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A numerical analysis of learning coefficient in radial basis
function network

Satoru Tokuda1,a) Kenji Nagata1,b) Masato Okada1,c)

Abstract: The radial basis function (RBF) network is a regression model that use the sum of radial basis functions
such as Gaussian functions. It has recently been widely applied to spectral deconvolution such as X-ray photoelectron
spectroscopy data analysis, which enables us to estimate the electronic state of matter from the spectral peak positions.
For models with a hierarchy such as the RBF network, Bayesian learning provides better generalization performance
than the maximum likelihood estimation. In Bayesian learning, the learning coefficient is well-known as the coeffi-
cients of the leading terms for the asymptotic expansion of generalization error and stochastic complexity. However,
these coefficients have not been clarified in most models. We propose here a novel method for calculating the learning
coefficient by using the exchange Monte Carlo method. In addition, we calculated the learning coefficient in the RBF
networks and verified the efficiency of the proposed method by comparing theoretical and experimental values.
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1. Introduction
The radial basis function (RBF) network is an artificial neu-

ral network that is used in function approximation, time series
prediction, and system control. This network has been widely ap-
plied recently in the field of condensed matter physics and chem-
istry for spectral deconvolution such as X-ray photoelectron spec-
troscopy data analysis, which makes it possible to estimate the
electronic state of matter from the positions of the spectral peaks
[1]. In the field of geoscience, it was reported that the estimation
of the number of bases and the parameters of each basis func-
tion were successfully estimated from the reflectance spectra of
olivine [2]．The RBF network is widely applicable in a range
of fields and can potentially be applied to constructing a general
framework for science.
For hierarchical models such as the RBF network, Bayesian

learning provides better generalization performance than maxi-
mum likelihood estimation. In Bayesian learning, two functions
are considered to be the important indicators for estimation. One
is the generalization error, which indicates the estimation accu-
racy for unknown data. The other is the stochastic complexity,
which is used for model selection and optimization of hyperpa-
rameters. The coefficients λ of the leading terms for the asymp-
totic expansions of these functions are called the learning coef-
ficient [3], and these values are model specific. Algebraic ge-
ometrical methods for hierarchical learning machines have also
been established [4], and the values λ have been studied in vari-
ous learning machines. However, the coefficients have not been
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clarified in most models because the hierarchy of these models
leads to difficulty in analysis.
We propose in this paper a novel method for calculating the

learning coefficient by using the exchange Monte Carlo (EMC)
method [5]. This proposal is based on the theoretical background
in which the exchange ratio, which is calculated in the EMC sim-
ulation, depends on the learning coefficient and the setting of in-
verse temperatures [6]. Moreover, we calculate the learning co-
efficients in the RBF networks and verify the efficiency of our
proposal by comparing the theoretical and experimental values.
This paper is organized into five sections. In Section 2, the

RBF network and the general framework of Bayesian estimation
are outlined. In Section 3, we propose our novel method for cal-
culating the learning coefficient based on the EMC method. In
Section 4, the results of the numerical analysis of the learning
coefficient in the RBF networks are presented and discussed. Fi-
nally, a conclusion is given in Section 5.

2. Background
In this section, we introduce Bayesian learning in the radial

basis function network.

2.1 Radial basis function (RBF) network
The RBF network is a regression model that is obtained by us-

ing the sum of basis functions as follows:

y = f (x;w) =
K∑
k=1
akφk(x), (1)

where φk(x) is the radial basis function, which depends only on
the distance from the center μk. In this study, we take the follow-
ing Gaussian functions φk(x) as the basis functions,
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φk(x) = exp
(
−bk
2
(x − μk)2

)
. (2)

The parameter set is w = {ak, μk, bk}Kk=1, where ak and bk are re-
spectively the strength and the precision (the inverse of variance)
of each basis function. The set of training samples D = {X, Y} =
{xi, yi}ni=1 consists of the individual pairs of input xi and output
yi. The mean squared error function is defined by the training
samples D and the fitting function f (xi;w) as follows:

E(w) =
1
2n

n∑
i=1
(yi − f (xi;w))2. (3)

This definition stands for the Gaussianity of the noise that is
added to the output yi; it varies according to the process used
to generate the data.

