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An Acceleration Method for GPU-Based Volume
Rendering by Localizing Texture Memory Reference

Yuki Sugimoto1 Fumihiko Ino1 Kenichi Hagihara1

Abstract: This paper presents a cache-aware method for accelerating texture-based volume rendering on the graphics
processing unit (GPU). Because GPUs have a hierarchical architecture in terms of processing and memory units, cache
optimization is important to maximize their effective performance for this kind of memory-intensive applications. To
accomplish this, our method localizes texture memory reference according to the location of the viewpoint. The key
idea for this localization is to dynamically select the width and height of thread blocks (TBs) such that each warp,
which is a series of 32 threads simultaneously processed on the GPU, can minimize the stride of memory access. We
also incorporate transposed indexing of threads to perform TB-level cache optimization for specific viewpoints. Fur-
thermore, we maximize the TB size so that the spatial locality can be exploited with less active TBs. For relatively
large stride, we synchronize threads of the same TB at regular intervals to realize synchronous ray propagation. In
experiments using a GeForce GTX 580 card, we find that our cache-aware method doubles the worst rendering perfor-
mance, as compared with the original implementation provided by the CUDA and OpenCL software development kits
(SDKs).
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1. Introduction
Volume rendering [1] is a visualization technique for intuitive

understanding of three-dimensional (3-D) objects. For exam-
ple, this technique helps us in performing clinical diagnosis from
computed tomography (CT) images [2], [3] and in understand-
ing large-scale simulation results related to computational fluid
dynamics [4], [5].

In order to generate such helpful visualization, voxel values of
the target volume are accumulated into pixel values on the screen.
In more detail, a ray is generated from the viewpoint to each pixel,
and then values of penetrated voxels are sampled at regular inter-
vals along the ray for accumulation. Thus, the accumulation is ac-
complished from 3-D space to 2-D space. Volume rendering is a
memory-intensive application rather than a compute-intensive ap-
plication, because voxel values can be reused only within neigh-
boring rays. Consequently, achieving efficient memory access is
essential to attain high rendering performance.

To deal with this large amount of memory access, many ren-
derers [4], [6], [7] were implemented using the graphics process-
ing unit (GPU) [8], which is an accelerator for graphics applica-
tions. The memory bandwidth of the GPU is an order of mag-
nitude higher than that of the CPU: the bandwidth reaches 192.4
GB/s on a GeForce GTX 680 card, whereas it remains 25.6 GB/s
on a Core i7 3770K processor. Furthermore, GPU architecture is
capable of running thousands of lightweight threads in parallel,
which are useful to hide memory latency with data-independent
computation. Using this accelerator, the accumulation procedure
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can be easily parallelized because it does not have data depen-
dence between different rays (i.e., different pixels). The volume
data is typically loaded as a 3-D texture to interpolate voxel val-
ues by taking advantage of texture mapping hardware of the GPU
[9]. This special hardware has a cache mechanism to reduce the
latency of data access for acceleration. Consequently, the render-
ing performance can be increased by maximizing the locality of
reference.

In this paper, we present a cache-aware method for increas-
ing the frame rate of texture-based volume rendering. To achieve
this, our method maximizes the locality of reference by dynam-
ically selecting the width w and height h of thread blocks (TBs)
so that a group of threads called warp [10] can access data with
a small stride. Because threads in the same warp are simultane-
ously processed on the GPU, such parallel threads have to maxi-
mize the locality of reference. The selection of the TB shape w×h
can be determined according to the geometrical relationship be-
tween the viewpoint and the volume axes, because the physical
stride between two adjacent voxels depends on the volume axis
they are parallel. In addition to this warp-level optimization, our
method performs TB-level optimization for specific viewpoints.
Our method currently works with the compute unified device ar-
chitecture (CUDA) [10] and OpenCL [11].

2. Related Work
Krüger et al. [6] presented the impact of optimization tech-

niques such as early ray termination and empty space skipping
[12] on the GPU. Using these techniques, the rendering perfor-
mance is increased by a factor of 3. A similar technique is pre-
sented by Rijters et al. [7], who employ an octree data structure
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on the GPU. These techniques intend to reduce the amount of
data access while our optimization strategy reduces the latency of
data access.

An optimization strategy is presented by Ryoo et al. [13] for
CUDA applications. Their strategy investigates the number of
resident TBs to evaluate resource utilization. The TB size wh is
optimized using this metric but the TB shape w × h is not investi-
gated for further optimization.

