
IPSJ SIG Technical Report

A New Compact Encoding of Rectangular Drawings

Yuto Saikawa1,a) Shin-ichi Nakano1,b)

Abstract: A rectangular drawing is a plane drawing of a graph in which every face is a rectangle. Rectangular draw-
ings have an application for floorplans, which may have a huge number of faces, so a compact code to store the
drawings is desired. The most compact code for rectangular drawings needs 4 f −4 bits, where f is the number of inner
faces of the drawing.
In this paper we design a new simple and compact code for rectangular drawings. The code needs 4 f − 3 − B bits
for each rectangular drawing, where B is the number of inner faces having bottom line segments on the bottommost
horizontal line segment. Since B ≥ 1 holds, the length of our new code is at most 4 f − 4 bits. Our encoding and
decoding algorithms run in O(f) time.

Keywords: graph,algorithm,encoding,rectangular drawing

1. Introduction
In this paper we study on a compact representation of a class of

drawings. A rectangular drawing is a plane drawing of a graph
in which every face, including the outer face, is a rectangle. See
an example in Fig. 1. Rectangular drawings have an application
for floorplans [2], which may have a huge number of faces, so a
compact code to store the drawing is desired. For simplicity we
assume that rectangular drawings have no vertex shared by four
rectangles, as assumed in [2]-[5].

There are papers for compact encodings of rectangular draw-
ings [2]-[5]. The most compact code needs at most 4 f − 4 bits
[3], where f is the number of inner faces of the drawing.

In this paper we design a new simple and compact code for
rectangular drawings. The code needs 4 f − 3 − B bits for each
rectangular drawing, where B is the number of inner faces having
bottom line segments on the bottommost horizontal line segment.
For example the rectangular drawing in Fig. 1 has B = 4. If
B ≥ 2, our new code is shorter than 4 f − 4. Our encoding and
decoding algorithms run in O(f) time.

The rest of the paper is organized as follows. Section 2 gives
some definitions. Section 3 explains our new code. Finally Sec-
tion 4 is a conclusion.

2. Preliminaries
In this section we give some definitions.
Let G be a connected graph. A tree is a connected graph with

no cycle.
A drawing of a graph is plane if it has no two edges inter-

secting geometrically except at a vertex to which they are both
incident. A plane drawing divides the plane into connected re-
gions called faces. The unbounded face is called the outer face,

1 Department of Computer Science, Gunma Univercity
a) t10307022@gunma-u.ac.jp
b) nakano@cs.gunma-u.ac.jp

Fig. 1 An example of a rectangular drawing.

and other faces are called inner faces. A rectangular drawing is
a plane drawing in which every face (including the outer face) is
a rectangle. See an example in Fig. 1.

Let n be the number of vertices of a rectangular drawing, m the
number of edges, and f ′ the number of faces (including the outer
face). In this paper we only consider rectangular drawings with
no vertex shared by four (or more) rectangles. This is a typical
assumption to simplify discussions [2]-[5]. Thus a rectangular
drawing has n − 4 vertices with degree three, and four vertices
with degree two (at the four corner of the outer face), and we
have 2m = 3(n − 4) + 2 · 4. The equation and the Euler’s formula
n−m+ f ′ = 2 gives n = 2 f ′ and m = 3 f ′−2. Let f = f ′−1 be the
number of inner faces of a rectangular drawing. Then n

2 − 1 = f
and m = 3 f + 1 hold.

A vertex with degree three is W-missing (West missing) if it
has upward, rightward, downward edges, but no leftward edge.
We denote the number of W-missing vertices as nW . Similarly
we define E-missing (East missing), N-missing (North missing),
S-missing (South missing), nE , nN , and nS . Note that, since each
W-missing vertex is the left end of some maximal horizontal line
segments, and each E-missing vertex is the right end of some
maximal horizontal line segments, nW = nE holds in any rect-
angular drawing. Similarly nN = nS holds. Thus nE + nN =

n−4
2 .

c⃝ 2013 Information Processing Society of Japan 1

Vol.2013-AL-143 No.4
2013/3/1

IPSJ SIG Technical Report

Note that any rectangular drawing has exactly four vertices of de-
gree two.

3. The New Coding
A code of rectangular drawings with 6 f + O(1) bits is known

[4]. The code is based on the depth first traversal of a tree in the
rectangular drawing. In this section we give a new code for rect-
angular drawings by improving the code in [4]. Our new code
needs only 4 f − O(1) bits for each rectangular drawing. We first
review the code in [4].

