

StarCloud: Optimizing a Testing Framework for Android Development

JARED RAVETCH†1 KENTO AIDA†2†1

Abstract: Smartphone development is changing at rate that is becoming increasingly difficult for application developers to
develop and test their applications on all relevant versions of the smartphone OS. With the Android OS, we have the unique
ability to run the Android Emulator, which creates a virtual device, on either our workstation or cloud environment. We present
StarCloud, an Android testing framework that emulates a cloud of connected and distributed Android devices utilizing both
public Amazon's Elastic Compute Cloud (EC2) and private OpenStack cloud infrastructure. Using the BOINC distributed
computing client for Android, we were able to exemplify a unique use case for StarCloud to further research in grid computing
on Android devices.

Keywords: Android, Dalvik VM, EC2, OpenStack, Distributed Computing

†1Tokyo Institute of Technology
†2 National Institute of Informatics †2 National Institute of Informatics

1. Introduction
The smartphone has revolutionized communication and the

way humans interact with one another. Development and testing
for the smartphone, specifically Google’s Android[1] platform, is
rife with challenge due to the inability to simulate how the
application will behave in a distributed environment.

As the Android OS is regularly updated beginning in version
1.5 (Cupcake)[2] to the current version 4.2 (Jelly Bean)[2], forces
developers to test their applications on all iterations, which has no
easy solution. What has come out of the extremely fast paced
evolution of smartphones, specifically Android devices, is the
need to continuously keep revising and testing applications.
Each subsequent iteration of the Android OS improves upon the
last, adding new features, new APIs, and better performance. A
developer must be aware of changes in each Android OS. Thus
running multiple versions of the OS simultaneously to test one’s
application is essential to the development and testing process.
Moreover, there is no easily accessible sandbox environment for
application developers to test the security and performance
implications of their application in the cloud.

As smartphone applications on the Android operating system
become more and more complex, utilizing distributed computing
technology[3] and peer-to-peer networking[4], it is becoming ever
more necessary to evaluate these applications on multiple
interconnected devices. However, evaluating the efficacy of a
distributed computing application for an Android device is
cumbersome when using one’s own workstation or cost
prohibitive purchasing multiple devices. Utilizing the Android
Virtual Device (AVD)[5], bundled with the Android SDK[5] is
one way to test one’s application without the use of physical
devices. However, in order to run multiple AVDs much more
powerful processing power is required in a cluster type setup.

With public cloud computing resources becoming easier and
more inexpensive to use, specifically Amazon Web Services

(AWS)[6], the possibility of creating such an environment
becomes more of a reality. In addition, with the help of the
OpenStack[7] project, creating one’s own private cloud on
physical servers that can mirror a similar type setup in AWS
becomes a powerful tool in application testing. The advantages
of OpenStack in this instance allow for more fine-grained control
and operation of multiple virtual machines as well as a fully
customizable network stack[8].

Deploying AVDs in public/private clouds would give us one
solution to tackle the problem of software testing. A developer
is able to run multiple AVDs on cloud computing resources and
test the application with multiple versions of the Android OS
simultaneously. The developer can also evaluate distributed
computing applications running on multiple AVDs in the cloud.
However, setting up this distributed testing framework for
Android Applications on cloud computing resources is not an
easy task. This requires a deep understanding of cloud computing
technologies and architecture by the developer, e.g. configuration,
deployment and software installation. To the best of our
knowledge, there is no solution to automatically setup a testing
framework on pubic/private clouds.

With smartphones continuously increasing in performance[9],
it begs the question for researchers whether or not they are now
suitable for distributed computing tasks. The BOINC
project[10] is a particularly popular distributed computing effort
that aims to consolidate and make it easier for researchers to
create and maintain distributed computing projects. This is a
very difficult question to answer as it involves testing the BOINC
computing client on multiple versions of Android and seeing how
well the client performs. One approach to this question is to use
virtual devices to get an idea if smartphones can perform such
tasks and how to optimize the client to best suit the device.

This combination of factors, from difficulty to testing
applications on multiple versions of Android to testing large
numbers of devices together in a distributed environment that led

IPSJ SIG Technical Report

ⓒ 2013 Information Processing Society of Japan 1

Vol.2013-HPC-138 No.27
2013/2/22

us to develop a new testing framework. This paper presents
StarCloud, a testing framework for the development of Android
applications. StarCloud allows developers and researchers alike
to create a cloud of distributed virtual devices on public or private
cloud infrastructure and test applications in an environment that
more closely mirrors actual usage.