Liu et al. [14] presented an optimization framework capable of
empirically searching for the best optimizations for GPU applica-
tions. Using their framework, we can easily find the best shape of
TBs in terms of the performance. In contrast to this empirical ap-
proach, our approach gives insight into the relationship between
the data locality and the memory access pattern. According to our
insight, we can prune the search space in terms of the TB shape,
which contributes to reduce the overhead of run-time optimiza-
tion.

3. GPU-based Volume Rendering
In this section, we present an overview of CUDA and a well-

known ray casting algorithm [15]. We then explain how this algo-
rithm can be typically implemented using texture mapping hard-
ware.

3.1 Compute Unified Device Architecture (CUDA)
A CUDA-compatible GPU [10] consists of hundreds of CUDA

cores structured in a hierarchy. This hardware has tens of
streaming multiprocessors (SMs), each containing 8 or 32 CUDA
cores depending on its generation. Using these cores, thousands
of threads are executed in a single-instruction, multiple-thread
(SIMT) fashion [10].

Threads are classified into data independent groups, namely
TBs, which are then assigned to a SM in a cyclic manner un-
til they exhaust available resources such as register files. Such
data independent TBs contribute to have more flexibility for effi-
cient scheduling of threads, so that more TBs should be resided
and processed together on the SM to achieve efficient overlap
of memory operations and arithmetic instructions. Each resident
TB is further broken into groups of 32 consecutive threads called
warps. A warp is the minimum scheduling unit managed by the
SM. The execution order of warps is dynamically determined by
the warp scheduler, which cannot be controlled by the program.

Threads usually form a 2-D TB, where they can be identified
with a 2-D index. The TB shape w × h can be specified by an
argument to the kernel function, which runs on the GPU for ac-
celeration. In contrast, the warp shape p × q cannot be directly
specified in the program, where p and q represent the width and
the height of warps, respectively. However, the warp shape is au-
tomatically determined by its enclosing TB, because threads in a
warp belong to the same TB and have consecutive indexes.

This implies that the warp shape p × q can be specified indi-
rectly through the TB shape w × h. Table 1 shows the correspon-
dence between the TB shape and the warp shape when wh = 256.
This table indicates that horizontal warps (i.e., p > q) are gener-
ated if w ≥ 8. Otherwise, vertical warps (i.e., p < q) are gener-
ated.

Table 1 Relationship between TB shape w×h and warp shape p×q. Values
are presented for the TB size wh of 256. Horizontal warps (i.e.,
p > q) are generated if w ≥ 8. Otherwise, vertical warps are gener-
ated.

TB shape w × h Warp shape p × q Aspect ratio of warp

1 × 256 1 × 32 1 : 32

2 × 128 2 × 16 1 : 8

4 × 64 4 × 8 1 : 2

8 × 32 8 × 4 2 : 1

16 × 16 16 × 2 8 : 1

32 × 8 32 × 1 32 : 1

64 × 4 32 × 1 32 : 1

128 × 2 32 × 1 32 : 1

256 × 1 32 × 1 32 : 1
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Fig. 1 Geometry of ray casting. Pixel values are computed by accumulat-
ing color and opacity values of voxels penetrated by a ray from the
viewpoint.

3.2 Ray Casting
Figure 1 illustrates the geometry used for ray casting [15]. Let

V be the volume to be rendered from the viewpoint O. We con-
sider a cubic volume of N×N×N voxels, where N represents the
volume size. We assume that each voxel has a scalar data associ-
ated with color and opacity values. Let x, y, and z be elements of
the voxel coordinates.

The ray casting technique casts a ray from the viewpoint O
to every pixel (u, v) on the screen S , where 1 ≤ u ≤ W and
1 ≤ v ≤ H. W and H here represent the width and the height
of the screen S . The value S (u, v) of pixel (u, v) is then computed
by accumulating color and opacity values of penetrated voxels.
This accumulation is done at regular intervals along the ray in
front-to-back order:

S (u, v) =
n∑

i=1

α(ei)c(ei)
i−1∏
j=0

(
1 − α(e j)

) , (1)

where ei represents the i-th voxel penetrated by the ray, n repre-
sents the number of penetrated voxels, c(ei) and α(ei) represent
the color and the opacity of voxel ei, respectively, and α(e0) = 0.

