
IPSJ SIG Technical Report

Algorithm for
the Minimum Caterpillar Problem with Terminals∗

Taku Okada1,a) Akira Suzuki1,b) Takehiro Ito1,c) Xiao Zhou1,d)

Abstract: Suppose that each arc in a digraph D = (V, A) has two costs of non-negative integers, called a spine cost and
a leaf cost. A caterpillar is a directed tree consisting of a single directed path (of spine arcs) and leaf vertices each of
which is incident to the directed path by exactly one incoming arc (leaf arc). For a given terminal set K ⊆ V , we study
the problem of finding a caterpillar in D such that it contains all terminals in K and its total cost is minimized, where
the cost of each arc in the caterpillar depends on whether it is used as a spine arc or a leaf arc. In this paper, we first
show that the problem is NP-hard even for three terminals. We then give a linear-time algorithm to solve the problem
for digraphs with bounded treewidth, where the treewidth for a digraph D is defined as the one for the underlying graph
of D. Our algorithm runs in linear time even if |K| = O(|V |).

1. Introduction
Let D = (V, A) be a digraph whose vertex set is V and arc set is
A; we sometimes denote by V(D) the vertex set of D and by A(D)
the arc set of D. A digraph F with a subset S ⊆ V(F) is called a
caterpillar, denoted by ⟨F, S ⟩, if S induces a directed path in F
and every vertex V(F)\S has no outgoing arc and has exactly one
incoming arc; the directed path induced by S is called the spine
of ⟨F, S ⟩. We denote by AS(F, S) the set of all arcs on the spine
of ⟨F, S ⟩; each arc in AS(F, S) is called a spine arc, and each arc
in AL(F, S) = A(F) \ AS(F, S) is called a leaf arc. Figure 1(b)
illustrates a caterpillar ⟨F, S ⟩, where each vertex in S is depicted
by a square, each spine arc by a thick arrow, and each leaf arc by
a dotted arrow.

Suppose that we are given a digraph D = (V, A) together with
two cost functions cS : A→ Z+ and cL : A→ Z+, where Z+ is the
set of all non-negative integers. Then, for a caterpillar ⟨F, S ⟩ as a
subgraph of D, the cost c(F, S) of ⟨F, S ⟩ is defined as follows:

c(F, S) =
∑

e∈AS(F,S)

cS(e) +
∑

e∈AL(F,S)

cL(e).

Let K ⊆ V be a given set of vertices, called terminals. Then, a
caterpillar ⟨F, S ⟩ is called a K-caterpillar if K ⊆ V(F). The mini-
mum caterpillar problem is to find a K-caterpillar ⟨F, S ⟩ as a sub-
graph of D whose cost c(F, S) is minimized. Note that a digraph
does not always have a K-caterpillar for a given set K ⊆ V(D). In
the instance of Fig. 1(a), there are five terminals, each of which
is shaded, and the two costs for each arc e ∈ A are depicted by

∗This work is partially supported by JSPS Grant-in-Aid for Scientific Re-
search, Grant Numbers 24.3660 (A. Suzuki), 22700001 (T. Ito) and 23500001
(X. Zhou).
1 Graduate School of Information Sciences, Tohoku University.
a) okada@ecei.tohoku.ac.jp
b) a.suzuki@ecei.tohoku.ac.jp
c) takehiro@ecei.tohoku.ac.jp
d) zhou@ecei.tohoku.ac.jp

(5,6)

(2,3)

(5,3)

(5,1)

(3,3)

(2,2)

(6,1) (2,5)

(1,5)

(2,1)

(1,2)

(4,3)

(5,8)

(5,2)

(5, 1)

(3, 3)

(2 ,2)

(2 ,5)

(1 ,5)

(5, 2)

(a) D = (V, A) (b) ⟨F, S ⟩

Fig. 1 (a) An instance of the minimum caterpillar problem, and (b) its opti-
mal solution.

a pair (cS(e), cL(e)). Then, the K-caterpillar ⟨F, S ⟩ in Fig. 1(b)
is an optimal solution for the instance of Fig. 1(a), whose cost is
c(F, S) = (1 + 2 + 2) + (2 + 1 + 3) = 11.

The minimum caterpillar problem in digraphs is a general-
ization of the minimum spanning caterpillar problem in undi-
rected graphs, defined as follows [3], [4], [8]: the minimum span-
ning caterpillar problem is the minimum caterpillar problem in
which all vertices in a given digraph D are terminals, that is,
K = V(D), and there always exists an arc (u, v) if there is an arc
(v, u) such that cS((u, v)) = cS((v, u)) and cL((u, v)) = cL((v, u)).
The minimum spanning caterpillar problem (and hence the min-
imum caterpillar problem) has some applications to the network
design problem, the facility transportation problem, etc [4], [8].
However, the minimum spanning caterpillar problem is known
to be NP-hard [4], and hence the minimum caterpillar problem
is also NP-hard in general. For the minimum spanning cater-
pillar problem on general graphs, Simonetti et al. [8] gave a
non-polynomial-time exact algorithm, and Dinneen and Khosra-
vani [4] studied the problem from the viewpoint of approxima-
tion. Dinneen and Khosravani [3] also gave a linear-time (exact)
algorithm for (undirected) graphs with bounded treewidth.