The rest of this paper is organized as follows: Section 2 briefly
discusses related work. Section 3 presents our implementation of
StarCloud, and Section 4 shows our experimental results. Section
5 summarizes our contribution and outlines future work.

2. Background
The concept of StarCloud grew from the existing tool

StarCluster[11], which gives anyone the ability to launch a cluster
of EC2 instances, using AMIs specifically customized for
scientific research. In order to run the Android OS in the cloud,
we referred to the work done by Byung-Gon Chun et al. that

created CloneCloud[12], which elastically offloads computation
from the Android device to EC2[7]. A snapshot of the running
Android OS is used as a template to launch instances running the
Android OS in EC2.

3. Architecture and Implementation
As discussed in the introduction, utilizing public and private

cloud architecture is essential to this research as it enables the
developer to employ commonly available resources, specifically
AWS and OpenStack. The overall functionality of StarCloud
does not differ when setup in either EC2 or OpenStack, as the
Eucalyptus[13] API used to provision the instances is the same.
However, additional time must be spent if an OpenStack cluster is
not already setup, in order to have StarCloud at working capacity.

EC2 was chosen as the cloud infrastructure platform due to its
full-featured API and seamless ability to scale. EC2 has been
utilized in a multitude of research and high performance
computing projects[14].

3.1 Middleware Architecture
StarCloud acts as a middleware between a user (or application

developer) and EC2 or OpenStack allowing the user to launch a
cloud of customized instances; each instance running the Android
OS utilizes the Dalvik Virtual Machine[15]. Figure 1 shows the
software stack of StarCloud. A security group is created to
allow each device to seamlessly communicate with one another
and externally. A master instance is also launched, in order for
the user to interact with the virtual Android device cloud to
deploy applications, collect device logs and performance data as
illustrated in Figure 2.

At the heart of StarCloud is the ability to communicate with
cloud architecture to provision any number of required instances.
StarCloud uses the APIs available for both AWS and OpenStack,
to launch instances, each having the required packages to run the
Android SDK. We decided early on that each instance will be
running only one AVD, as the required CPU and memory is
significant enough to segregate each AVD into a separate instance.
Moreover, this allows for better networking performance, as each
AVD will be using the networking stack on each instance rather
then having to share with other AVDs on the same instance.
The instance itself is running Ubuntu 12.04 LTS, with all
packages required to run the Android SDK and be able to display
the emulator in a UI.

One challenge we faced was how to display the emulator to the
user, as AWS and OpenStack instances do not have an X Window
System[16]. We decided to use VNC [17] to output the
emulator’s UI so that the user can visually see the AVD in action.

3.2 Configuration
A configuration file in standard YAML[18] format (Figure 3)

is used to specify the number of instances, the Android

Figure 1. StarCloud Node Application Stack

Figure 2. StarCloud Architecture in EC2

Figure 3. StarCloud Configuration File

IPSJ SIG Technical Report

ⓒ 2013 Information Processing Society of Japan 2

Vol.2013-HPC-138 No.27
2013/2/22

platform(s) to launch, how much memory and storage should
each AVD allocate and what the platform distribution should look
like, i.e. launch half of the instances with Jelly Bean[2] and the
other half with Ice Cream Sandwich[2]. Once the machine is
launched, the Android SDK for Linux is downloaded and
uncompressed into an accessible directory.

Next, StarCloud uses the Android SDK to update the list of
available Android platforms and System Images[2]. From this
list, the specified Android platform and corresponding System
Image is downloaded and installed into the SDK directory.

From here, StarCloud is now able to create the necessary AVD
as requested initially in the configuration file. When the AVD is
completed, the VNC server is setup and the AVD is launched in
the VNC session. After booting the AVD, StarCloud uses the
Android Debugger[5] to install the required application(s) for
testing. When testing is complete, the instances are destroyed

4. Experiment
There are two parts to our experimentation. The first part

focuses on launching the Android emulator on three different
platforms: Gingerbread, Ice Cream Sandwich and Jellybean and
measuring the time taken to complete this task. The second is
providing a use case for developers and researching of StarCloud.
This involves choosing an application that will test the
performance of different versions of Android in a distributed
environment. For our server environment we choose m1.small
instances in EC2 running Ubuntu 12.04 LTS. Small instances
offer a good balance of processor and memory, without worrying
about overloading the server. As we are only running one AVD
per instance, there was no performance gain by using larger
instances, as each AVD occupies one CPU core and allocated
memory as defined in the configuration file.