3.3 Texture-based Rendering with CUDA
Eq. (1) indicates that different pixel values can be computed in

parallel because there is no data dependence between them. Con-
sequently, the computation of a pixel is assigned to a thread in
typical renderers. A screen of W × H pixels can then be rendered
by WH threads, which compose dW/we × dH/he TBs. Using this
parallel scheme, voxels are accessed in front-to-back order.

Since rays do not always penetrate the center of voxels, voxel
values must be interpolated before accumulation. To accelerate
this interpolation, many implementations employ texture-based
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Fig. 2 Relationship between the frame rate and the hit rate of texture cache.
These results were obtained with a fullerene dataset. The horizontal
axis represents the rotational angle around the y-axis. Red and blue
lines show the frame rate and the hit rate, respectively.

Fig. 3 Organization of a 3-D texture in CUDA. A 3-D texture consists of
a bunch of 2-D slices optimized for 2-D spatial locality via Morton
curve [18]. A series of red arrows represents the sequence of physi-
cal memory address in a 2-D slice. The physical address is shown in
each texel’s upper left corner.

rendering [9], which performs interpolation using texture map-
ping hardware of the GPU. Thus, the volume is accessed via a
3-D texture to take advantage of hardware accelerated interpo-
lation. Viewpoint movement is usually realized by rotating the
3-D texture with a fixed viewpoint. Let θx, θy, and θz be the ro-
tational angles around the x-, y-, and z-axes, respectively. An
arbitrary viewpoint then can be specified by (θx, θy, θz), where
0 ≤ θx, θy, θz < 360.

Figure 2 shows our preliminary evaluation results obtained
with a CUDA software development kit (SDK) renderer [10]. The
cache hit rate was measured by CUDA Visual Profiler, which pro-
vides profiling results on a SM. As shown in this figure, the hit
rate of texture cache mainly determines the rendering frame rate.
These results motivated us to tackle the issue of cache optimiza-
tion for fast visualization.

4. Texture Memory Organization
Figure 3 shows how a logical address space is mapped onto a

physical memory space in a 3-D texture [16], [17]. As shown in
this figure, a 3-D texture consists of a bunch of 2-D slices. Each
slice is further optimized for 2-D spatial locality via Morton’s z-
order curve [18], as illustrated in a sequence of red arrows in Fig.
3. Morton curve has a recursive hierarchy, so that a z-ordered
block at the l-th level of hierarchy contains a 2-D slice of 2l × 2l

texels, where 1 ≤ l ≤ dlog Ne (see Fig. 4). For simplicity, we
assume N being a power of two (i.e., N = 2l) in the following
discussion.

Although Morton curve is optimized for 2-D spatial locality,
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Fig. 4 Hierarchical structure of Morton curve. A block at the l-th level
contains four internal blocks of the (l − 1)-th level. The maximum
stride appears between these internal blocks: between texels a and b
along the horizontal axis, and between texels c and d along the ver-
tical axis. The physical index of texels b and d are 4l−1 and 2 · 4l−1,
respectively. The physical index of texels a and c are

∑l−2
k=0 4k and

2 ·∑l−2
k=0 4k , respectively.

the physical stride between two adjacent voxels is not uniform in
this data structure. Here after we investigate the physical stride
in more detail. Suppose that two adjacent voxels ei and ei+1 are
accessed during rendering. The stride between these voxels can
then be classified into two groups depending on their coordinates:
( 1 ) The adjacent voxels ei and ei+1 have different z. In this case,

ei and ei+1 exist on two adjacent 2-D slices. These voxels
can be accessed with a stride of N2, because they have the
same x and y.

( 2 ) The adjacent voxels have different x or y. In these cases,
voxels ei and ei+1 exist on the same slice. The stride between
them varies according to the axis they are parallel. For ex-
ample, the strides in Fig. 3 range from 1 to 11 if ei and ei+1

are parallel to the x-axis. However, the maximum stride at
the l-th level of hierarchy appears between adjacent blocks
of the (l − 1)-th level, as shown in Fig. 4. The maximum
stride along the x-axis can be given by (2 · 4l−1 + 1)/6 while
that along the y-axis can be given by (2 · 4l−1 + 1)/3. Since
N = 2l, voxels along the x-axis and the y-axis can be ac-
cessed with a stride of (N2 + 2)/6 and that of (N2 + 2)/3,
respectively.