In this paper, we give two results for the minimum caterpil-
lar problem. We first show that the problem remains NP-hard
even for digraphs with three terminals. Note that the known re-

c⃝ 2013 Information Processing Society of Japan 1

Vol.2013-AL-143 No.1
2013/3/1

IPSJ SIG Technical Report

sult of [4] does not imply the NP-hardness for a constant number
of terminals. We then give a linear-time algorithm to solve the
problem for digraphs with bounded treewidth. Note that, in this
paper, the treewidth of a digraph D is defined simply as the one
of the “underlying graph” of D, and hence it is different from [6].
(The formal definition will be given in Section 3.1.) We remark
that our algorithm runs in linear time even if |K| = O(n), where n
is the number of vertices in a digraph. Therefore, our algorithm
improves the known one [3] in the sense that our algorithm also
solves the minimum spanning caterpillar problem in linear time
for (undirected) graphs with bounded treewidth.

It is known that any optimization problem that can be expressed
by Extended Monadic Second Order Logic (EMSOL) can be
solved in linear time for graphs with bounded treewidth [2]. How-
ever, the algorithm obtained by this method is hard to implement,
and is very slow since the hidden constant factor of the running
time is a tower of exponentials of unbounded height with respect
to the treewidth [7]. On the other hand, our algorithm is simple,
and the hidden constant factor is just a single exponential of the
treewidth.

2. NP-hardness
The main result of this section is the following theorem.

Theorem 1 The minimum caterpillar problem is NP-hard
even for digraphs with three terminals.

proof. We give a polynomial-time reduction from the directed
vertex-disjoint paths problem [5] to the minimum caterpillar
problem for digraphs with three terminals. In the directed vertex-
disjoint paths problem, we are given a digraph D′ and k pairs
(s1, t1), (s2, t2), . . . , (sk, tk) of vertices si, ti ∈ V(D′), 1 ≤ i ≤ k, and
we are asked to determine whether all the k pairs have directed
siti-paths in D′ such that they do not share any vertex, where a di-
rected siti-path is a directed path which starts from si and ends in
ti. This problem is known to be NP-complete even for two pairs,
that is, k = 2 [5].

[Construction of the corresponding instance]
Suppose that we are given a digraph D′ = (V ′, A′) and two

pairs (s1, t1) and (s2, t2), as an instance of the directed vertex-
disjoint paths problem for k = 2. Note that the four vertices
s1, t1, s2, t2 are all distinct; otherwise the answer is clearly “No.”
In the following, we construct a digraph D = (V, A), two cost
functions cS : A → Z+ and cL : A → Z+, and a set K ⊆ V
of terminals with |K| = 3, as the corresponding instance of the
minimum caterpillar problem.

The corresponding digraph D is made from a copy of D′

together with three new vertices vs, vt, vc and four new arcs
(vs, s1), (t1, vc), (vc, s2), (t2, vt), that is, V = V ′ ∪ {vs, vt, vc} and
A = A′ ∪ {(vs, s1), (t1, vc), (vc, s2), (t2, vt)}. (See Fig. 2.) For each
arc e ∈ A, let cS(e) = 0 and cL(e) = 1. Finally, let K = {vs, vt, vc},
and hence |K| = 3. This completes the construction of the corre-
sponding instance. The construction can be clearly done in poly-
nomial time.

[Correctness]
To complete the proof, we now prove that D′ has two directed

s1

s2

t2

t1

s1

s2

t2

t1

vs

vc

vt

(a) D′ = (V ′, A′) (b) D = (V, A)

Fig. 2 (a) An instance of the directed vertex-disjoint paths problem for
k = 2, and (b) its corresponding instance of the minimum caterpillar
problem.

vertex-disjoint paths for the two pairs (s1, t1) and (s2, t2) if and
only if D has a K-caterpillar ⟨F, S ⟩ such that c(F, S) = 0. No-
tice that c(F, S) = 0 if and only if ⟨F, S ⟩ contains no leaf arc and
hence is simply a directed path (spine).

We first prove the necessity. Suppose that D′ has a directed
s1t1-path P1 and a directed s2t2-path P2 such that they are vertex-
disjoint. Then, A(P1) ∪ A(P2) ∪ {(vs, s1), (t1, vc), (vc, s2), (t2, vt)}
clearly induces a directed path in D from vs to vt. The directed
vsvt-path is a K-caterpillar ⟨F, S ⟩ which consists only of spine
arcs. Since cS(e) = 0 for all arcs e ∈ A, we have c(F, S) = 0.
Therefore, D has a K-caterpillar ⟨F, S ⟩ such that c(F, S) = 0.

We then prove the sufficiency. Suppose that D has a K-
caterpillar ⟨F, S ⟩ such that c(F, S) = 0. Then, ⟨F, S ⟩ must consist
only of spine arcs since cL(e) = 1 for all arcs e ∈ A. Therefore,
⟨F, S ⟩ is a directed path containing all the three terminals vs, vt
and vc. Since vs has no incoming arc and has exactly one outgo-
ing arc (vs, s1), the spine of ⟨F, S ⟩ must start from the terminal
vs. On the other hand, since vt has no outgoing arc and has ex-
actly one incoming arc (t2, vt), the spine of ⟨F, S ⟩ must end in the
terminal vt. Therefore, ⟨F, S ⟩ must be a directed vsvt-path that
contains the terminal vc as an internal vertex. Since vc has only
one incoming arc (t1, vc) and only one outgoing arc (vc, s2), the
vertices vs, s1, t1, vc, s2, t2, v4 lie on ⟨F, S ⟩ in this order. There-
fore, the K-caterpillar ⟨F, S ⟩ can be partitioned into the following
five directed paths (a)–(e):

(a) a directed vss1-path consisting of a single arc (vs, s1);
(b) a directed s1t1-path P1;
(c) a directed t1s2-path consisting of two arcs (t1, vc) and

(vc, s2);
(d) a directed s2t2-path P2; and
(e) a directed t2vt-path consisting of a single arc (t2, vt).

