(TINFAF 1 7lEEBRURT—2 2 3y T

Resiliency of Secret Sharing Schemes against Node Capture
Attacks for Wireless Sensor Networks

Eitaro KOHNO, Tomoyuki OHTA, and Yoshiaki KAKUDA

Graduate School of Information Sciences,
Hiroshima City University
3-4-1 Ozuka Higashi, Asaminami-ku,
Hiroshima, Japan, 731-3194
{kouno,ohta kakuda}@hiroshima-cu.ac.jp

Abstract
In wireless sensor networks, the data is transmitted by radio waves. Sensor nodes, which are used in
wireless sensor networks, have limited computational power and memory size. The data is vulnerable
to attack due to the nature of the systems so maintaining confidentiality is an important problem.
However, it is difficult to apply general methods of security to wireless sensor networks. Most methods
are based on common (secret) key cryptosystems or public key cryptosystems. However, these methods

do not protect against node capture attacks.

In this paper, we propose a new distribution method resilient against node capture attacks using
Secret Sharing Scheme. In addition, we will confirm the ability of our method to improve resiliency
against node capture attacks, comparing it with TinySec, which is the major security architecture of

wireless sensor networks.

1 Introduction

Highly confidential information relating to fields
such as crime prevention, healthcare, disaster man-
agement, and so on is often sent across Wireless
Sensor Networks (WSNs) [1]. In such cases, it is
important to prevent attacks such as eavesdrop-
ping, unauthorized insertion of packets, and data
compromising. Wireless data transfer uses WSNs,
and the sensor node of WSNs has strong limitations
on the computational resources and the amount of
memory. Another problem faced by the nodes is the
energy constraint, as the batteries can run out eas-
ily. Some countermeasures against this have been
reported. Among them there is a method based
on fault-tolerant techniques. In this method, the
original data is duplicated and transmitted using
multiple paths to the sink node. Whenever some
intermediate nodes exhaust the battery, the sink
node can receive data by the voting technique.
TinySec [2] is one of the most popular security ar-
chitectures to keep data confidential. TinySec pro-
vides mechanisms of encryption and authentication
to WSNs using the common key cryptosystems.
This method allows us to overcome eavesdropping
attacks and authenticate both nodes. However, the
idea of using a key creates a riew problem, though,
all common key and public key cryptosystems have
a secret key. The protection of the key is another

important problem of the security of WSNs. One of
the popular key protection methods was first pro-
posed by Eschenauser and Gligor [6]. Their main
idea is based on randomly predistributing a key to
each node. When two nodes want to communi-
cate with each other, they will search to share a
key. Their method is known as the random key
pre-distribution scheme (RKP). RKP has been im-
proved by their successors [7] [8]. Most of these
methods mentioned above become invalid when the
keys are compromised. To deal with this draw-
back, a method of scrambling codes and keys [10]
was proposed using code obfuscation techniques [9].
This method required more memory and execution
time than TinySec. Furthermore, the sharing key
system generates overhead in the time it take to
share new keys and control messages. When WSNs
start sharing a new key, the control packets are ex-
changed several times. These become the obstacles
of rapid key sharing and the re-key phase that must
be overcome.

In this paper, we propose a new distribution
method resilient against the node capture attack
using Secret Sharing Scheme [11][12][13]. In addi-
tion, we confirm the ability of our method to im-
prove resiliency against node capture attack, com-
paring it with TinySec. We compare the agreement
time of our scheme to existing methods.

— 285 —

ERR206E12H

The rest of the paper is organized as follows: in
Section 2, we introduce node capture attacks and
some problems with wireless sensor networks. In
Section 3, we highlight the proposed scheme, re-
spectively. In Section 4, we discuss the performance
of our scheme against node capture attacks. We
conclude the proposed method in Section 5.

2 Fault detection and Security on
WSNs

2.1 Mica Mote

A Mote [3] is one of the most popular implemen-
tations of sensor nodes in WSNs. The platform of
the Mote varies depending on the type of hardware
and the communication devices. Table 1 shows the
most popular platforms and specifications of the
Mote. Each platform has very limited computa-

Table 1: Platforms of Mote and their hardware
specifications

| Platform [| MICAz | MICA2 [MICA |
CPU ATmegal28 ATmegal03
Clock 7.37 7.37 4
(MHz)
Program Memory 128 128 128
(kByte)
SRAM 4 4 4
(kByte)
Radio Frequency 2405 315/433 433/915
(MHz) /915
Maximum Data 250 38.4 40
Rate (kbps)

tional power and memory size compared to a PC.
MICAz and MICA2 have the same specifications
other than the communication device.