In summary, the x-axis, y-axis, and z-axis have a different stride
between adjacent voxels, and their ratio can be approximated by
1 : 2 : 6. Therefore, it is better to access voxels along the x-axis
in order to achieve more cache hits.

5. Proposed Method
Our cache-aware method, which primarily minimizes the stride

of memory access for warps, consists of four strategies as follows:
( 1 ) Dynamic selection of the TB shape.
( 2 ) Transposed indexing of threads.
( 3 ) TB size maximization.
( 4 ) Synchronous ray propagation.
The first strategy aims at performing warp-level optimization
while the remaining strategies are responsible for TB-level opti-
mization. These strategies are dynamically activated according to
the location of the viewpoint (i.e., the rotational angles). Table 2
summarizes the relationship between the activated strategies and
the rotational angles. Note that this table shows the relationship
for 0 ≤ θx, θy, θz ≤ 90, but it can be extended to other rotational
angles by using the symmetricity of geometry.
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Table 2 Relationship between the activated strategies and rotational angles.
An empty cell corresponds to switched off.

Rotational Strategy θx, θy, θz: rotational angle (degree)

axis 0–15 15–30 30–45 45–60 60–75 75–90

x (1) 32 × 1 32 × 1 32 × 1 32 × 1 32 × 1 32 × 1

(2)

(3)

(4)

y (1) 32 × 1 16 × 2 8 × 4 4 × 8 2 × 16 1 × 32

(2) On On On

(3) On On On

(4)

z (1) 32 × 1 16 × 2 8 × 4 4 × 8 2 × 16 1 × 32

(2) On On On

(3)

(4) On On On On On On

5.1 Dynamic Selection of TB shape
To maximize the locality of reference, our method focuses on

three points as follows:
( 1 ) The SM processes threads in the same warp at the same time.
( 2 ) Each volume axis has a different stride between adjacent

voxels, as we analyzed in Section 4.
( 3 ) The warp shape p × q is determined by the TB shape w × h,

as we mentioned in Section 3.1.
The first point motivates us to optimize the memory access pat-

tern of a warp rather than that of a thread. This point is a unique
feature owing to highly-threaded GPU architecture. On earlier
acceleration systems such as cluster systems [3], [19], optimiza-
tion is successfully done for a single process (i.e., a single ray),
because they are based on distributed memory architecture. In
contrast, we emphasize optimization of a warp (i.e., a ray frus-
tum) as a key acceleration strategy for the GPU. Thus, we must
investigate the memory access pattern that can be caused by a
warp. Because voxels are sampled at regular intervals from the
viewpoint, a warp accesses voxels on the surface of a sphere. For
simplicity, we assume that this spherical surface can be approx-
imated with a plane. Under this approximation, a warp accesses
voxels on a plane that are parallel to the screen.

With respect to the second point, voxels should be always ac-
cessed along the x-axis, which has the smallest stride among the
volume axes. However, this is not a practical solution because the
volume can be rendered from an arbitrary viewpoint, as shown
in Fig. 5. Consequently, the volume axes have different appear-
ance on the screen, and thus, the x-axis can be parallel to one of
the horizontal, vertical, and depth directions. Therefore, we de-
termined to give priority to the volume axes: voxels should be
accessed in the order of x, y, and z to have smaller strides. To
realize this prioritization for warps, we optimize the warp shape.

The third point plays the key role in realizing the prioritized
access mentioned above. The warp size p × q must be selected
such that each warp can access voxels in the order of x, y, and
z. For example, horizontal warps are better than vertical warps
if the primary axis with a smaller stride appears as a horizontal
line on the screen, as shown in Fig. 5(a) and 5(b). In these cases,
horizontal warps are allowed to access voxels with smaller strides
than vertical warps.

(θx, θy, θz)

= (0, 0, 0)

(a)

(θx, θy, θz)

= (90, 0, 0)

(b)

(θx, θy, θz)

= (0, 0, 90)

(c)

(θx, θy, θz)

= (0, 90, 0)

(d)

Fig. 5 Geometrical relationship between the viewpoint and the volume
axes. For simplicity, we consider here four representative viewpoints
(a)–(d), which make two of the volume axes parallel to the screen
axes. The x-axis and the z-axis have the smallest stride and the largest
stride among the volume axes, respectively.