Given a rectangular drawing R, cut the lower right corner of
each inner face by replacing the lower right corner vertex by two
vertices as depicted in Fig. 2 (b) and (d). Also we need some
tricky replacement at the two lower corners of the outer face as
depicted in Figs. 2 (g) and (h). See an example of those replace-
ment in Fig. 3. Since we only break each cycle corresponding
to an inner face at the lower right corner, the resulting graph has
only one face and is still connected. So the resulting graph R′ is
a tree.

Starting at the upper left corner, we traverse the tree R′ with
depth first manner with right priority. (We regard R′ as a wall
and we go around the wall. For each vertical edge the left side is
traced first to down, then later the right side is traced to top. For
each horizontal edge the bottom side is traced first to right, then
later the top side is traced to left.) When we arrive at a vertex
from one of four directions, we always have only two choices for
the next direction to trace, as shown in Fig. 4, even though there
is four possible directions [4]. For instance see Case 2 in Fig.
4. When we trace an edge to right then the next trace is always
down or right. If the next trace is up then it contradicts to the fact
that we have cut the lower right corner of each inner face, and if
the next trace is left then it contradicts to the fact that there is no
vertex of degree one having a leftward edge in the tree R′. (Each
degree one vertex has only upward edge because of the way of
cut.)

While tracing each “side” of each edge of the tree R′ we encode
the next directions to trace into a bitstring. Since we trace each
edge exactly twice (once in each direction), we need two bits for
each edge. Thus we can encode the tree R′ into 2m + 3 = 6 f + 5
bits. Note that we have appended two edges at the two lower cor-
ners of the outer face, and the last trace to left has no ”next” trace,
so we have “+4” and “−1”. Given the 2m + 3 bits code we can
easily reconstruct the tree R′ then the original drawing R using a
simple algorithm with a stack [4].

Now we give our new code. Our idea is two fold.
(1) Even if we remove the bottommost horizontal line segment

we can still encode the resulting drawing with the same manner.
(2) We can save the most of bits in Case 3 and Case 4 by check-

ing some simple conditions.
Given a rectangular drawing R, we first remove the bottommost

horizontal line segment. Now R has B less inner faces. Then we
cut the lower right corner of each “remaining” inner face as de-
picted in Fig. 2 (b) and (d). See an example of a graph in Fig. 5.
The resulting graph R′′ is also a tree.

Then we traverse the tree R′′ with depth first manner. We have
four cases.

Fig. 2 The replacement of vertices.

Fig. 3 The transformation into the tree.

Fig. 4 The two choices of the next trace and their codes.

Fig. 5 The new transformation into the tree.

Fig. 6 Illustrations for Case 3. (a)W-missing, (b)E-missing, (c)N-missing,
(d)the upper left corner vertex, and (e)the upper right corner vertex.

Case 1: When trace an edge downward.
The next trace is either down or up. Thus we need one bit to

c⃝ 2013 Information Processing Society of Japan 2

Vol.2013-AL-143 No.4
2013/3/1

IPSJ SIG Technical Report

store the direction of the next trace. See Fig. 4 (a).
Case 2: When trace an edge rightward.

The next trace is either down or right. Thus we need one bit to
store the direction of the next trace. See Fig. 4 (b).
Case 3: When trace an edge upward.

We have traced an edge, say e, upward and arrived at a vertex,
say v. Clearly v has an edge to down since we have just traced the
edge. Thus if v has degree three in the original drawing R then
v is either W-missing, E-missing or N-missing. Otherwise v has
degree two and v is either the upper left corner vertex or the upper
right corner vertex. See Fig. 6. Since we have formerly traced
(the other side of) the edge e downward we know whether v has
an edge to left or not. (However we still do not know whether v
has an edge to right .)

If v has no edge to left then v is either (a) has degree three and
is W-missing, or (d) has degree two and is the upper left corner
vertex. Then the next trace is always right. See Fig. 6 (a) and (d).
Thus we need no bit to store the direction of the next trace.

Otherwise v has an edge to left, and the next trace is either left
(Fig. 6 (b) and (e)) or right (Fig. 6 (c)). Thus two choices remain,
so we need one bit to store the direction of the next trace. Note
that in Fig. 6 (b) we have replaced the lower right corner of an
inner face by two vertices.

Thus for Case 3 we need nE + nN + 1 = n−4
2 + 1 = n

2 − 1 bits in
total.

Fig. 7 Illustrations for Case 4 (a) W-missing, (b) S-missing, (c) N-missing,
and (d) the upper left corner vertex.

Case 4: When trace an edge leftward.
We have traced an edge, say e, leftward and arrive at a vertex,

say v. Clearly v has an edge to right since we have just traced the
edge. See Fig. 7. Since we have formerly traced (the other side
of) the edge e rightward we know (1) whether v has an edge to
left or not, and (2) v has an edge to bottom or not. (However we
still do not know whether v has an edge to top.)