2.2 Bayesian estimation
The output yi is assumed to be the sum of the true value f (xi;w)

and the noise εi as follows:

yi = f (xi;w) + εi, (4)

where the noise εi is a random variable depending on the Gaus-
sian distribution whose mean and variance are respectively 0 and
σ2. Given the input xi and the parameter set w, the output yi is
given by the following conditional probability:

p(yi | xi, w) = 1√
2πσ2

exp
(
− (yi − f (xi;w))

2

2σ2

)
. (5)

For the independence of data, the probability density p(Y | X, w)
of output set Y given input set X can be expressed as follows:

p(Y | X, w) =
n∏
i=1
p(yi | xi, w)

=
1

(2πσ2)n/2
exp
(
− n
σ2
E(w)
)
. (6)

In Bayesian estimation, the parameter w is regarded as a ran-
dom variable, and the conditional probability density p(w | D) of
parameter set w given training samples D is estimated based on
the likelihood p(Y | X, w) and the density p(w). Here p(w) and
p(w | D) are respectively called the prior density and the poste-
rior density. The posterior density p(w | D) can be expressed by
using Bayes’ theorem as follows:

p(w | D) = p(Y | X, w)p(w)
p(Y | X)

=
1
Z(D)

exp
(
− n
σ2
E(w)
)
p(w), (7)

Z(D) =
∫
exp
(
− n
σ2
E(w)
)
p(w)dw, (8)

where Z(D) is a normalization constant called the marginal like-
lihood or the partition function. The function F(D) is called the
stochastic complexity or the free energy and is defined as follows:

F(D) = − log Z(D). (9)

This function is used as the evaluation function for model selec-
tion and the optimization of the hyperparameters. Numerical inte-
gration by using the Markov chain Monte Carlo (MCMC) method

is a well-known way to calculate F(D) [7]. Bayesian learning
enables us to estimate the true distribution q(y | x) from the pre-
dictive distribution p(y | x,D), which is defined as the following
function for unknown data (x, y),

p(y | x,D) =
∫
p(y | x, w)p(w | D)dw. (10)

The gap between the true distribution q(y | x) and the predictive
distribution p(y | x,D) is defined by using the Kullback distance
as follows:

G(D) =
∫
q(y | x)q(x) log q(y | x)

p(y | x,D) dxdy, (11)

where G(D) is called the generalization error, and q(x) is the true
distribution of input x.

2.3 Learning coefficient
The stochastic complexity F(D) and the generalization error

G(D) can be expressed as the following asymptotic expansion for
n
σ2
→ ∞ [3],

F(D) � n
σ2
E(ŵ) + λ log

n
σ2
+ o
( n
σ2

)
, (12)

G(D) � E(ŵ) + σ
2

n
G0(D) + o

(
σ2

n

)
, (13)

where ŵ represents the maximum likelihood estimator of the pa-
rameter w, which minimizes the error function E(w), and λ is a
rational number called the learning coefficient, which is given as
the absolute value of the largest pole of the following zeta func-
tion:

ζ(z) =
∫
(E(w) − E(ŵ))z p(w)dw. (14)

The expectation value of the random variable G0(D) over all sets
of training samples is equal to λ. The learning coefficient λ rep-
resents how the true parameters exist in the parameter space and
determines the speed that the predictive distribution p(y | x,D)
converges towards the true distribution q(y | x). Its value depends
on the true distribution q(y | x), the likelihood p(Y | X, w), and
the prior density p(w). In the field of algebraic geometry, λ is
called the real log canonical threshold (RLCT), which is well-
known as an important value that represents the relative property
of a pair of algebraic varieties [8]. In recent studies, algebraic ge-
ometrical analyses have been established for hierarchical learning
machines. Using these analyses makes it possible to study the val-
ues λ in various learning machines, e.g. artificial neural networks
[4] [9], Gaussian mixtures [10] , reduced rank regressions [11],
and Boltzmann machines [12]．However, there are many models
whose values have not been clarified. The singularity of a model
caused by hierarchy or exchange symmetry leads to difficulty in
analysis. The coefficient λ = dim(w)

2 holds in models without sin-
gularity, and hence, F(D) is equal to the Bayesian Information
Criterion (BIC), which is well-known as an approximate solution
of F(D) [13], except for the constant o

(
n
σ2

)
depending on the

training samples.