Notice that P1 and P2 are contained in D′, and hence D′ has a
directed s1t1-path P1 and a directed s2t2-path P2 such that they
are vertex-disjoint. ⊓⊔

3. Algorithm for Digraphs with Bounded
Treewidth

The main result of this section is the following theorem.

Theorem 2 The minimum caterpillar problem can be solved
in linear time for digraphs with bounded treewidth.

In this section, we give such an algorithm as a proof of Theorem
2. Indeed, for a given digraph D and a given terminal set K, we
give a linear-time algorithm which computes the minimum cost
of a K-caterpillar in D; it is easy to modify our algorithm so that

c⃝ 2013 Information Processing Society of Japan 2

Vol.2013-AL-143 No.1
2013/3/1

IPSJ SIG Technical Report

it actually finds a K-caterpillar with the minimum cost.
The rest of this section is organized as follows. In Section 3.1,

we formally define the notion of treewidth for a digraph and intro-
duce its tree-decomposition. We then explain main ideas of our
algorithm in Section 3.2. Finally, we give our algorithm together
with its analyses in Section 3.3.

3.1 Treewidth for digraphs
We first define the notion of treewidth for an undirected graph,
together with its (nice) tree-decomposition. In this paper, the
treewidth for a digraph D is defined as the one for the underly-
ing graph of D, where the underlying graph U(D) of a digraph D
is an undirected graph whose vertex set is V(D) and edge set is
{{x, y} | (x, y) ∈ A(D) or (y, x) ∈ A(D)}. For example, Fig. 3(b) is
the underlaying graph U(D) of the digraph D in Fig. 3(a).

Let G be an undirected graph with n vertices. We denote by
V(G) and E(G) the vertex set and edge set of G, respectively.
A tree-decomposition of G is a pair ⟨{Xi | i ∈ VT },T ⟩, where
T = (VT , ET) is a rooted tree such that the following four condi-
tions (1)–(4) hold [1]:

(1) each Xi is a subset of V(G);
(2)

∪
i∈VT

Xi = V(G);
(3) for each edge {u, v} ∈ E(G), there is at least one node i ∈ VT

such that u, v ∈ Xi; and
(4) for any three nodes p, q, r ∈ VT , if node q lies on the path

between p and r in T , then Xp ∩ Xr ⊆ Xq.
In particular, a tree-decomposition ⟨{Xi | i ∈ VT },T ⟩ of G is called
a nice tree-decomposition if the following four conditions (5)–(8)
hold [1]:

(5) |VT | = O(n);
(6) every node in VT has at most two children in T ;
(7) if a node i ∈ VT has two children l and r, then Xi = Xl = Xr;

and
(8) if a node i ∈ VT has only one child j, then one of the fol-

lowing two conditions (a) and (b) holds:
(a) |Xi| = |X j|+1 and Xi ⊃ X j (such a node i is called an

introduce node); and
(b) |Xi| = |X j| − 1 and Xi ⊂ X j (such a node i is called a

forget node.)

The width of ⟨{Xi | i ∈ VT },T ⟩ is defined as max{|Xi| −1 : i ∈ VT },
and the treewidth of G is the minimum k such that G has a tree-
decomposition of width k. Figure 3(c) illustrates a nice tree-
decomposition ⟨{Xi | i ∈ VT },T ⟩ of the graph U(D) in Fig. 3(b)
whose treewidth is 3.

In this paper, we say that a digraph D = (V, A) has treewidth k
if U(D) is of treewidth k. Since a nice tree-decomposition ⟨{Xi |
i ∈ VT },T ⟩ of an undirected graph U(D) with bounded treewidth
can be found in linear time [1], we may assume without loss
of generality that a digraph D and the nice tree-decomposition
⟨{Xi | i ∈ VT },T ⟩ of U(D) are both given.

Let D be a digraph, and let ⟨{Xi | i ∈ VT },T ⟩ be a nice tree-
decomposition of U(D). Each node i ∈ VT corresponds to a
(directed) subgraph Di = (Vi, Ai) of D which is induced by the
vertices that are contained in Xi and all descendants of i in T .
Therefore, if a node i ∈ VT has two children l and r in T , then Di

v6 v7
v2

v8v4

v3

v5v1

v6 v7
v2

v8v4

v3

v5v1

(a) D = (V, A) (b) U(D)

v1,v2,v3,v4

v1,v2,v3,v4 v1,v2,v3,v4

v1,v2,v4

v1,v2,v4,v5

v1,v2,v3

v2,v3

v2,v3

v2,v3,v6

v2,v3

v2,v7

v2,v7,v8

v2

i

0

v6 v7
v2

v8

v3

v1

(c) T = (VT , ET) (d) Di = (Vi, Ai)

Fig. 3 (a) A digraph D, (b) the underlaying graph U(D) of D, (c) a nice
tree-decomposition ⟨{Xi | i ∈ VT }, T ⟩ of U(D), and (d) the subgraph
Di of D for the node i ∈ VT .

is the union of Dl and Dr which are the subgraphs corresponding
to nodes l and r, respectively. Clearly, D = D0 for the root 0 of
T . For example, the digraph Di in Fig. 3(d) is the subgraph of the
digraph D in Fig. 3(a) which corresponds to the node i ∈ VT in
Fig. 3(c).