According to the three points mentioned above, we determined
the TB shape w × h for an arbitrary rotational angle (θx, θy, θz)
(Table 2). Given (θx, θy, θz), the TB shape w × h is selected in the
following three steps:
( 1 ) Parallel plane detection. Our method detects the plane most

parallel to the screen. For example, the xy-plane is such a
parallel plane in Figs. 5(a) and 5(c).

( 2 ) Primary axis detection. The primary axis with a smaller
stride is selected from two axes that compose the parallel
plane. For example, the parallel plane in Fig. 5(d) is the yz-
plane, and thus, we select the y-axis as the primary axis.

( 3 ) TB shape selection. The TB shape is selected according to
the direction of the primary axis rendered on the screen. Ver-
tical and horizontal warps are selected if the primary axis is
rendered in a vertical line and in a horizontal line on the
screen, respectively. For example, the TB shape of 1 × 256
is selected for viewpoints in Figs. 5(c) and 5(d), because the
primary axis is rendered in a vertical line from these view-
points. For other oblique lines, we use a hybrid of vertical
and horizontal warps. To achieve this, we classify the rota-
tional domain 0 ≤ θx, θy, θz ≤ 90 into six groups (Table 2),
because the warp shape p × q can be one of the six config-
urations (Table 1) and a vertical line turns to be a horizontal
line after 90 degree rotation.

With respect to the warp shape of 32 × 1, there are four can-
didates for the TB shape in Table 1: w × h = 32 × 8, 64 × 4,
128× 2, and 256× 1. Among these candidates, we decided to use
w × h = 32 × 8, according to our preliminary evaluation results.
The highest performance was obtained for this shape, because
textures are optimized for 2-D spatial locality, as we mentioned
in Section 4. From this point of view, horizontal warps in a TB
should be placed vertically rather than horizontally.

5.2 Transposed Indexing of Threads
In contrast to the dynamic selection of the TB shape, which

performs warp-level optimization, the remaining strategies per-
form TB-level optimization. The transposed indexing of threads
is activated when the primary axis is parallel to the vertical di-
rection (Table 2). This strategy intends to place a series of TBs
as vertical as possible, and thus, SMs are allowed to access voxel
along the primary axis with a smaller stride.

Figure 6 shows an example of transposed indexing. As shown
in Fig. 6(b), our method chooses vertical TBs if the primary axis
appear in vertical. However, a series of vertical TBs is placed hor-
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Fig. 6 Transposed indexing of threads. (a) Horizontal TBs, (b) vertical TBs
without transpose, and (c) vertical TBs with transpose. Because TB
assignment is done along the u-axis in a cyclic manner, (b) a naive
assignment of vertical TBs is not symmetric to (a) that of horizon-
tal TBs. In contrast, our transposed indexing exchanges the u- and
v-axes so that its assignment is symmetric to (a).

izontally in the original indexing, which are then assigned to SMs
in a cyclic manner. Consequently, SMs access different columns
simultaneously, failing to exploit the data locality along the pri-
mary axis.

To solve this problem, we apply a transpose operation to thread
indexing by exchanging the (u, v) coordinate with the (v, u) coor-
dinate. Owing to this transposed geometry, a series of vertical
TBs is placed vertically as shown in Fig. 6(c). As a result, this
execution configuration is symmetric to Fig. 6(a), which is se-
lected if the primary axis is parallel to the horizontal direction.

5.3 Thread Block Size Maximization
As we mentioned in Section 3.1, each SM usually executes sev-

eral TBs concurrently. Concurrent TBs are useful to maximize
the effect of memory access hiding if they have high locality with
high cache hit rate. However, this does not apply if concurrent
TBs access a wide range of memory addresses with poor locality.
In this case, it is better to maximize the TB size wh to reduce the
number of concurrent TBs. In addition, the TB size wh must be
a multiple of the warp size (i.e., 32) to avoid CUDA cores from
being idle during SIMT execution.

With respect to our renderer, we found that the latter case ap-
pears when the x-axis is parallel to the depth direction. Such a
situation forces threads to access along the y-axis, so that warps
are required to tolerate relatively large strides. To make the mat-
ter worse, concurrent TBs are usually responsible for separated
region on the screen, mainly due to the cyclic task distribution
mentioned in Section 3.1. Consequently, we decided to use a TB
size wh of 512, which is the largest configuration that runs on our
experimental GPU.

