
manner. Let Px,y denote the PE of the operation y with respect
to the condition x. By definition, Py,y = 1. Pb,d = 0.3 and it
is shown in a box near the condition b in Fig. 7 (a). Similarly,
Pc,d = 0.4. Pa,d is calculated as Pa,d = Pa,bPb,d = 0.06. Now
PE(d) is calculated as the sum of Pc,d = 0.4 (i.e., c ⇒ T) and
(1 − Pc,d)Pa,d = 0.036 (i.e., c ⇒ F, a ⇒ F, and b ⇒ T). Thus,
PE(d) = PL,d = 0.436.

As can be seen from this example, the calculation of PEs be-
comes complicated when the or relation is involved. It is noted
that the execution of the operation d is not needed when both c

and the combination of a and b do not request the execution of
d. Here the notion of probability of no execution (PNE) is in-
troduced. Let Qx,y denote the PNE of operation y with respect
to the condition x. The relation Qx,y = 1 − Px,y holds. For the
case of Fig. 7 (a), QL,d is calculated simply as QL,d = QL,cQL,a =

0.6 × 0.94 = 0.564 and PE(d) = PL,d = 1 − QL,d = 0.436. This is
consistent with the result shown above.

Here a method to calculate the PNE is presented. The calcu-
lation of the PNE starts from the target operation y and ascends
the CDPG to the root. Figure 8 shows possible condition depen-
dencies in calculating PNE. In Fig. 8 (a), y depends on only one
side of x (T side in this case). If x is resolved before y, y is not
executed at the probability of Qm,y when x ⇒ T, and y is never
executed when x ⇒ F. If x is not resolved, Qx,y = Qm,y. Thus
PNE Qx,y is calculated as

c© 2013 Information Processing Society of Japan 63

IPSJ Transactions on System LSI Design Methodology Vol.6 60–70 (Feb. 2013)

(a) (b) (c)

Fig. 8 Examples of condition dependencies. (a) Simple dependency.
(b) Dependency branching and merging. (c) An OR node.

** Calculation of PE(y) **
Input: CDPG (V, ER) with the root r
Output: PE(y) = 1 − Qr,y

Unmark all the edges (x, u) ∈ ER

Qy,y ← 1
for each incoming edge (x, y) ∈ ER do

Mark (x, y)
call CalcPE(x)

end do

procedure CalcPE(x)
if an unmarked (x, u) ∈ ER exists return
(here, all the edges outgoing from x are marked)
if x is an OR node then

Calculate Qx,y =
∏

(x,m)∈ER
Qm,y

else (x is a condition operation)
if only (x,m) ∈ ER is outgoing from x then

Calculate Qx,y as Eq. (4)
else (two edges (x,m) and (x, n) exist)

Calculate Qx,y as Eq. (5)
end if

end if
for each incoming edge (w, x) ∈ ER do

Mark (w, x)
call CalcPE(w)

end do
return

Fig. 9 Algorithm for calculating the PE.

Qx,y =

⎧⎪⎪⎨⎪⎪⎩
PBx,TQm,y + (1 − PBx,T) if x is resolved
Qm,y if x is not resolved

(4)

In Fig. 8 (b), y depends on both sides of x. Then Qx,y is calculated
as

Qx,y =

⎧⎪⎪⎨⎪⎪⎩
PBx,TQm,y + PBx,FQn,y if x is resolved
Qm,yQn,y if x is not resolved

(5)

In Eq. (5), Qx,y = Qm,yQn,y if x is not resolved, because y needs
not be executed only when both m to y and n to y suggest the ex-
ecution of y is not needed. If x is an OR node (Fig. 8 (c)), Qx,y is
calculated as the product of Qm,y for all the outgoing edges (x,m).
The algorighm to calculate the PE is shown in Fig. 9.

When the PBs are given as Case I in Table 1, PBB,T = PB,C =

0.9, PBB,F = PB,D = 0.1, PBA,T = PA,B = 0.8, and PBA,F =

PA,G = 0.2, PE(H) for Fig. 3 (a) and Fig. 3 (d) are calculated as
shown in Fig. 10. In Fig. 10 (b), QG,H = 0, that is PG,H = 1, be-
cause H must always be executed if A⇒ F to prepare to the case
of G ⇒ T. The resultant PE(H)s are respectively identical to the
results of Eq. (2) and Eq. (3).

The computational complexity of the method to calculate PE
for an operation is O(|NC |+ |EC |) where EC is the number of con-
ditional dependencies in the CDFG. Since the conditions usually
branch in two way (T or F), |EC | = 2|NC |. Therefore the com-
putational complexity of calculating PEs for all the operations
is O(|N||NC |). Consequently the above method is much efficient
than enumerating the possible combination of conditions.