3.2 Main ideas and definitions
We first introduce some terms. Let ⟨F, S ⟩ be a caterpillar. Then,
each vertex in S is called a spine vertex, while each vertex in
VL(F, S) = V(F) \ S is called a leaf vertex. Therefore, each spine
arc in AS(F, S) joins two spine vertices, and each leaf arc (v, w) in
AL(F, S) joins a spine vertex v ∈ S and a leaf vertex w ∈ VL(F, S);
we say that the leaf vertex w is covered by the spine vertex v. A
spine vertex v ∈ S is called the tail of ⟨F, S ⟩ if the spine of ⟨F, S ⟩
starts from v, while a spine vertex w ∈ S is called the head of
⟨F, S ⟩ if the spine of ⟨F, S ⟩ ends in w. The head and tail of ⟨F, S ⟩
are also called the end-vertices of ⟨F, S ⟩.

We now give our main ideas. Let D be a digraph, and let
⟨{Xi | i ∈ VT },T ⟩ be a nice tree-decomposition of U(D). Since
we wish to find a K-caterpillar with the minimum cost, it suffices
to consider K-caterpillars such that all leaf vertices are terminals
in K. Consider a K-caterpillar ⟨F, S ⟩ as a subgraph of D, and
consider the subgraph Fi of F which is induced by the vertices
in V(F) ∩ V(Di) for a node i ∈ VT . Then, there are the follow-
ing three cases to consider, as illustrated in Figs. 4–6 where each
terminal is shaded and each spine vertex is depicted by a square.

Case (a): S ⊆ V(Di) \ Xi. (See Fig. 4.)
In this case, we claim that Di contains the whole K-caterpillar
⟨F, S ⟩, that is, Fi = F, as follows. By the definition (4) of tree-
decomposition, there is no arc joining a vertex in V(Di) \Xi and a
vertex in V(D)\V(Di). Then, no spine vertex in S ⊆ V(Di)\Xi has
an arc to a vertex in V(D)\V(Di). We thus have VL(F, S) ⊆ V(Di),
and hence V(F) ⊆ V(Di). Therefore, Di contains the whole K-
caterpillar ⟨F, S ⟩, as we claimed.

c⃝ 2013 Information Processing Society of Japan 3

Vol.2013-AL-143 No.1
2013/3/1

IPSJ SIG Technical Report

Xi

F

D

Xi

Fi = F
D
i

(a) (b)

Fig. 4 (a) A K-caterpillar ⟨F, S ⟩ in D for the case where S ⊆ V(Di) \ Xi,
and (b) a caterpillar (∅, S)-forest of Di, where S = (1).

Xi

F

D

LoutXi

no terminal in V(Di) \ Xi D
i

(a) (b)

Fig. 5 (a) A K-caterpillar ⟨F, S ⟩ in D for the case where S ⊆ V(D) \ V(Di),
and (b) a caterpillar (Lout, S)-forest of Di, where Lout = K ∩ V(Di)
and S = (0).

Case (b): S ⊆ V(D) \ V(Di). (See Fig. 5.)
In this case, Di contains no spine vertex in S , but may con-

tain leaf vertices (terminals) in VL(F, S) which will be covered
by spine vertices in S ⊆ V(D) \ V(Di). Since no spine vertex in
S ⊆ V(D) \ V(Di) has an arc to a vertex in V(Di) \ Xi, such ter-
minals must be in Xi. (See the three terminals surrounded by the
oval Lout in Fig. 5(b).)

Case (c): S ∩ Xi , ∅. (See Fig. 6.)
In this case, both Di and D\Di may contain spine vertices, and

hence Fi is not always a (single) caterpillar. However, Fi forms a
caterpillar forest ⟨Fi, S i⟩, where S i = S ∩ V(Di); each (weakly)
connected component in it is either a caterpillar or a single vertex
that was a leaf vertex in ⟨F, S ⟩. (Note that a single spine vertex
is regarded as a caterpillar.) Consider any single leaf vertex in
VL(F, S) ∩ V(Di). Then, similarly as in Case (b) above, it will
be covered by some spine vertex in S \ V(Di) and hence it must
be in Xi. On the other hand, consider all caterpillars in ⟨Fi, S i⟩.
Then, we can naturally order the spine vertices in S i = S ∩V(Di)
according to the order of the spine vertices of ⟨F, S ⟩. It is easy
to observe that every end-vertex of caterpillars in ⟨Fi, S i⟩must be
in Xi unless it is the end-vertex of ⟨F, S ⟩. (See the end-vertices
v1, v2, v4, v5, v6 in Fig. 6(b).)

Motivated by the three Cases (a)–(c) above, we classify cater-
pillar forests ⟨F′, S ′⟩ in Di into “caterpillar (Lout,S)-forests” with
respect to the vertices in Xi. A terminal subset Lout ⊆ K ∩ Xi

represents the terminals that are neither spine vertices in S ′ nor
leaf vertices covered by spine vertices in S ′ ⊆ V(Di); and hence
every vertex in Lout will be a leaf vertex which is covered by some
spine vertex outside Di. A “spine vector” S for Xi represents the
spine vertices in S ′ ∩ Xi together with their order and connectiv-
ity: a vector S = (a0, v1, a1, v2, a2, . . . , vt, at), t ≥ 0, is called a

Xi
v1 v2 v3 v4

v5 v6

F

D

Lout

Xi
v1 v2 v3 v4

v5 v6

Fi

D
i

(a) (b)

Fig. 6 (a) A K-caterpillar ⟨F, S ⟩ in D for the case where S ∩ Xi ,
∅, and (b) a caterpillar (Lout, S)-forest of Di, where S =