4.1 Launching the Android Emulator
Figure 4 presents the time to launch Android Emulators. The

results show that the time for launching Android Emulators
linearly increases following the number of emulators launched.
What’s interesting to point out is that the Gingerbread platform is
significantly slower then Ice Cream or Jelly Bean. This fact can
be contributed to the time spent in the initial boot and application
installation phases. Moreover, the launch times are decreasing
as we progress from each platform iteration and thus hope to see
continued launch improvements in latter installments of Android.

As discussed in the implementation section, there are many
phases to launching the emulator in the cloud. Figure 5 is a
breakdown of the phases and respective average time taken for
each phase. As one can see from the chart, the most expensive
phases are 1) the launching of the emulator, i.e. booting the AVD
until the Android OS is fully operational and 2) Android
application installation. The instance provisioning or starting
the virtual machine on EC2 step is fairly consistent when
launching larger number of instances, as each API call to create a
server is done in parallel. However, in order to launch the
emulator, the server environment must be first completely setup.

As we are using a virtual environment, we do not have the
ability to use hardware virtualization as would be available when
using physical hardware. Android has made great strides in
improving the performance of the emulator by releasing a
hardware virtualization of the system image using Intel’s Atom
x86 processor[19]. In EC2 or OpenStack, we do not have access
to the hardware virtualization abilities of the CPU, thus must use
the software virtualized ARM[20] processor. This unfortunately
greatly increases the time spent starting the emulator and Android
OS, as can be seen in (Figure 4). Start time and End time in this
case refer to the initial API call to provision the EC2 instance and
until the application is fully installed and ready for user input.

Figure 4. Start Time in Seconds of Nodes. X-axis is number

of VMs and Y-axis is time in seconds

Figure 5. Breakdown of Launch Time for Each Node. X-axis is

time in seconds

IPSJ SIG Technical Report

ⓒ 2013 Information Processing Society of Japan 3

Vol.2013-HPC-138 No.27
2013/2/22

We also noticed there were variations in the time spent when
starting the emulator between the versions of Android we were
testing. The start time can be seen to decrease as we go from
Gingerbread to Jelly Bean. This is most likely due to the
optimization each subsequent Android version has made to
reduce boot time.

4.2 Use Case with BOINC
As there are a myriad of applications for StarCloud, from

development sandboxing to distributed computing. We will
focus on the latter, as smartphones are becoming increasingly
more powerful and versatile. One very popular system that
allows individuals and organizations to participate in
public-resource distributed computing projects is BOINC[10]
(Berkeley Open Infrastructure for Network Computing). What
makes StarCloud an extremely useful tool is that it allows for the
creation of individual BOINC clients on various Android versions
and emulated hardware. This enables researchers who are
developing clients for Android devices to test their software in a
more real-world environment.

For the second phase of the experiment, we focused on running
the BOINC client on the Android Virtual Device. There is
already an existing application that will install and run BOINC on

Android called NativeBOINC[21]. We followed the same steps
as described in the first phase of the experiment and adding a last
step of installing an application and starting this application.
Once NativeBOINC is started, it must first download and install
the BOINC client. This phase also takes a significant amount of
time, as the client is downloaded, verified, unpacked and installed.
Finally, once the BOINC client is installed, the client must then
be synchronized with the BOINC Account Manager (BAM),
which requires an account to already be setup. Figure 6 shows a
screenshot of the VNC session with the BOINC client running in
the emulator on an EC2 instance.

For this experiment, we choose the PrimeGrid project[22].
An account on BAM was created and then added the PrimeGrid
project to the account. After the BAM credentials were entered
into the client, the client synchronizes with the PrimeGrid project
and begins running benchmarking tasks to determine the
environment the client is being run. These results are uploaded to
the PrimeGrid project and are viewable on the project’s site.
Table 1 shows the results of the benchmarking tests run. We can
see slight differences in the networking download speed of each
platform, with Gingerbread being the slowest and Jelly Bean
being the fastest. Floating-point calculations per second were all
the same for each platform.