QC,H = 1 − 0.6 = 0.4
QD,H = 1 − 0.9 = 0.1
QB,H = PB,C · QC,H + PB,D · QD,H

= 0.9 · 0.4 + 0.1 · 0.1 = 0.37
QG,H = 1 − 0.7 = 0.3
QA,H = PA,B · QB,H + PA,G · QC,H

= 0.8 · 0.37 + 0.2 · 0.3
= 0.356

PE(H) = PA,H = 1 − QA,H = 0.644

QC,H = 1 − 0.6 = 0.4
QD,H = 1 − 0.9 = 0.1
QB,H = QC,H · QD,H

= 0.4 · 0.1 = 0.04
QG,H = 0
QA,H = PA,B · QB,H + PA,G · QG,H

= 0.8 · 0.04 + 0.2 · 0
= 0.032

PE(H) = PA,H = 1 − QA,H = 0.968
(a) (b)

Fig. 10 Calculation of PE(H). (a) For the schedule in Fig. 3 (a) where all
the conditions are resolved. (b) For the schedule in Fig. 3 (d) where
B and G are not resolved before H.

4.3 Exploration of Schedule to Reduce Unnecessary Specu-
lative Execution

In the schedule obtained by the list scheduling, operations are
executed as soon as possible (ASAP) if resources are available
either conditionally or unconditionally [11]. Even when there is
a time margin for an operation to wait for the depending condi-
tion being resolved, the operation is scheduled at the earliest con-
trol step where the speculative execution is possible. The better
schedule which reduces such unnecessary speculative execution
would be different from the ASAP schedule. A method to ex-
plore the schedule space is proposed to find a good schedule with
the optimized cost function [21]. In that method, some time dura-
tions, called strut, are added to data dependency edges of CDFG
to delay the execution of operations, and then the start control step
(SCS) of each operation is determined by ASAP scheduling. The
different combination of struts results in the different schedule of
the CDFG. Hence the optimized combination of struts is explored
which leads to a schedule with the optimized cost function.

The scheduling algorithm is shown in Fig. 11 where the sim-
ulated annealing (SA) is used for the exploration. The initial
schedule is the same as the result of the resouce constrained list
scheduling. FT is the set of functional unit types, such as adder
and multiplier. At most RC f functional units can be used for the
type f ∈ FT . Since an operation in NT has no incoming data
dependency edge, the operation can start at any control step as
long as no precedence relation is violated among succeeding op-
erations. The allowed maximum control step MCS is larger than
or equal to the smallest control step obtained by the list schedul-
ing with the given resource constraints. Therefore the scheduling
problem is feasible, that is, at least one schedule exists which sat-
isfies both the time and resource constraints.

The changes (a), (b), and (c) to generate a new scheduling can-
didate in step 4 are the same as ones described in Ref. [21]. These
changes manipulate the values of struts. The change (d) is newly
introduced for the conditional processing where the SCS of an
operation in NT is moved to an earlier or later control step.

Given a schedule satisfying all the precednce relations, the new
schedule derived by one of these changes also satisfies the prece-
dence. While the precedence is maintained after the changes,
more resources than the limit might be needed to execute oper-
ations as scheduled since the ASAP scheduling does not take the
resource constraint into account. Only accepting the change sat-
isfying the resource constraint is one of the possible solutions.
However it would reduce the chance for the exploration to escape
from the local optima. Let Rf (t) denote the number of required

c© 2013 Information Processing Society of Japan 64

IPSJ Transactions on System LSI Design Methodology Vol.6 60–70 (Feb. 2013)

Scheduling exploration for energy minimization of conditional processing

Input: CDFG=(N, E)
Probabilities of condition to branch
Energy consumption of operations in N
Resource constraint RC f for f ∈ FT
Maximum control step MCS

Output: Schedule with minimized energy consumption

(1) Set the strut S i j = 0 for every data dependency edge (i, j) ∈ ED. Set the

SCS to the resouce constraind list scheduling result for every operation

j ∈ NT .

(2) Determine SCS for every operation in ND by ASAP scheduling method.

This is the first scheduling candidate Sched and evaluate the initial ob-

jective cost of Sched, C(Sched).

(3) Set the temperature T = Tstart .

(4) Generate a new scheduling candidate by performing one of the follow-

ing changes to derive the new strut values S ′i j of edges (i, j) ∈ ED or

the new SCS of an operation in NT so that no precedence relation is

violated.

(a) increase or decrease a strut

(b) move struts over single operation

(c) rewind struts for a sub-tree of CDFG

(d) move SCS of an operation in NT

(5) Determine the SCS for every operation in ND by using the values of

struts S ′i j and ASAP scheduling. This is the new scheduling candidate

Sched’.

(6) Evaluate the objective cost C(Sched′).
(7) Accept the new schedule candidate Sched’ if C(Sched′) < C(Sched) or

at the probability

prob = exp

(
−C(Sched′) −C(Sched)

T

)
.