5.4 Synchronous Ray Propagation
Owing the nature of SIMT execution, threads can execute dif-

ferent lines of the GPU code. This implies that rays proceed inde-
pendently though they are assigned to the same TB. Synchronous
ray propagation intends to minimize the gap in the depth direction
between propagating rays. To achieve this, we simply perform
synchronization by calling __syncthreads() at every loop iter-
ation (i.e., at every sampling step).

Because this strategy incurs synchronization overhead, our
method activates the strategy when the xy-plane is parallel to the
screen. In this case, rays are parallel to the z-axis, which has

(a) (b)

Fig. 7 Experimental datasets. (a) The spatial probability distribution of the
electron in an hydrogen atom. (b) a fullerence called buckyball.

the largest stride. Consequently, the overhead can be ignored as
compared with the benefit of cache utilization.

6. Experimental Results
To evaluate our cache-aware method in terms of the render-

ing performance, we applied our method to renderers included
in CUDA and OpenCL SDKs [20], [21]. The original renderers
use a 1-D texture to store a color map table, which associates
color and opacity values with each voxel. Because reference to
this table results in perturbation of cache behavior. Therefore,
we modified the code to store the table in shared memory. Thus,
the modified code uses textures only for the volume data. We
also modified the OpenCL-based renderer because it employs a
back-to-front algorithm. We not only replaced the algorithm with
a front-to-back algorithm but also adopted early ray termination
[6] for acceleration. The original versions use a fixed TB shape
w × h = 16 × 16 (i.e., p × q = 16 × 2) for arbitrary viewpoints.

We used two datasets, fullerene and atom, shown in Fig. 7. The
atom dataset can be regarded as a transparent dataset, whereas
the fullerene dataset can be regarded as an opaque dataset. Both
datasets consist of 8-bit data and are resized to N = 1024. These
datasets were rendered on a screen of size W = H = 1024.

For experiments, we used a desktop PC equipped with a
GeForce 580 GTX card. Our machine runs with Windows 7,
CUDA 4.2, OpenCL 1.1, and graphics driver 306.97.

Figure 8 shows the frame rates of the atom dataset with our
dynamic method and the original static method. During measure-
ment, we rotated the volume around the x-, y-, then z-axes. Here,
the width p of warps to select for viewpoints is shown in Fig. 9.

Firstly, for the x-axis rotation, the parallel plane can be the xy-
plane or the xz-plane (Figs. 5(a) and 5(b)). As shown in Fig. 8(a),
the static method show relatively high frame rates, but slightly de-
creases the frame rate for rotational angles except around θx = 0
and 180. In contrast, our method successfully eliminates such
performance degradation by using horizontal warps for all θx

(Fig. 9(a)). As shown in Figs. 5(a) and 5(b), the performance
degradation is due to the z-axis, which becomes parallel to the
vertical direction at θx = 90 and 270. Because the z-axis has the
largest stride, it is better to use horizontal 32 × 1 warps for this
rotation.

For the y-axis rotation, on the other hand, the parallel plane can
be the xy-plane or the yz-plane (Figs. 5(a) and 5(d)). The frame
rates in Fig. 8(b) show a quite different behavior as compared with

5ⓒ 2013 Information Processing Society of Japan

Vol.2013-HPC-138 No.8
2013/2/21



IPSJ SIG Technical Report

0

20

40

60

80

100

0 45 90 135 180 225 270 315 360

Fr
am

e 
ra

te
 (f

ps
)

Rotational angle (degree)

(a) Rotation around the x-axis
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Fig. 8 Frame rates of our dynamic method and the original static method. The atom dataset was used
with CUDA. Green and red plots correspond to our method and the original method, respectively.
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Fig. 9 The width p of warps selected for viewpoints. The height is given by q = 32/p. The original static
method uses p = 16 for arbitrary viewpoints.

those in Fig. 8(a). Both the static method and our method drops
the frame rate when 30 ≤ θy ≤ 150 and 210 ≤ θy ≤ 330, but our
method increases the worst frame rate from 7.9 fps to 15.2 fps,
owing to the switch to vertical warps (Fig. 9(b)). These signifi-
cant drops are due to the z-axis again, which appears in vertical
when θy = 90 and 270 (Fig. 5(d)). At these rotational angles,
the x-axis is parallel to the depth direction. Consequently, warps
cannot exploit the highest locality, even though they change their
shape. When θy = 90, our dynamic selection strategy increases
the frame rate from 7.9 fps to 11.0 fps, which is then increased to
12.6 fps by our transposed indexing strategy.