(1, v1, 0, v2, 1, v3, 1, v4, 0, v5, 0, v6, 0).

spine vector for Xi if ax ∈ {0, 1} for each index x, 0 ≤ x ≤ t,
and vx ∈ Xi for each index x, 1 ≤ x ≤ t. We sometimes denote
by V(S) the set of all vertices in S; note that V(S) = ∅ if t = 0.
Then, a caterpillar forest ⟨F′, S ′⟩ as a subgraph of Di is called a
caterpillar (Lout,S)-forest of Di if the following three conditions
(a)–(c) hold:

(a) if S = (1), then ⟨F′, S ′⟩ is a K-caterpillar such that S ′∩Xi =

∅;
(b) if S = (0), then V(F′) = Lout and F′ forms an independent

set; and
(c) if t ≥ 1, then the following six conditions (i)–(vi) hold:

(i) all terminals in K ∩ V(Di) are contained in V(F′);
(ii) Lout forms an independent set in F′;
(iii) if we remove all vertices in Lout from F′ and add

to F′ a (dummy) arc from vx to vx+1 for every two
vertices vx, vx+1 ∈ V(S) such that ax = 0, 1 ≤ x ≤
t − 1, then the resulting digraph F′′ is a caterpillar
⟨F′′, S ′⟩;

(iv) S ′∩Xi = V(S), and v1, v2, . . . , vt appear on the spine
of ⟨F′′, S ′⟩ in this order;

(v) if a0 = 0, then v1 is the tail of ⟨F′′, S ′⟩, otherwise
the tail of ⟨F′′, S ′⟩ is in V(Di) \ Xi; and

(vi) if at = 0, then vt is the head of ⟨F′′, S ′⟩, otherwise
the head of ⟨F′′, S ′⟩ is in V(Di) \ Xi.

For example, the caterpillar forest in Fig. 6(b) is a caterpillar
(Lout,S)-forest of Di for S = (1, v1, 0, v2, 1, v3, 1, v4, 0, v5, 0, v6, 0).
We call the head (or the tail) of ⟨F′′, S ′⟩ the head (resp., tail) of
the caterpillar forest ⟨F′, S ′⟩.

Let ⟨F′, S ′⟩ be a caterpillar (Lout,S)-forest of Di for some pair
(Lout,S). If S = (1), then the spine vertices of ⟨F′, S ′⟩ is in
V(Di)\Xi and hence it cannot be extended to the outside of Di; we
thus know that Lout must be the empty set and Di must contains
all terminals in K. On the other hand, if S = (0), then ⟨F′, S ′⟩ has
no spine vertex and hence we know that all terminals in Di must
be covered by spine vertices outside Di. Therefore, we say that
a pair (Lout,S) is feasible for Xi if it satisfies the following three
conditions (a)–(c):

(a) if S = (1), then Lout = ∅ and K ⊆ V(Di);
(b) if S = (0), then Lout = K ∩ V(Di); and
(c) Lout ∩ V(S) = ∅, and each vertex in V(S) appears exactly

once in S.
Then, it suffices to consider caterpillar (Lout,S)-forests of Di only
for feasible pairs (Lout,S) for Xi.

c⃝ 2013 Information Processing Society of Japan 4

Vol.2013-AL-143 No.1
2013/3/1

IPSJ SIG Technical Report

We finally define a value f (i; Lout,S) for a node i ∈ VT and a
pair (Lout,S), which will be computed by our algorithm, as fol-
lows:

f (i; Lout,S) = min{c(F′, S ′) | ⟨F′, S ′⟩ is a

caterpillar (Lout,S)-forest of Di},

where c(F′, S ′) is the cost of a caterpillar (Lout,S)-forest ⟨F′, S ′⟩,
that is, the total cost of all caterpillars in ⟨F′, S ′⟩. Let
f (i; Lout,S) = +∞ if Di has no caterpillar (Lout,S)-forest or
(Lout,S) is not feasible for Xi.

Our algorithm computes f (i; Lout,S) for each node i ∈ VT and
all feasible pairs (Lout,S) for Xi, from the leaves of T to the root
of T , by means of dynamic programming. Then, since D0 = D
for the root 0 of T , one can compute the minimum cost c(D,K)
of a K-caterpillar in a given digraph D, as follows:

c(D,K) = min f (0; ∅, S), (1)

where the minimum above is taken over all spine vectors S =
(a0, v1, a1, . . . , vt, at), 0 ≤ t ≤ |X0|, for X0 such that ax = 1 for all
x, 1 ≤ x ≤ t−1. Note that c(D,K) = +∞ if D has no K-caterpillar.

3.3 Algorithm
In this subsection, we explain how to compute f (i; Lout,S) for
each node i ∈ VT and all feasible pairs (Lout,S) for Xi, from the
leaves of T to the root of T .

We first compute f (i; Lout,S) for each leaf i of T and each fea-
sible pair (Lout,S) for Xi, as follows: we enumerate all possi-
ble caterpillar forests in Di, and check whether each of them is a
caterpillar (Lout,S)-forest of Di. (The running time will be esti-
mated later.)

We then compute f (i; Lout,S) for each internal node i in T and
each feasible pair (Lout,S) for Xi. For notational convenience,
let Li

out = Lout and Si = S = (ai
0, v

i
1, a

i
1, . . . , v

i
ti , a

i
ti). Since

⟨{Xi | i ∈ VT },T ⟩ is a nice tree-decomposition of U(D), there
are three cases to consider, that is, i has two children, is a forget
node, and is an introduce node.