(8) Repeat steps 4 to 7 for NI times where NI is a predetermined num-
ber.

(9) Decrease the temperature T by multiplying a constant α < 1. If
T > Tend , go to step 4. Otherwise end.

Fig. 11 The scheduling exploration algorithm.

functional units of the type f at control step t. Rf (t) is calculated
by considering conditional resource sharing with the method de-
scribed in Ref. [11]. The resource penalty UR is computed as

UR =
∑
f∈FT

MCS−1∑
t=0

d(Rf (t) − RC f) (6)

where the function d(k) = k if k ≥ 0 or d(k) = 0 otherwise. The
cost C(Sched) is defined as

C(Sched) = β0EC + β1UR (7)

where EC is the energy consumption (Eq. (1)) and β0 and β1 are
weighting factors. Minimizing C(Sched) with a sufficiently large
β1 allows the exploration to temporarily exceed the resource lim-
its and finally leads to the schedule where the energy consumption
is minimized within the resource constraint.

4.4 A Heuristic Scheduling Algorithm
For a CDFG shown in Fig. 12 with the resource constraint of

one adder and one subtractor, the list schedule is obtained as
shown in Fig. 13 (a). The operations A3, A4, A8, S3, S6, and S8
are speculatively executed. PEs of operations for Fig. 13 (a) are
shown in Table 3 with all the PBs assumed to be 0.5. Generally,
as an operation is assigned to later control step, more conditions
are resolved and speculative executions are decreased. Thus the

Fig. 12 The CDFG ‘MAHA’ [1].

(a)

(b)

Fig. 13 Schedules of MAHA for one adder and one subtractor. (a) Result
of the list scheduling. (b) Result of the proposed method.

Table 3 Probabilities of execution in schedules.

Fig. 13 (a) Fig. 13 (b)

A1 0.500 S1 0.500 A1 0.500 S1 0.500

A2 0.250 S2 0.250 A2 0.250 S2 0.250

A3 0.500 S3 0.500 A3 0.250 S3 0.500

A4 0.250 S4 0.250 A4 0.125 S4 0.250

A5 0.125 S5 0.125 A5 0.125 S5 0.125

A6 0.125 S6 0.250 A6 0.125 S6 0.250

A7 0.500 S7 0.250 A7 0.500 S7 0.250

A8 0.750 S8 0.750 A8 0.750 S8 0.750

energy consumption by unnecessary speculative execution would
be saved.

The proposed heuristic scheduling algorithm for low energy
consumption is shown in Fig. 14. It refines the conventional re-
source constrained list schedule by rescheduling operations to
later control steps so that the energy consumption is reduced. The
priorities of operations are calculated as the result of as late as
possible schedule with the assumption that the conditional de-
pendencies as well as data dependency impose precedence con-
straints among operations. The priorities obtained for the CDFG
shown in Fig. 12 are shown in parenthesis in the same figure. The
larger value means the higher priority. In the algorithm, the set
of operations with the same priority p, S (p), is identified in the
descending order of the priority. An operation k ∈ S (p) is picked
up one by one, and the SCS of k is searched from the current
to the latest possible SCSs which most reduces the energy con-
sumption without exceeding the resource limits. The satisfactory

c© 2013 Information Processing Society of Japan 65

IPSJ Transactions on System LSI Design Methodology Vol.6 60–70 (Feb. 2013)

of the resource constraint is checked by calculating the required
number of resources by considering conditional resource shar-
ing [11]. The priority defined above ensures that, when operation
k is picked up and rescheduling of k is performed, the CSs of op-
erations succeeding k, either data dependently or conditional de-
pendently, have been determined. This is necessary to precisely
evaluate ΔEC(k, t), which is the energy reduction by rescheduling
k to CS t. Among all the operations in S (p), the operation ξ with
the largest ΔEC at some CS tξ is selected, ξ is rescheduled to tξ,
and ξ is removed from S (p). If S (p) is not empty, then repeat the
selection of ξ again. If S (p) becomes empty, then proceed to the
next priority.

The allowed maximum control step MCS is larger than or
equal to the smallest control step obtained by the list scheduling
as mentioned in the previous section.