Finally, for the z-axis rotation, the parallel plane can be the
xy-plane (Figs. 5(a) and 5(c)). The frame rates in Fig. 8(c) are
similar to those in Fig. 8(a), but our method failed to outperform
the static method at θz = 0 and 180. This is due to the overhead
of thread synchronization. As we mentioned in Section 5.4, we
activate this strategy when the z-axis is parallel to the depth di-
rection. If we switched off this strategy at these angles, the frame
rate was increased from 51.6 fps to 54.3 fps, which is close to that
of the static method, namely 54.8 fps. However, he frame rates at
other angles dropped in contrast to θz = 0 and 180. Consequently,
further investigation must be needed to use this strategy.

We next analyzed the frame rates for the fullerence dataset,
which can be regarded as an opaque dataset as compared with the
atom dataset. Figure 10 shows the measured results for the x-, y-.
and z-axis rotations.

In comparison with Fig. 8, the frame rates of the static method
were increased by roughly 20 fps, owing to early ray termination.
That is, this opaque dataset allows rays to be terminated earlier
than the transparent atom dataset. However, this increase cannot
be clearly seen when 30 ≤ θy ≤ 150 and 210 ≤ θy ≤ 330 in Fig.
10(b), where the frame rates are less than 20 fps. In contrast, our
dynamic method successfully increases the frame rates around
30 fps in Fig. 10(b). Especially, our method improves degraded

frame rate from 13.0 fps to 29.0 fps when θy = 90 and gains the
best speedup of a factor of 2.2. This indicates that the impact
of cache optimization is larger than that of visibility-based opti-
mization such as early ray termination. Furthermore, the achieved
frame rates around 30 fps are higher than those obtained with the
opaque dataset (i.e., approximately 20 fps in Fig. 8(b)). Conse-
quently, we think that our cache-aware method cooperates well
with the visibility-based method, leading to better utilization of
texture cache.

In Fig. 10(c), we again observed performance decreases due
to the synchronization overhead. By contrast to the results of
the transparent dataset in Fig. 8(c), the decreases can be found
in many rotational angles around θz = 0 and 180. This is due to
shortly terminated rays, because it contributes to reduce the gap
in the depth direction between propagating rays. The reduced gap
means that rays are naturally synchronized each other, and thus,
the benefit of explicit synchronization is minimized when using
the visibility-based optimization.

Finally, we evaluated our method using an OpenCL-based ren-
derer. Figure 11 show the frame rates for the atom dataset. As
compared with the CUDA-based results in Fig. 8, the frame rates
were reduced by roughly 33%. This lower performance is prob-
ably due to the driver, which is not optimized well for OpenCL.
Despite this lower performance, the performance characteristics
in Fig. 11 is similar to those in Fig. 8. Actually, our method suc-
cessfully increased the frame rates for the y-axis rotation. How-
ever, the synchronization overhead again reduced the frame rates
for the z-axis rotation.

7. Conclusion
In this paper, we presented an acceleration method for texture-

based volume rendering on the GPU. Our method increases the
hit rate of texture cache by choosing the shape of TBs during ren-
dering. This dynamic selection focuses on the geometrical rela-
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Fig. 10 Frame rates of our dynamic method and the original static method. The fullerence dataset was
used with CUDA. Green and red plots correspond to our method and the original method, respec-
tively.
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Fig. 11 Frame rates of our dynamic method and the original static method. The atom dataset was used
with OpenCL. Green and red plots correspond to our method and the original method, respec-
tively.

tionship between the viewpoint and the volume axes. Our method
determines the TB shape such that threads in the same warp can
have a small stride of memory access. Such a small stride can
be obtained if each warp accesses consecutive voxels along the
x-axis. In addition to this warp-level optimization, our method
activates TB-level optimization for some viewpoints.

In experiments, we compared our method with a naive method
that uses a fixed shape of TBs. We found that our dynamic
method increases the frame rates for the y-axis rotation, where
the rendering performance is relatively lower than other view-
points. Moreover, our cache-related method efficiently works
with a visibility-based method, demonstrating an efficient utiliza-
tion of texture cache particularly for an opaque dataset. Owing to
our cache utilization, the worst frame rates were increased from
13.0 fps to 29.0 fps, achieving the best speedup of a factor of 2.2.

Future work includes abstraction of our cache-aware method
for other memory-intensive applications.
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