3. Proposed method
In this section, we propose a novel method for calculating the

learning coefficient by using the EMC method.
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3.1 Exchange Monte Carlo (EMC) method
Local minima solutions often present a problem in the opti-

mization of parameters. This problem can be resolved in princi-
ple by using the Markov chain Monte Carlo (MCMC) methods,
which are a class of algorithms for sampling from target den-
sities; these methods are based on constructing Markov chains.
However, the calculation cost depends heavily on the target den-
sity or the initial state. The EMC method is a kind of MCMC
method that provides a more effective solution for the problem of
slow relaxation [5].
In the EMC simulation, parameter sampling is carried out from

the following joint density p(w1, ..., wL):

p(w1, ..., wL) =
L∏
l=1
p(wl; βl), (15)

p(wl; βl) =
1
z(βl)

exp
(
−nβl
σ2
E(wl)

)
p(wl), (16)

z(βl) =
∫
exp
(
−nβl
σ2
E(wl)

)
p(wl)dw, (17)

where p(wl; βl) and z(βl) respectively represent the posterior den-
sity and the marginal likelihood in each replica defined by dif-
ferent inverse temperatures {βl; l = 1, ..., L}. Sampling from the
joint density p(w1, ..., wL) is equivalent to sampling from each
replica in parallel. In practice, we set inverse temperatures as
0 = β1 ≤ β2 ≤ · · · ≤ βL = 1, so that p(w1; β1) and p(wL; βL) are
respectively equal to the prior p(w) and the posterior p(w | D).
The algorithm is constructed with the following update rules

with which the joint density p(w1, ..., wL) is invariant.

1. Update state in each replica
Sample from each posterior density p(wl; βl) by using the
Metropolis algorithm, one of the conventional MCMC meth-
ods, in parallel.

2. State exchange between two adjacent replicas
Exchange the states wl and wl+1 at every step according to the
following probability u:

u(wl, wl+1; βl, βl+1) = min(1, v(wl, wl+1; βl, βl+1)), (18)

v(wl, wl+1; βl, βl+1) =
p(wl+1; βl)p(wl; βl+1)
p(wl; βl)p(wl+1; βl+1)

= exp
( n
σ2
(βl+1 − βl)(E(wl+1) − E(wl))

)
.

(19)

3.2 Asymptotic behavior of average exchange ratio
The exchange ratio, which is calculated in the EMC simulation,

represents sampling efficiency. Its value depends on the number
n of data, the noise variance σ2, the error function E(w), and the
setting of inverse temperatures {βl}. The average exchange ratio
J0 is defined as follows, and it converges in the low temperature
limit, that is, as n

σ2
→ ∞ [6]:

J0 =
∫ ∫

u(wl, wl+1; βl, βl+1)p(wl; βl)p(wl+1; βl+1)dwldwl+1

→ 2rλΓ(2λ)
Γ(λ)2

∫ 1

0

sλ−1

(r + s)2λ
ds, (20)

Fig. 1 Theoretical value of the average exchange ratio J0 for the value λ.
The horizontal and vertical axes respectively represent the learning
coefficient λ and the average exchange ratio J0. The varied line styles
indicate different values for temperature ratio r; for the solid line,
r = 1.5, for the dashed line, r = 3.0, and for the dash-dotted line,
r = 6.0.

where r = βl+1
βl
. By setting the inverse temperatures as a geomet-

ric progression, every temperature ratio r between each replica
becomes equal. Therefore, it is guaranteed that every exchange
ratio in the low temperature region will converge to the same con-
stant. Figure 1 plots the theoretical value of the average exchange
ratio J0 for the value λ. The horizontal axis and the vertical axis
respectively represent the learning coefficient λ and the average
exchange ratio J0. The temperature ratio r varies with the line
style; i.e., the solid line indicates an r value of 1.5 , the dashed
line indicates r of 3.0, and the dash-dotted line indicates r of 6.0.
The average exchange ratio J0 is monotonically decreasing for
the learning coefficient λ regardless of the temperature ratio r.
This suggests that the value λ is determined from the exchange
ratio J as the inverse function for sufficiently large n

σ2
.