For example in the case of the CDFG shown in Fig. 12, the first
S (p) consists of S8 and A8. The SCS of S8 is not changed be-
cause S8 is already assigned to the latest possible CS. The SCS
of A8 is also not changed because the resource constraint would
be violated if A8 is moved to CS = 4. The second S (p) consists
of A3, S4, and A7. A3 can be moved to CS = 1, 2, or 4 (the
resource constraint is not satisfied if A3 is moved to CS = 3),
and the energy reductions are computed as ΔEC(A3, 1) = 1.539,
ΔEC(A3, 2) = 1.539, and ΔEC(A3, 4) = −0.001 (the energy
consumption of operations are assumed as described in Sec-
tion 5). S4 can be moved to CS = 2 or 3, and ΔEC(S4, 2) = 0,
ΔEC(S4, 3) = −0.769. A7 is already at the last CS. Hence A3
is selected since ΔEC(A3, 2) is the largest and the CS 2 is the
latest for A3. Then S4 is rescheduled to the CS 2. At the end of
the algorithm, the schedule shown in Fig. 13 (b) is obtained. The
speculative execution of A3 and A4 are eliminated. The PEs of

A time and resource constrained scheduling algorithm of conditional opera-

tions for energy minimization

Input: CDFG=(N, E)
Probabilities of condition to branch
Energy consumption of operations in N
Resource constraint RC f for f ∈ FT
Maximum control step MCS

Output: Schedule with minimized energy consumption

(1) Calculate priorities of operations. Let p be the highest priority.

(2) Execute the conventional resource constrained list scheduling with

speculative execution.

(3) Identify the set S (p) of operations with the priority p.

(4) for k ∈ S (p)

t0← the current SCS of k

UB← the latest possible SCS of k

(5) for t0 < t ≤ UB without exceeding resource constraints

(6) Calculate ΔEC(k, t) by assuming that the SCS of k is t.

(7) end for

(8) Identify tk such that (1) ΔEC(k, tk) is largest, and if more than one
value of t gives the largest ΔEC(k, t), then (2) tk is the latest.

(9) end for

(10) Identify ξ ∈ S (p) with the largest ΔEC(ξ, tξ) and reschedule ξ at the

corresponding control step tξ if ΔEC(ξ, tξ) ≥ 0. If ΔEC(ξ, tξ) < 0 (the

energy is increased), ξ remains at t0.

(11) Remove ξ from S (p). If S (p) is not empty, go to Step 4. If S (p) is

empty, decrease p. If p ≥ 0, go to Step 3. End otherwise.

Fig. 14 The heuristic scheduling algorithm.

operations in the schedule are shown in Table 3.
The computational complexity of calculating the priorities is

O(|N||E|). The cardinality |S (p)| is at most N. For each opera-
tion k ∈ S (p) in Step 4, the satisfaction of the resource constraint
is checked and ΔEC(k, t) is computed for at most MCS control
steps. The computational complexity of checking the satisfaction
of the resource constraints is O(RS) where RS is the number of
resources. The computation of ΔEC(k, t) requires the complex-
ity of O(|N||NC |). This is repeated for |S (p)| times. The overall
computational complexity of HA is O(|N||E| + |N|2MCS (RS +

|N||NC |)).
5. Experimental Results

The proposed method was implemented using C++ program-
ming language and was run on a 2.66 GHz PC. The example CD-
FGs are MAHA (8 additions, 8 subtractions) [1] shown in Fig. 12,
MAHA2 (16 additions, 16 subtractions) obtained by duplicat-
ing MAHA twice [2], MAHA5 (40 additions, 40 subtractions),
MAHA10 (80 additions, 80 subtractions), MAHA25 (200 addi-
tions, 200 subtractions), and FIG17 (94 additions, 63 subtractions
(including 15 comparisons), and 71 multiplications) [5] shown in
Fig. 15, and QRS (7 additions, 19 subtractions (including 12 com-
parisons), and 17 multiplications) from HLSynth95 [22]. In the

Fig. 15 CDFG ‘FIG17’.

Table 4 Characteristics of functional units.

FU CS Energy [pJ]

Adder 1 3.3769
Subtractor 1 3.3887
Multiplier 2 47.955
Register — 2.5932

2-to-1 Multiplexor — 0.1854
Memory (Read) 2 155.60
Memory (Write) 1 206.71

c© 2013 Information Processing Society of Japan 66

IPSJ Transactions on System LSI Design Methodology Vol.6 60–70 (Feb. 2013)

original FIG17, there exist one 3-way branch condition and one
4-way branch condition. These are replaced respectively with
the combination of 2 conditions and 3 conditions. MAHAue is
the same CDFG as MAHA, but the PBs are set randomly. Other
than MAHAue, the PBs are 0.5 for TRUE and 0.5 for FALSE.
FIG1709 and FIG1701 are the same as FIG17 with the excep-
tion that the PB of the first condition C1 is 0.9 (0.1) for TRUE in
FIG1709 (FIG1701).

Functional units of 16-bit integer are designed for a 0.18 μm
CMOS process. The characteristics of the FUs are shown in
Table 4. The execution of an addition or a subtraction takes one
control step and the execution of a multiplication takes two con-
trol steps. The multiplier is pipelined into two stages. The aver-

Table 5 The parameters for SA.

CDFG Tstart Tend α NI

MAHA25 1000 10 0.95 10000
others 1000 10 0.95 100000

Table 6 Scheduling results.