 The very fact that we can 1) launch multiple versions of
Android on cloud infrastructure and 2) run the BOINC client on
these virtual devices and gather benchmarking results shows that
StarCloud did indeed succeed in it’s goal to test distributed
computing applications in a cloud environment. Even though
the overall performance of the virtual devices running the BOINC
client was suboptimal, it lays the groundwork for further testing
and optimization of StarCloud.

5. Conclusion
In this paper we present the novel StarCloud middleware to aid

application developers in testing their applications in a virtual
cloud of Android devices. We have shown that StarCloud can
be utilized in both public and private cloud infrastructure.
StarCloud can be a vital tool for researchers and developers alike
that are interested in testing their applications in scenarios where
more connected devices in a cloud are required. Moreover,
distributed computing on smartphones is becoming a reality now
and with the help of StarCloud, highly tuned applications can be
developed and tested to meet the various needs for Android
platforms and hardware specifications. Future work will focus
on improving the launch times of the emulators and VNC
sessions to allow developers and researchers to focus their time
on application testing and performance monitoring.

Figure 6. Android Emulator Running in EC2

Table 1. List of Devices Connected to BOINC

IPSJ SIG Technical Report

ⓒ 2013 Information Processing Society of Japan 4

Vol.2013-HPC-138 No.27
2013/2/22

Acknowledgments This work was supported in part by
JSPS KAKENHI Grant Number 24240006.

 References
[1] Burnette, Ed. Hello, Android: introducing Google's mobile

development platform. Pragmatic Bookshelf, 2009.
[2] Google Android. http://developer.android.com/
[3] Chou, Wu, and Li Li. "WIPdroid–a two-way web services and

real-time communication enabled mobile computing platform for
distributed services computing." Services Computing, 2008.
SCC'08. IEEE International Conference on. Vol. 2. IEEE, 2008.

[4] Ughetti, Marco, Tiziana Trucco, and Danilo Gotta. "Development
of agent-based, peer-to-peer mobile applications on ANDROID
with JADE." Mobile Ubiquitous Computing, Systems, Services and
Technologies, 2008. UBICOMM'08. The Second International
Conference on. IEEE, 2008.

[5] Google Android SDK.
http://developer.android.com/sdk/index.html

[6] Amazon Web Services (AWS). http://aws.amazon.com/
[7] Open source software for building private and public clouds.

http://www.openstack.org
[8] OpenStack Quantum. http://wiki.openstack.org/Quantum
[9] Borkar, Shekhar, and Andrew A. Chien. "The future of

microprocessors."Communications of the ACM 54.5 (2011): 67-77.
[10] Anderson, David P. "BOINC: A system for public-resource

computing and storage." Grid Computing, 2004. Proceedings. Fifth
IEEE/ACM International Workshop on. IEEE, 2004.

[11] StarCluster. http://star.mit.edu/cluster/
[12] Chun, Byung-Gon, and Petros Maniatis. "Augmented smartphone

applications through clone cloud execution." Proc. of the 8th
Workshop on Hot Topics in Operating Systems (HotOS), Monte
Verita, Switzerland. 2009.

[13] Nurmi, Daniel, et al. "The eucalyptus open-source cloud-computing
system."Cluster Computing and the Grid, 2009. CCGRID'09. 9th
IEEE/ACM International Symposium on. IEEE, 2009.

[14] High Performance Computing on AWS.
http://aws.amazon.com/hpc-applications/.

[15] Bornstein, Dan. "Dalvik vm internals." Google I/O Developer
Conference. Vol. 23. 2008.

[16] Scheifler, Robert W., and Jim Gettys. "The X window
system." ACM Transactions on Graphics (TOG) 5.2 (1986):
79-109.

[17] Richardson, Tristan, et al. "Virtual network computing." Internet
Computing, IEEE 2.1 (1998): 33-38.

[18] Ben-Kiki, Oren, Clark Evans, and Brian Ingerson. "YAML Ain't
Markup Language (YAML™) Version 1.1." Working Draft
2008-05 11 (2001).

[19] Intel Atom x86 Image for Android.
http://software.intel.com/en-us/articles/intel-atom-x86-image-for-a
ndroid-ice-cream-sandwich-installation-instructions-recommended

[20] http://developer.android.com/tools/devices/emulator.html
[21] NativeBOINC. http://nativeboinc.org/.
[22] PrimeGrid. http://www.primegrid.com/.

IPSJ SIG Technical Report

ⓒ 2013 Information Processing Society of Japan 5

Vol.2013-HPC-138 No.27
2013/2/22