[The node i has two children l and r]
In this case, a caterpillar (Li

out,Si)-forest ⟨Fi, S i⟩ of Di can
be obtained by merging a caterpillar (Ll

out,Sl)-forest ⟨Fl, S l⟩ of
Dl with a caterpillar (Lr

out,Sr)-forest ⟨Fr, S r⟩ of Dr, where Sl =

(al
0, v

l
1, a

l
1, . . . , v

l
tl , a

l
tl) and Sr = (ar

0, v
r
1, a

r
1, . . . , v

r
tr , a

r
tr), such that

(1) the union of the spines of ⟨Fl, S l⟩ and ⟨Fr, S r⟩ forms di-
rected paths, each of which is the spine of a caterpillar in
⟨Fi, S i⟩; and

(2) each terminal in (K ∩ V(Di)) \ Li
out is covered by exactly

one of ⟨Fl, S l⟩ and ⟨Fr, S r⟩.
Since Xl = Xr = Xi and there is no arc joining a vertex in

V(Dl) \Xl and a vertex V(Dr) \Xr, the condition (1) above can be
rephrased as the following three conditions (a)–(c):

(a) tl = tr = ti;
(b) vlx = v

r
x = v

i
x for all indices x, 1 ≤ x ≤ ti; and

(c) al
x + ar

x = ai
x for all indices x, 0 ≤ x ≤ ti.

The conditions (a) and (b) above ensure that both ⟨Fl, S l⟩ and
⟨Fr, S r⟩ have the same spine vertices as ⟨Fi, S i⟩ in Xi = Xl = Xr;

furthermore, they appear in the same order as in Si. The con-
dition (c) above ensures that the union of the spines of ⟨Fl, S l⟩
and ⟨Fr, S r⟩ forms directed paths: notice that, if there is an in-
dex x, 1 ≤ x ≤ ti − 1, such that al

x = ar
x = 1, then both

⟨Fl, S l⟩ and ⟨Fr, S r⟩ have a directed path from vx to vx+1 and hence
⟨Fi, S i⟩would contain a cycle or the cost of the same arc (vx, vx+1)
would be counted twice; furthermore, if both al

0 = ar
0 = 1 or

al
tl = ar

tr = 1, then the spine of ⟨Fi, S i⟩ would be “two-forked.”
Similarly, the condition (2) above can be rephrased as the fol-

lowing two conditions (d) and (e):
(d) Ll

out ∩ Lr
out = Li

out; and
(e) v ∈ Ll

out or v ∈ Lr
out hold for each terminal v ∈ (K ∩ Xi) \

V(Si).
The condition (d) above ensures that any vertex in Li

out is covered
by neither a spine vertex in S l nor a spine vertex in S r. The con-
dition (e) above ensures that each terminal in (K ∩ V(Di)) \ Li

out

is covered by exactly one of ⟨Fl, S l⟩ and ⟨Fr, S r⟩; note that, if
v < Ll

out and v < Lr
out hold, then the vertex v is covered by some

spaine vertex in S l and S r at the same time.
In this way, f (i; Li

out,Si) can be computed, as follows:

f (i; Li
out,S

i) = min{ f (l; Ll
out,S

l) + f (r; Lr
out,S

r)},

where the minimum above is taken over all feasible pairs (Ll
out,Sl)

for Xl and (Lr
out,Sr) for Xr satisfying the following five conditions

(a)–(e):
(a) tl = tr = ti;
(b) vlx = v

r
x = v

i
x for all indices x, 1 ≤ x ≤ ti;

(c) al
x + ar

x = ai
x for all indices x, 0 ≤ x ≤ ti;

(d) Ll
out ∩ Lr

out = Li
out; and

(e) v ∈ Ll
out or v ∈ Lr

out hold for each terminal v ∈ (K ∩ Xi) \
V(Si).

It should be noted that the update formula above correctly com-
putes the cases where Si = (0) or Si = (1), too.

[The node i is a forget node]
In this case, the node i has exactly one child j in T such that
|Xi| = |X j| − 1 and Xi ⊂ X j. Let v′ be the vertex in X j \ Xi. Since
D j = Di, a caterpillar (Li

out,Si)-forest ⟨Fi, S i⟩ of Di is a caterpillar
(L j

out,S j)-forest ⟨F j, S j⟩ of D j for some feasible pair (L j
out,S j) for

X j. Then, there are the following three cases (1)–(3) to consider:
(1) v′ is not a terminal, and is not contained in V(F j);
(2) v′ is a terminal, and is contained in ⟨F j, S j⟩ as a leaf vertex;

and
(3) v′ is a spine vertex in ⟨F j, S j⟩, that is, v′ ∈ S j.

We thus define the three values f 1(i; Li
out,Si), f 2(i; Li

out,Si) and
f 3(i; Li

out,Si) for the three cases above, and take the minimum
one among them. Notice that v′ < L j

out, because v′ < Xi and hence
v′ cannot be covered by any vertex in V(D) \ V(D j).

(1) v′ is not a terminal, and is not contained in V(F j).
In this sub-case, since Xi = X j \ {v′}, we have (L j

out,S j) =
(Li

out,Si). Therefore, we let f 1(i; Li
out,Si) = f (j; Li

out,Si).