RC LS SE HA
CDFG A S M CS EC R EC R CPU EC R CPU

MAHA 1 1 0 5 38.05 3 35.74 (93.9%) 3 88 35.74 (93.9%) 3 0.20
6 — 33.03 3 93 33.03 3 0.21
7 — 31.86 3 94 32.63 3 0.22
8 — 31.46 3 95 31.46 3 0.23

2 2 0 4 49.06 5 41.48 (84.5%) 4 91 39.94 (81.4%) 4 0.22
5 — 37.60 4 93 37.60 4 0.22

MAHAue 1 1 0 5 43.53 3 41.04 (94.3%) 3 86 41.04 (94.3%) 3 0.20
6 — 37.71 3 91 37.71 3 0.22
7 — 37.20 3 92 37.20 3 0.23
8 — 36.83 3 93 36.83 3 0.24

2 2 0 4 52.76 5 49.55 (93.9%) 4 92 45.85 (86.9%) 4 0.22
5 — 42.90 4 91 42.89 4 0.23

MAHA2 1 1 0 10 76.10 3 71.49 (93.9%) 3 239 71.49 (93.9%) 3 0.50
12 — 66.07 3 248 68.38 3 0.55
14 — 63.72 3 254 64.50 3 0.61

2 2 0 7 98.56 5 84.99 (86.2%) 4 253 81.05 (82.2%) 4 0.59
9 — 73.78 4 266 75.99 4 0.73

MAHA5 1 1 0 25 190.3 3 178.7 (93.9%) 3 1060 178.7 (93.9%) 3 1.94
27 — 177.0 3 1061 175.6 3 3.16
29 — 174.0 3 1117 171.7 3 3.36

2 2 0 16 247.1 5 202.8 (82.1%) 4 1109 213.1 (86.2%) 4 2.88
19 — 192.7 4 1176 208.7 4 4.37

MAHA10 1 1 0 50 380.5 3 357.4 (93.9%) 3 4491 357.4 (93.9%) 3 7.52
52 — 374.3 3 4441 354.3 3 20.7
55 — 378.5 3 4438 350.0 3 21.7

2 2 0 31 494.6 5 489.5 (99.0%) 4 4569 433.1 (87.6%) 4 15.4
35 — 470.2 4 4758 427.2 4 27.0

MAHA25 1 1 0 125 951.3 3 901.3 (94.7%) 3 6296 893.6 (93.9%) 3 72.0
128 — 901.1 3 6299 889.3 3 415
140 — 972.1 3 6316 872.2 3 493

2 2 0 76 1237 5 1181 (95.5%) 4 6366 1093 (88.4%) 4 335
85 — 1279 4 6407 1078 4 596

100 — 1270 4 6433 1049 4 747

QRS 1 1 1 32 682.3 11 661.0 (96.9%) 10 283 654.9 (96.0%) 13 1.47
1 1 2 17 651.5 8 634.1 (97.3%) 13 262 634.1 (97.3%) 11 0.96
1 1 3 14 779.7 11 641.2 (82.2%) 10 260 711.7 (91.3%) 11 0.80

18 — 653.5 9 311 650.4 10 1.00
1 2 3 12 669.5 8 629.3 (94.0%) 8 317 637.1 (95.2%) 11 1.05
2 1 3 14 791.6 11 651.6 (82.8%) 9 258 722.1 (91.2%) 10 0.83

15 — 656.0 9 314 701.1 10 0.88
16 — 657.9 9 309 654.9 10 0.95

Table 7 Scheduling results.

RC LS HA
CDFG A S M CS EC R EC R CPU

FIG17 1 1 1 58 1771 8 1677 (94.7%) 8 6.34
63 — 1644 6 6.89

1 1 2 45 1851 7 1680 (90.7%) 8 6.17
50 — 1650 8 6.56

2 1 2 37 1903 11 1710 (89.9%) 7 5.95
44 — 1661 8 6.41

FIG1709 1 1 1 58 1656 8 1523 (92.0%) 8 5.70
63 — 1518 6 6.23

1 1 2 45 1771 7 1547 (87.3%) 8 6.20
50 — 1524 8 5.88

2 1 2 37 1813 11 1599 (88.2%) 7 5.27
44 — 1536 8 6.27

FIG1701 1 1 1 58 1885 8 1830 (97.1%) 8 6.39
63 — 1769 6 6.27

1 1 2 45 1931 7 1813 (93.9%) 8 6.19
50 — 1776 8 5.79

2 1 2 37 1992 11 1822 (91.5%) 7 5.99
44 — 1787 8 6.42

c© 2013 Information Processing Society of Japan 67

IPSJ Transactions on System LSI Design Methodology Vol.6 60–70 (Feb. 2013)

age energy consumptions are evaluated by circuit simulations. In
the experiments, all the operations are assumed to consume these
average energy. The energy consumption of a particular operation
would be different from the average. In that case, it is possible
that the energy consumptions of the operations are obtained by
simulations of the processing in advance, and those energy con-
sumptions of operations are used in minimizing the total energy
consumptions.