If v is the upper left corner of the outer face (Fig. 7 (d)) then
the leftward trace of e is the last trace in the traversal, so there is
no “the next” trace.

Otherwise If v has no edge to left then v has degree three and is
W-missing, and the next trace is always upward (Fig. 7(a)). Thus
we need no bit to store the direction of the next trace.

Otherwise v has degree three and either (b) S-missing or (c) N-
missing, and the next trace is always left. Thus we need no bit to
store.

Thus for Case 4 we need no bit.
Theorem 1 One can encode a rectangular drawing into a bit string
of length at most 4 f + 1 − B.
Proof. We trace each edge exactly twice (once in each direction).
We estimate the length of the bitstring for each case. For Case 1
and Case 2 we need one bit to store the next direction after tracing

each edge. Thus we need m − B bits in total. For Case 3 we need
nE +nN +1 bits in total. For Case 4 we need no bit. Thus we need
(m − B) + (n

2 − 1) = 3 f + 1 − B + f = 4 f + 1 − B bits in total. □

With a suitable data structure with a stack, similar to [4], one can
reconstruct the original rectangular drawing from the bitstring in
O(f) time. Whenever we find a degree two vertex (in leftward
trace) we push the vertex into the stack and whenever we find a
degree one vertex we merge it with the vertex at the top of the
stack to become an original degree three vertex.

Additionally one can save more bits as follows. Let T be the
number of inner faces having the top horizontal line segment on
the topmost horizontal line segment. For example the rectangular
drawing in Fig. 1 has T = 3. If T = 1 then remove the topmost
inner face and let R be the remaining rectangular drawing. Repeat
this while T = 1 holds. Assume that this occurs k times. Now
the number of inner face is f − k. We store this by appending the
prefix 0k1 into the code. If f = k then we have f + 1 ≪ 4 f − 4 bit
code for the drawing. Assume otherwise. Now T ≥ 2 holds. Let
F be the inner face having the upper right corner of the remaining
drawing. We have two cases.

If in the original drawing F has (1) two or more neighbour
faces to left (Fig. 8(a)), or (2) exactly one face to left and the
lower left corner of F is S-missing(Fig. 8(b)), then the last part of
the traversal is always up, right, down, up, right, down, up, then
left T ≥ 2 times.

Otherwise F has exactly one face to left and the lower left cor-
ner of F has a downward edge(Fig. 8(c)). Then the last part of
the traversal is always up, right, down, up, some lefts, up, right,
down, up, then left T ≥ 2 times. Thus in each case we can save 6
bits, indicated by underlines. We append one bit as the prefix to
distinguish these two cases.

Fig. 8 Illustrations for the last part of the traversal.

Thus even if we remove those last part from the bitstring we
can still reconstract the bitstring, then the tree R′′, then the orig-
inal rectanglar drawing R. Thus the length of the code is at most
k+1+4(f −k)+1−B+1−6 = 4 f −3k−3−B ≤ 4 f −3−B ≤ 4 f −4
bits.

4. Conclusion
In this paper we have designed a simple code for rectangular

drawings. The code needs 4 f − 3− B bits, where f is the number
of inner faces, and B is the number of inner faces having bot-
tom line segments on the bottommost horizontal line segment.
Both encoding and decoding algorithms run in O(f) time. The
number of rectangular drawings with no degree four vertices is
Ω(11.56 f) = Ω(23.53 f)[1]. So we need at least 3.53 f + c bits to
encode a rectangular drawing for some constant c.

c⃝ 2013 Information Processing Society of Japan 3

Vol.2013-AL-143 No.4
2013/3/1

IPSJ SIG Technical Report

References
[1] K. Amano, S. Nakano, and K. Yamanaka, On the number of rectangu-

lar drawings: Exact couting and lower and upper bounds, IPSJ SIG
Notes, AL-115(5):3340,2007.

[2] He, H.: On floor-plan of plane graphs, SIAM Journal on Computing,
28, pp.2150-21 67 (1999)

[3] Takahashi, T., Fujimaki, R., and Inoue, Y.: A (4n−4)-bit representation
of a rectangular drawing or floorplan, Proc. of COCOON 2009, LNCS,
5609, pp.47-55 (2009)

[4] Yamanaka, K., Nakano, S.: Coding floorplans with fewer bits, IEICE
TRANS. FUNDAMENTALS, E89-A, pp.1181-1185 (2006)

[5] Yamanaka, K., Nakano, S.: A compact encoding of rectangular draw-
ings with efficient query supports, Proc. of AAIM 2007, LNCS, 4508,
pp.68-81 (2007)

c⃝ 2013 Information Processing Society of Japan 4

Vol.2013-AL-143 No.4
2013/3/1