(2) v′ is a terminal, and is contained in ⟨F j, S j⟩ as a leaf vertex.
In this sub-case, since v′ < L j

out ∪ V(S j), we have (L j
out,S j) =

(Li
out,Si). Therefore, we let f 2(i; Li

out,Si) = f (j; Li
out,Si).

c⃝ 2013 Information Processing Society of Japan 5

Vol.2013-AL-143 No.1
2013/3/1

IPSJ SIG Technical Report

(3) v′ is a spine vertex in ⟨F j, S j⟩.
In this sub-case, since v′ < L j

out, we have L j
out = Li

out. Since
v′ ∈ S j and v′ ∈ X j, we have t j = ti + 1. Therefore, we let

f 3(i; Li
out,S

i) = min f (j; Li
out,S

j),

where the minimum is taken over all spine vectors S j for X j such
that

(a) if ai
x = 1 for some index x, 1 ≤ x ≤ ti − 1, then

S j = (ai
0, v

i
1, . . . , v

i
x, 1, v

′, 1, vix+1, . . . , v
i
ti , a

i
ti);

(b) if ai
ti = 1, then S j = (ai

0, v
i
1, . . . , v

i
ti , a

i
ti , v
′, a j

t j
) with

a j
t j
∈ {0, 1}; and

(c) if ai
0 = 1, then S j = (a j

0, v
′, ai

0, v
i
1, . . . , v

i
ti , a

i
ti) with

a j
0 ∈ {0, 1}.

Therefore, f (i; Li
out,Si) can be computed, as follows:

f (i; Li
out,S

i) = min{ f 1(i; Li
out,S

i), f 2(i; Li
out,S

i), f 3(i; Li
out,S

i)}.

[The node i is an introduce node]
In this case, the node i has exactly one child j in T such that
|Xi| = |X j| + 1 and Xi ⊃ X j. Let v′ be the vertex in Xi \ X j.
Since v′ is introduced by Xi, every arc in Di from/to v′ is to/from
a vertex in Xi. For notational convenience, we denote simply by
cS(v, w) and cL(v, w) the two costs of (v, w) with v, w ∈ V , and
let cS(u, v) = cL(u, v) = +∞ if (u, v) < A. According to v′ and
(Li

out,Si), we classify caterpillar (Li
out,Si)-forests ⟨Fi, S i⟩ of Di

into the following six types:
(1) v′ is not contained in V(Fi);
(2) v′ is contained in V(Fi) \ S i;
(3) v′ is contained in S i which is neither the head nor the tail

of ⟨Fi, S i⟩;
(4) v′ is the head of ⟨Fi, S i⟩;
(5) v′ is the tail of ⟨Fi, S i⟩; and
(6) v′ is both head and tail of ⟨Fi, S i⟩, that is, S i = {v′}.

Notice that, from v′ and (Li
out,Si), we can distinguish which

type of caterpillar (Li
out,Si)-forests are considered, and hence

f (i; Li
out,Si) can be computed, as follows.

(1) if v′ < V(Si) and v′ < K
This sub-case corresponds to the type (1): v′ is not contained

in V(Fi). Therefore, ⟨Fi, S i⟩ is a caterpillar (Li
out,Si)-forest of D j.

We thus have

f (i; Li
out,S

i) = f (j; Li
out,S

i).

(2) if v′ < V(Si) and v′ ∈ K
This sub-case corresponds to the type (2): v′ is contained in

V(Fi) \ S i. If v′ ∈ Li
out, then v′ will be covered by a spine ver-

tex in D \ Di; and hence V(Fi) ∩ V(D j) induces a caterpillar
(Li

out \ {v′},Si)-forest of D j. If v′ < Li
out, then v′ must be cov-

ered by a spine vertex in Xi; and hence V(Fi) ∩ V(D j) induces a
caterpillar (Li

out,Si)-forest of D j. Note that, if Si = (1), then Xi

contains no spine vertex and hence v′ cannot be covered by any
spine vertex. We thus have

f (i; Li
out,S

i) =

+∞ if Si = (1);
f (j; Li

out \ {v′},Si) if v′ ∈ Li
out;

f (j; Li
out,Si)

+min{cL(vix, v
′) | 1 ≤ x ≤ ti}

otherwise.

(3) if v′ ∈ V(Si), vi1 , v
′ and viti , v

′

This sub-case corresponds to the type (3): v′ is contained in S i

which is neither the head nor the tail of ⟨Fi, S i⟩. Let v′ = vix+1 in
Si. Then, V(Fi) ∩ V(D j) induces a caterpillar (L j

out,S j)-forest of
D j, where S j = (ai

0, v
i
1, . . . , v

i
x, 0, v

i
x+2, . . . , v

i
ti , a

i
ti) and L j

out is some
subset of K ∩ X j such that Li

out ⊆ L j
out. We thus have

f (i; Li
out,S

i) = min
{

f (j; L j
out,S

j) + ai
x · cS(vix, v

′)

+ai
x+1 · cS(v′, vix+2) +

∑
w∈L j

out\Li
out

cL(v′, w)
}
,

where the minimum above is taken over all subsets L j
out ⊆ (K ∩

X j) \ V(S j) such that Li
out ⊆ L j

out.

(4) if v′ ∈ V(Si), vi1 , v
′ and viti = v

′

This sub-case corresponds to the type (4): v′ is the head
of ⟨Fi, S i⟩. Since v′ ∈ Xi, we have ai

ti = 0 and hence let
f (i; Li

out,Si) = +∞ if ai
ti = 1. If ai

ti = 0, then V(Fi) ∩
V(D j) induces a caterpillar (L j

out,S j)-forest of D j, where S j =

(ai
0, v

i
1, a

i
1, . . . , a

i
ti−2, v

i
ti−1, 0) and L j

out is some subset of K∩X j such

that Li
out ⊆ L j

out. We thus have

f (i; Li
out,S

i) = min
{

f (j; L j
out,S

j) + ai
ti−1 · cS(viti−1, v

′)

+
∑

w∈L j
out\Li

out

cL(v′, w)
}
,

where the minimum above is taken over all subsets L j
out ⊆ (K ∩

X j) \ V(S j) such that Li
out ⊆ L j

out.