The Mote has a special operating system for
embedded devices, called TinyOS. The develop-
ing environment and tools are distributed as open
source software. In addition, we use the simulator
TOSSIM [4] to check the behavior on a real ma-
chine.

2.2 Threat model of node capture
attacks

The nodes in WSNs use radio wave links to commu-
nicate with each other. In addition, sensor nodes
need to be exposed to the hostile environment for
a long time to take a measurement. As a result,

WSNs may be affected by many kinds of attacks.
This section describes the attacks which are tar-
geted in this paper for WSNs.

Zhang [5] et al. list three kinds of attacks to wire-
less networks: eavesdropping, compromising, and
node insertion. Among these, the eavesdropping
attack can be prevented by various cryptographic
methods using a common (secret) key. TinySec is
one of the popular architectures of these methods.
However, systems such as TinySec are compara-
tively weak against node compromise. Figure 1
shows the key being compromised by a node cap-
ture. In this paper, a node capture attack is defined

Shared secret keys
(RC5, Skipjack)

Adversary

Figure 1: Compromising a common (secret) key
from node capture attacks in TinySec

as keys/data inside a node being compromised or
stolen. Once the keys/data are compromised, they
become invalid and the system is corrupted.

3 Proposed method
3.1 Assumptions
In this section, we make the following assumptions:

e Each node which transmits measured data has
one or more paths to the sink node.

e If the node has multiple paths to the sink, the
node can distinguish each path with an iden-
tifier.

e All of the nodes pre-share the same irreducible
polynomial p(z).

— 286 —

Figure 2: Assumptions of the proposed method

s

Original Data —] PathiD=u,

= = i Path D = u,

L e T

Chack Codo .

Caalate 0o : R

(cn) Threshold Scheme *~---vve-.d S S ’
ISinkNodeI

Paﬂl’D-Ui
PathiD=u

PathiD=u}

PathiD =y,

.......................

Figure 3: Conceptual diagram of our proposed
method

Figure 2 shows a node which has three paths to
the sink node. Each path can be distinguished by
ID = uy,uz,u3. While the routing protocol for
the method of finding multiple paths is outside the
scope of this paper, the sequence numbers of the
route request packets and route reply packets can
be utilized for ID.

3.2 Overview and key idea of pro-
posed method

The conceptual diagraﬁx of our proposed method
is illustrated in Figure 3. Our basic idea is to uti-
lize the dispersal of the information to protect the

original data S by the threshold scheme [11][12]
on a source node. At the same time, the source
node calculates the check code (e.g. check sum,
hash without key, and so on.) C(S) before dis-
persing the original data S. Afterward, the source
node calculates each share by the threshold scheme
using f(z) = ag + Z;‘;ll a;jz? over GF(2™) from
the original data, S, and the check code value,
C(S), individually. The random integers a; (i =
1,2,---,k — 1) are generated by each source node.

Suppose that the calculated share from the check
code is denoted as c;. Each share (u;,v;,¢;) is
transmitted along an appropriate path. When each
share reaches the sink node, it is decrypted using
Lagrange’s interpolation method[11] [12]. At this
time, the source node does not seek an agreement
on the threshold value with the sink node. This
means the source node can change the threshold
value at anytime without having to consult with
the sink node.

In a WSN such as in Figure 2, we consider two
types of emergent events: a node fault and a node
capture. If a node fault occurs, the data cannot be
transmitted to any its neighboring nodes. On the
other hand, if a node is captured by an adversary,
it can be manipulated in any number of ways. In
this paper, we assume that the captured node fab-
ricates the transmitted data. As the result, WSNs
are classified into 4 cases: (a) without any event;
(b) with one or more node fault(s); (¢) with one or
more node capture(s); (d) without any event but
re-routing.

If the sink node uses our method for decryption,
case (a) is identified if the data is decrypted cor-
rectly; cases (b) and (c) have occurred if it fails the
verification by check code after being decrypted;
and case (d) if the data is decrypted correctly but
the threshold number does not match.