The weighting factors β0 = 300 and β1 = 1000 in Eq. (7) are
used where the value EC is expressed in the unit of pJ. In addi-
tion, the SA parameters shown in Table 5 are used in the schedule
exploration (SE). Tstart = 1000 is selected so that the schedule ex-
ceeding the resource limits can be accepted at some probability
in the early stage of the exploration.

Table 6 and Table 7 summarize the results. Table 6 shows,
from left to right, the CDFG, the resource constraints (RC) for
adder RCA (A), subtractor RCS (S), for multiplier RCM (M),
the target number of control steps (CS), the energy consump-
tion (EC) and the required number of registers (R) obtained with
the conventional list scheduling with conditional resource shar-
ing (LS) [11], [20], the EC, R, and CPU time of SE, and the EC,
R, and CPU time of the heuristic algorithm (HA). The energy is
shown in pJ and the CPU time in second for SE and in millisec-
ond for HA. By analyzing the obtained schedule, the required
number of registers is determined. It affects the configuration of
the multiplexors and hence the energy consumption by the mul-
tiplexors. Since the LS assigns operations to the ASAP control
step, the number of control steps and hence the energy consump-
tion are uniquely determined with respect to the given CDFG and
the resource constraint. On the other hand in the proposed meth-
ods, arbitrary control steps can be specified where operations are
scheduled so as to minimize EC. For the smallest CS cases, the
percentage of the energy against the LS is shown in parenthesis
in Tables 6 and 7.

For MAHA and MAHAue, most results of SE and HA are
identical. The energy reduction of 5% to 18% against LS is
achieved. For other MAHAs and QRS, both SE and HA derives
better schedules than LS. The result of the HA being worse than
the SE means that the HA remains in suboptimal schedules. As
the target CS increases, the results of SE become worse than the
HA. This implies that the SE requires more CPU time in the ex-
ploration to find a good schedule. In the case of FIG17, FIG1709,
and FIG1701, the SE could not derive the better result than the LS
with the SA parameters shown in Table 5. Hence the results for
the SE are omitted in Table 7. The CPU time was about 1,700
seconds for each run of the SE. The HA can derive the schedules
with less energy consumption than the schedules obtained by LS

(a) (b)

Fig. 16 The results of MAHA with memory for RCA = 1, RCS = 1, and 6 CSs. (a) LS. (b) HA.

Table 8 Scheduling results with memory.

RC LS HA
CDFG A S M CS EC R EC R CPU

MAHA 1 1 0 6 110.7 3 96.45 (87.2%) 3 0.23
9 — 69.88 3 0.27

2 2 0 5 112.0 3 96.21 (85.9%) 3 0.25
6 — 93.88 3 0.25

MAHAue 1 1 0 6 122.2 3 102.7 (84.0%) 3 0.22
9 — 74.74 3 0.27

2 2 0 5 123.8 3 106.5 (86.1%) 3 0.25
6 — 103.6 3 0.25

MAHA2 1 1 0 12 230.0 4 189.6 (82.5%) 4 0.58
16 — 165.2 3 0.69

2 2 0 10 230.0 5 194.7 (84.7%) 4 0.84
12 — 182.9 4 0.86

MAHA5 1 1 0 30 610.7 6 469.2 (76.8%) 4 2.34
34 — 444.8 4 4.61

2 2 0 25 582.7 7 490.3 (84.2%) 4 6.03
28 — 464.3 4 6.84

MAHA10 1 1 0 60 1238 6 935.2 (75.6%) 4 9.80
65 — 911.1 4 34.1

2 2 0 50 1256 7 982.9 (78.3%) 4 44.7
54 — 956.1 4 49.5

MAHA25 1 1 0 150 3119 6 2333 (74.8%) 4 93.6
170 — 2211 4 711

2 2 0 125 3386 14 2461 (72.7%) 4 845
135 — 2395 4 958

FIG17 1 1 1 60 2463 10 2287 (92.9%) 10 7.20
65 — 2251 11 7.53

1 1 2 46 2561 8 2352 (91.8%) 11 5.91
52 — 2351 10 6.42

2 1 2 39 2601 13 2400 (92.3%) 9 6.14
46 — 2380 9 6.52

FIG1709 1 1 1 60 2305 10 2096 (90.9%) 10 8.47
65 — 2092 11 8.83

1 1 2 46 2468 8 2215 (89.8%) 11 7.20
52 — 2180 10 7.66

2 1 2 39 2506 13 2264 (90.3%) 9 6.31
46 — 2239 9 6.52

FIG1701 1 1 1 60 2621 10 2479 (94.6%) 10 8.49
65 — 2409 11 8.81

1 1 2 46 2654 8 2489 (93.8%) 11 7.25
52 — 2523 10 7.69

2 1 2 39 2695 13 2535 (94.1%) 9 7.41
46 — 2522 9 7.80

QRS 1 1 1 33 836.1 8 836.1 (100%) 8 1.84
1 1 2 17 930.4 10 852.7 (91.6%) 12 1.23
1 1 3 15 1021 13 931.0 (91.2%) 12 1.03

19 — 844.4 11 1.37
1 2 3 14 996.1 11 886.9 (89.0%) 12 1.34
2 1 3 14 1018 13 937.7 (92.1%) 11 0.98