(5) if v′ ∈ V(Si), vi1 = v
′ and viti , v

′

This sub-case corresponds to the type (5): v′ is the tail of
⟨Fi, S i⟩. Since v′ ∈ Xi, we have ai

0 = 0 and hence let
f (i; Li

out,Si) = +∞ if ai
0 = 1. If ai

0 = 0, then V(Fi) ∩
V(D j) induces a caterpillar (L j

out,S j)-forest of D j, where S j =

(0, vi2, a
i
2, . . . , v

i
ti , a

i
ti) and L j

out is some subset of K ∩ X j such that
Li

out ⊆ L j
out. We thus have

f (i; Li
out,S

i) = min
{

f (j; L j
out,S

j)

+ai
1 · cS(v′, vi2) +

∑
w∈L j

out\Li
out

cL(v′, w)
}
,

where the minimum above is taken over all subsets L j
out ⊆ (K ∩

X j) \ V(S j) such that Li
out ⊆ L j

out.

(6) if V(Si) = {v′}, that is, vi1 = v
i
ti = v

′

This sub-case corresponds to the type (6): v′ is both head and
tail of ⟨Fi, S i⟩, that is, S i = {v′}. Since v′ ∈ Xi, let f (i; Li

out,Si) =
+∞ if ai

0 = 1 or ai
1 = 1. If ai

0 = ai
1 = 0 and hence Si = (0, v′, 0),

then V(Fi)∩V(D j) induces a caterpillar (L j
out, (0))-forest of D j for

L j
out = K ∩V(D j). Note that, since v′ ∈ Xi is only the spine vertex

in ⟨Fi, S i⟩, the subgraph D j does not contain any spine vertex. We
thus have

f (i; Li
out,S

i) = f (j; K ∩ V(D j), (0)) +
∑

w∈(K∩V(D j))\Li
out

cL(v′, w).

c⃝ 2013 Information Processing Society of Japan 6

Vol.2013-AL-143 No.1
2013/3/1

IPSJ SIG Technical Report

Running time.
Remember that |Xi| ≤ k+1 for each node i ∈ VT , where k is the

treewidth of D. Then, there are at most
(

k+1
t

)
· t! ·2t+1 spine vectors

S = (a0, v1, a1, . . . , vt, at) for each t ≥ 0. Thus, the number of all
feasible pairs (Lout,S) for Xi can be bounded by

k+1∑
t=0

(
k + 1

t

)
· t! · 2t+1 · 2k+1−t ≤ 22k+3(k + 1)k+1 = O(1).

Since the subgraph Di corresponding to a leaf i of T contains
at most k + 1 vertices, our brute-force algorithm for a leaf can
be done in O(1) time. Therefore, we can compute f (i; Lout,S) in
O(1) time for each leaf i and all feasible pairs (Lout,S) for Xi. By
the definition (5) of a nice tree-decomposition, T has at most O(n)
leaves, and hence f (i; Lout,S) can be computed in linear time for
all leaves i.

Similarly, for each internal node i of T , each of the update for-
mulas above can be computed in O(1) time. Since there are O(n)
nodes in T , for the root 0 of T , we can compute f (0; Lout,S) for
all feasible pairs (Lout,S) for X0 in O(n) time. Then, by Eq. (1)
we can compute the minimum cost c(D,K) in O(1) time.

In this way, our algorithm runs in linear time in total.
This completes the proof of Theorem 2. ⊓⊔

4. Conclusion
In this paper, we first showed that the minimum caterpillar

problem is NP-hard even for digraphs with three terminals. We
then gave a linear-time algorithm to solve the problem for di-
graphs with bounded treewidth.

References
[1] N. Betzler, R. Niedermeier, and J. Uhlmann.: Tree decompositions of

graphs: saving memory in dynamic programming, Discrete Optimiza-
tion, vol. 3, pp. 220–229, 2006.

[2] B. Courcelle.: Graph rewriting: an algebraic and logic approach,
Handbook of Theoretical Computer Science (vol. B), pp. 193–242, MIT
Press, 1990.

[3] M. J. Dinneen and M. Khosravani.: A linear time algorithm for the
minimum spanning caterpillar problem for bounded treewidth graphs,
In Proc. of SIROCCO 2010, pp. 237–246, 2010.

[4] M. J. Dinneen and M. Khosravani.: Hardness of approximation and in-
teger programming frameworks for searching for caterpillar trees, In
Proc. of CATS 2011, pp. 145–150, 2011.

[5] S. Forutne, J. Hopcroft, and J. Wyllie.: The directed subgraph home-
omorphism problem, Theoretical Computer Science, vol. 10, pp. 111–
121, 1980.

[6] T. Johnson, N. Robertson, P. D. Seymour, and R. Thomas.: Directed
tree-width, Journal of Combinatorial Theory, Series B, vol. 82, pp. 138–
154, 2001.

[7] M. Lampis.: Algorithmic meta-theorems for restrictions of treewidth,
Algorithmica, vol. 64, pp. 19–37, 2012.

[8] L. Simonetti, Y. Frota, and C. C. de Souza.: An exact method for the
minimum caterpillar spanning problem, In Proc. of CTW 2009, pp. 48–
51, 2009.

c⃝ 2013 Information Processing Society of Japan 7

Vol.2013-AL-143 No.1
2013/3/1