3.3 Numerical analysis of learning coefficient
We propose a novel method for calculating the learning coef-

ficient. This method is based on the theoretical background in
which the exchange ratio, which is calculated in the EMC simu-
lation, depends on the learning coefficient and the setting of in-
verse temperatures. The learning coefficient is calculated using
the following procedure.

1. Setting of inverse temperatures
Set the sequence of inverse temperatures as the following ge-
ometric progression:

βl =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 (if l = 1)
rl−L (otherwise),

(21)

where r is an arbitrary constant that satisfies r > 1. Note that
0 ≤ βl ≤ 1 for all l = 1, ..., L.

2. Calculation of the exchange ratio
Simulate the learning by the EMC method and calculate the
exchange ratio J as follows:

J =
α

N
, (22)
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K0 = 1 K0 = 2 K0 = 3

Fig. 2 The theoretical upper bounds and the experimental values of the learning coefficient. The left,
middle, and right graphs in each row respectively show the results of simulation for the training
samples whose true number of bases was K0 = 1, K0 = 2, and K0 = 3. The upper, middle, and
lower ones in each column respectively show the averages over five trials in which the follow-
ing conditions were individually changed: the state exchange in the EMC method, the addition
of noise to training samples, and the setting of the true parameter. In each graph, the horizontal
and vertical axes respectively represent the number K of bases and the learning coefficient λ. The
dashed line in each graph shows the theoretical upper bounds, and the solid line shows the average
and the dispersion of the experimental values of the learning coefficient by using the proposed
method. The error bars in these figures represent twice the standard deviation.

where N is the number of samples, and α is the acceptance
frequency between the replicas defined by the inverse tem-
peratures βL and βL−1.

3. Numerical resolution of the learning coefficient
Substitute the temperature ratio r and the exchange ratio J
for Eq. (20), and calculate back to the learning coefficient λ
by using the bisection method.

4. Simulation and discussion
In this section, we calculate the learning coefficients in the RBF

networks and discuss the accuracy and effectiveness of the pro-
posed method by comparing the experimental values and the the-
oretical upper bounds.

4.1 Settings
Input x was taken from the range [150−175] in steps of 0.1 for

every training sample, and the total number n was 251. The noise
variance was set as σ2 = 1. The training samples were generated

from the following true function:

g(x;w∗) =
K0∑
k=1
a∗k exp

(
−b
∗
k
2
(x − μ∗k)2

)
, (23)

where K0 represents the true number of bases, and w∗ =
{a∗k, μ∗k, b∗k}K0k=1 represents the true parameters.
We defined the prior density p(w) as follows:

p(w) =
K∏
k=1
ϕ(ak)ϕ(μk)ϕ(bk), (24)

ϕ(ak) = Gamma(ak; ηa, θa)

=
1
Γ(ηa)

θa
ηaakηa−1 exp(−θaak), (25)

ϕ(μk) = N(μk; ν0, ξ0−1)

=

√
ξ0
2π
exp
(
−ξ0
2
(μk − ν0)2

)
, (26)

ϕ(bk) = Gamma(bk; ηb, θb), (27)

where the hyperparameters were ηa = 5，θa = 0.25，ν0 = 162.5，
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Fig. 3 The training samples generated for model selection. The horizontal
and vertical axes respectively represent the input x and the output y.
The true number of bases is K0 = 3. The black dots represent the
data. The solid and dotted lines respectively indicate the true func-
tion g(x) and each basis function.

ξ0 = 2，ηb = 4，and θb = 1. The candidate model size for the
estimation was set as the range from K = 1 to K = 6.
The number of inverse temperatures was L = 32, and their ra-

tios were all r = 1.5. The initial state of each parameter wl and the
state update of w1 for every step were determined according to the
density p(w). The iteration was set as 50,000 steps for the burn-in
period, and 50,000 steps for the calculation of the exchange ratio.