15 — 916.8 11 1.11
17 — 850.0 13 1.28

c© 2013 Information Processing Society of Japan 68

IPSJ Transactions on System LSI Design Methodology Vol.6 60–70 (Feb. 2013)

for these larger CDFGs and longer CSs.
Consequently, the proposed SE can find a schedule with the

minimized energy consumption for the case of shorter CSs and
the proposed HA can find a schedule which is comparable to
the one obtained by SE in short CPU time for larger CDFGs and
longer CSs.

In some cases, more registers are required in the results of
HA than LS. This is because the lifetime of data become long
by putting operations to the later CS. These additional registers
might be the source of increased static energy consumption in
ultra deep submicron technologies.

The case with a work memory was also experimented. A 16-
bit 256-word SRAM was assumed with the characteristics shown
in Table 4. The read operation requires 2 CSs. An address is
given to the SRAM in a CS and the corresponding SRAM con-
tent is output 2 CSs later. Before the content is output, another
address for the next read operation can be given to the SRAM.
In other words, the read operations are executed in a pipelined
manner. The write operation requires 1 CS. In MAHA, it is as-
sumed that the operations A3, A4, and A5 require an SRAM data
(the read operations are denoted as R3, R4, and R5, respectively)
and the result of S7 is written to the SRAM (denoted as W7).
MAHA2, MAHA5, and so on are obtained by duplicating the
MAHA twice, 5 times, and so on. Similarly in FIG17, FIG1709,
and FIG1701, A5, A14, A24, . . ., A84, A93 *1, and M3, M13,
. . ., M63 require an SRAM data and the results of A10, A20, . . .,
A90 are written to the SRAM. In QRS, 6 read operations and
3 write operations are added. The results are shown in Table 8.
The meaning of the columns is the same as Table 7. The ob-
tained schedules of MAHA for RCA = 1, RCS = 1, and 6 CSs are
shown in Fig. 16. The speculative memory read operation R3 in
Fig. 16 (a) is resolved in Fig. 16 (b). These results show that the
proposed method reduces the energy consumption also when the
memory operations are involved.

6. Conclusions

In this paper, the scheduling method for conditional processing
to minimize energy consumption is proposed where the probabil-
ity of execution and the energy consumption of operations are
precisely evaluated. While high processing speed is achieved by
speculative execution of operations, unnecessary speculative ex-
ecution and therefore the energy consumption are reduced by the
method.

The development of more efficient schedule exploration tech-
nique for conditional processing, sophisticating the heuristic al-
gorithm, incorporating the constraint on the number of registers,
and consideration for operation chaining remain as future work.

Acknowledgments This work is supported by VLSI Design
and Education Center (VDEC), the University of Tokyo in collab-
oration with Cadence Design Systems, Inc. and Synopsys, Inc.

*1 A4 and A94 are avoided since these receive necessary input data im-
mediately from the preceding operations. The addition A94 (A33, A37,
A45, and so on as well) accepts three data strangely. This situation is
inherited from the original CDFG in Ref. [5].

References

[1] Parker, A.C., Pizarro, J.T. and Mlinar, M.: MAHA: A Program for
Datapath Synthesis, Proc. Design Auto. Conf., pp.461–466 (1986).

[2] Wakabayashi, K. and Tanaka, H.: Global Scheduling Independent
of Control Dependencies Based on Condition Vectors, Proc. Design
Auto. Conf., pp.112–115 (1992).

[3] Radivojevic, I. and Brewer, F.: A New Symbolic Technique for
Control-Dependent Scheduling, IEEE Trans. Computer Aided Design,
Int. Circuit. Syst., Vol.15, No.1, pp.45–57 (1996).

[4] Wakabayashi, K. and Yoshimura, T.: A Resource Sharing Con-
trol Synthesis Method for Conditional Branches, Proc. Int. Conf.
Computer-Aided Design, pp.62–65 (1989).

[5] Kim, T., Yonezawa, N., Liu, J.W.S. and Liu, C.L.: A Scheduling Algo-
rithm for Conditional Resource Sharing — A Hierarchical Reduction
Approarch, IEEE Trans. Computer Aided Design, Int. Circuit. Syst.,
Vol.13, No.4, pp.425–437 (1994).