4.2 Accuracy evaluation of learning coefficient
We calculated the learning coefficients λ in variance-fixed RBF

networks by using the proposed method to compare their values
with their clarified theoretical upper bounds. Here the variance-
fixed RBF network was an RBF network whose variance of each
basis function all had an equal value, bk = b∗k = 5.67. The the-
oretical upper bound of the learning coefficient in the variance-
fixed RBF network is considered to be the same as the analytical
solution for Gaussian mixtures as follows [10]:

λ ≤
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dim(w)
2

= K (K ≤ K0)
dim(w∗)
2

+
K − K0
2

=
K + K0
2

(K > K0).
(28)

In practice, the values λ are assumed to have dispersion caused
by the state exchange in the EMC method, the noise added to the
training samples, and the setting of the true parameters. On the
basis of this viewpoint, we individually changed the above con-
ditions and evaluated the accuracy of the learning coefficients.
The training samples were generated from the true parameters
w∗according to the prior density p(w).
The experimental values and the theoretical upper bounds of

the learning coefficient are shown in Fig. 2. The left, middle,
and right figures in each row respectively show the simulation
results for the training samples whose true number of bases was
K0 = 1, K0 = 2, and K0 = 3. The upper, middle, and lower ones
in each column respectively show the averages over five trials in
which the following conditions were individually changed: the
state exchange in the EMC method, the addition of noise to train-

Fig. 4 Results of model selection for the data shown in Fig. 3. The hori-
zontal and vertical axes respectively represent the number K of bases
and the values of the evaluation functions. The dash-dotted line, solid
line, and dashed line respectively show the stochastic complexity, its
asymptotic expansion (Eq. (12)), and BIC. The stochastic complex-
ity and its asymptotic expansion take the minimum value at K = 3,
while BIC does so at K = 2.

ing samples, and the setting of the true parameters. In each graph,
the horizontal axis and the vertical axis respectively represent the
number K of bases and the learning coefficient λ. The dashed
line shows the theoretical upper bounds, and the solid line shows
the average and the dispersion of the experimental values of the
learning coefficient using the proposed method. The error bars in
these graphs represent twice the standard deviation.
Every average value is below the theoretical upper bound, and

their dispersions are sufficiently small. This suggests that the
proposed method provides an accurate learning coefficient. For
K ≤ K0, the experimental values approach the theoretical values,
and their dispersions are significantly small. This shows that the
singularity of the model rarely affects such K values. For K > K0,
on the other hand, the dispersion tends to be larger depending on
the increase in K. This shows that the larger dimension of the
parameter space constructs a more complex singular structure.

4.3 Application to model selection
We applied the proposed method to model selection by using

the asymptotic expansion of the stochastic complexity and then
evaluated how effective our method was. The training samples
were generated from the following true parameters:
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
a∗1
a∗2
a∗3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
5.6920
17.0239
16.1475

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
μ∗1
μ∗2
μ∗3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
160.2421
162.8885
161.2859

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
b∗1
b∗2
b∗3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
4.7914
1.9104
1.7696

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

Figure 3 plots the generated training samples, and Fig. 4 shows
the results of model selection by using the stochastic complexity,
its asymptotic expansion (Eq. (12)), and BIC. The horizontal and
vertical axes respectively represent the number K of bases and
the values of the evaluation functions. The dash-dotted line, solid
line, and dashed line respectively show the stochastic complex-
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ity, its asymptotic expansion (Eq. (12)), and BIC. The stochastic
complexity F(D) and the minimum error E(ŵ) were calculated in
the EMC simulation.
BIC takes the minimum value at K = 2; in other words, the

wrong model size was selected. This is because the learning co-
efficient in the singular model is λ < dimw

2 , so the penalty term is
estimated as being higher than the true value. This result shows
the risk that BIC may estimate a smaller number K of bases than
the true number K0. On the contrary, the stochastic complexity
and its asymptotic expansion Eq. (12) take the minimum value
at K = 3; that is, the true model size was selected. Furthermore,
their values are considered to be equal, except for the constant
o
(
n
σ2

)
, depending on the training samples. This reveals that both

criteria provide the same model selection result thanks to the ex-
act estimation of the learning coefficient λ and the minimum error
E(ŵ).

5. Conclusion
We proposed a novel method for calculating a learning coeffi-

cient by using the exchange Monte Carlo method and discussed
the method’s accuracy in a simulation for an RBF network. The
accuracy of the learning coefficient calculated by using our pro-
posed method in a variance-fixed RBF network was shown to be
valid by comparing the results with the theoretical upper bound.
Moreover, we applied the proposed method to model selection by
using the asymptotic expansion of the stochastic complexity and
verified that our method was effective.
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