[6] Yamada, A., Yamazaki, T., Ishiura, N., Shirakawa, I. and Kambe,
T.: Datapath Scheduling for Behavioral Description with Conditional
Branches, IEICE Trans. Fundamentals, Vol.E77-A, No.12, pp.1999–
2009 (1994).

[7] Ishiwata, H., Togawa, N., Yanagisawa, M. and Ohtsuki, T.: A
Time-Constrained Scheduling Algorithm for CDFG with Conditional
Branches, IEICE Tech. Report, Vol.VLD95-133, pp.31–36 (1996).

[8] Ito, K. and Kawasaki, T.: An Overlapped Scheduling Method for an
Iterative Processing Algorithm with Conditional Operations, IEICE
Trans. Fundamentals, Vol.E81-A, No.3, pp.429–438 (1998).

[9] Li, J. and Gupta, R.K.: An Algorithm To Determine Mutually Exclu-
sive Operations In Behavioral Descriptions, Proc. DATE, pp.457–463
(1998).

[10] Kountouris, A.A. and Wolinski, C.: Combining Speculative Execution
and Conditional Resource Sharing to Efficiently Schedule Conditional
Behaviors, Proc. ASP-DAC, pp.343–346 (1999).

[11] Wakabayashi, K.: Unified Representation for Speculative Scheduling:
Generalized Condition Vector, IEICE Trans. Fundamentals, Vol.E89-
A, No.12, pp.3408–3415 (2006).

[12] Ghiasi, S., Huang, P.-K. and Jafari, R.: Probabilistic Delay Bud-
get Assignment for Synthesis of Soft Real-Time Applications, IEEE
Trans. Very Large Integration (VLSI) Systems, Vol.14, No.8, pp.843–
853 (2006).

[13] Synphony C Compiler, Synopsys, Inc. (online), available from
〈http://www.synopsys.com/〉 (accessed 2012-08-10).

[14] Catapult C Synthesis, Mentor Graphics Corp. (online), available from
〈http://www.mentor.com/catapult〉 (accessed 2012-08-10).

[15] Petric, V. and Roth, A.: Energy-effectiveness of pre-execution and
energy-aware p-thread selection, Technical report, Proc. 32nd Int’l
Symp. on Computer Architecture (2003).

[16] Parikh, D., Skadron, K., Zhang, Y. and Stan, M.: Power-Aware
Branch Prediction: Characterization and Design, IEEE Trans. Com-
put, Vol.53, pp.168–186 (2004).

[17] Aragon, J.L., Gonzalez, J. and Gonzalez, A.: Power-Aware Control
Speculation through Selective Throttling, Proc. 9th Int. Symp. High-
Performance Comp. Arch., pp.103–112 (2003).

[18] Nagpal, R. and Bhowmik, A.: Criticality Driven Energy Aware Spec-
ulation for Speculative Multithreaded Processors, Proc. High Perfor-
mance Computing, pp.19–28 (2005).

[19] Farooq, M.U., John, L.K. and Jacome, M.F.: Compiler Controlled
Speculation for Power Aware ILP Extraction in Dataflow Architec-
tures, Proc. High Performance Embedded Architectures and Compil-
ers, pp.324–338 (2009).

[20] Micheli, G.D.: Synthesis and Optimization of Digital Circuits,
McGraw-Hill, New York (1994).

[21] Ito, K. and Seto, H.: Reducing Power Dissipation of Data Communi-
cations on LSI with Scheduling Exploration, IPSJ Trans. System LSI
Design Methodology, Vol.2, pp.53–63 (2009).

[22] Panda, P.R. and Dutt, N.: HLSynth95, University of California, Irvine
(online), available from 〈http://www.ics.uci.edu/pub/hlsynth/
HLSynth95/〉 (accessed 2012-05-20).

c© 2013 Information Processing Society of Japan 69

IPSJ Transactions on System LSI Design Methodology Vol.6 60–70 (Feb. 2013)

Kazuhito Ito was born in 1964. He re-
ceived his B.E., M.E. and Ph.D. degrees in
Electrical Engineering from Tokyo Insti-
tute of Technology, Japan, in 1987, 1989,
and 1992, respectively. He is an asso-
ciate professor of the Graduate School of
Science and Engineering, Saitama Uni-
versity, Saitama, Japan. His research in-

terests include high-level synthesis in VLSI design, VLSI signal
processing, and design automation of system LSIs. He is a mem-
ber of IEICE, IPSJ, and IEEE.

Kazuhiko Kameda received his B.E.
and M.E. degrees in Electrical Engineer-
ing from Saitama University, Japan, in
2009 and 2011, respectively. His research
interests include high-level synthesis in
VLSI design, and low power design of
LSIs.

(Recommended by Associate Editor: Shinsuke Kobayashi)

c© 2013 Information Processing Society of Japan 70