If captured nodes fabricate the path ID, the
source node creates shares utilizing it. Because of
the inconsistency between the fabricated and cor-
rect path ID, the sink node can not calculate correct
decrypted data.

3.3 Algorithm

We describe the algorithms and the procedures of
the source/sink node using Figure 3.

procedure of source node First of all, each
source node calculates the CRC (Cyclic Re-
dundancy Code) value, C(S), from the own

— 287 —

original data S. Each source node calculates
shares, v; and ¢;, as follows:

k-1
v, = S+ Zaju{s ey
i=1
k-1 .
e = CO)+) e, (2)
j=1

where a; (j =1,2,---,k—1) are random num-
bers and wu; is path ID. Equations (1) and (2)
are calculated over GF(2™). We employ a
(k,n) threshold scheme to produce n shares,
where n > k.

procedure of sink node The sink node uses La-
grange’s interpolation method to calculate the
decrypted data S’ and its CRC value C'(S) us-
ing shares from the source node. The accuracy
of the decrypted data, S, is checked by com-
parison between CRC value of decrypted data,
C(S’), and decrypted CRC value from shares,
C'(9S).

3.4 Implementation
method

Using the proposed method, we implemented the
prototype system on the TinyOS 1.15 with nesC, a
compiler. Table 2 shows the comparison of mem-
ory size in the implementation of the proposed
method. On implementation, we use GF(28) and
p(z) = 28 +27+22+z+1 for the threshold scheme,
and the CRC-16 function from the ITU-T CRC
standard [14] with g;6(z) = z'6+z'2+25+1. In Ta-

of proposed

Table 2: Comparison of memory size for various
platforms and methods

| Platform || Memory | TinyOS | TinySec | Proposed
MICA ROM 8.21 18.4 12.0
(kByte) (2.24) (1.46
RAM 336 616 933
(Byte) (1.83) (2.78)
MICA2 ROM 10.5 19.4 13.9
(kByte) (1.85) (1.32)
RAM 447 706 1044
(Byte) (1.58) (2.34)
MICAz ROM 9.87 (-) 135
kB; - 1.37
392 - J3'8'5)"'
(Byte) (@) (2.52)

ble 2, “TinyOS” does not include security support,
“TinySec” shows TinySec with Skipjack, and “Pro-
posed” shows our proposed method. Table 2 shows,
for each of the three methods, memory size is in ac-
ceptable range of RAM and ROM. And the number
within the table in parentheses shows the ratio of
the values to its “TinyOS.” The ROM size of our
method is smaller than that of “TinySec,” because
the calculation of threshold scheme are more light
weight than the key based cryptosystems. How-
ever, the RAM size of our method is larger than
that of “TinySec.” It is large due in part to buffer
size needed to store each share until finishing the
SSS calculation.

4 Simulation results and discussion

4.1 Experiment for evaluation

We define resiliency against single node capture as
the security of WSNs. We determine the reliability
of WSNs on the expected number of compromised
nodes, which are equivalent to stolen data. In ad-
dition, we also evaluate execution time and total
size of the transferred packets, which are the over-
head of the system. For the experiment, we use
the topology illustrated in Figure 4. The network

1 30Feet , 30Fest :
1
.,ygd_el---"ioseﬁ.-__‘ Node?
]
: : :
, 10Feet ! ' i | 30Feet
I 1 :
]] 1
‘ _‘ Node2 _l‘Nodes 6 [Nodes
'Node0 | H !
tnk
(Sink) : : ! 30Feet
1 1 !
1 i :
'I Node3 'I Node6 1 |Node

Figure 4: The topology of the experiment

has a lattice consisting of one sink node and nine
source nodes. The packet loss rate of the system
was generated by LossyBuilder, to reflect the re-
sults of MICA2. In the experiment, the multipath
from the source node to sink was determined au-
tomatically by packet loss rate. When the packet

— 288 —

loss rate of a link is 5 % or above, the link is as-
sumed to be disconnected. We set up the route
from each source node to the sink with static rout-
ing. In the (k,n) threshold scheme, we employ the
value of threshold of k = n.

Table 3: Results of experiments

Items || TinyOS | TinySec | Proposed
Number of data
streams when a 1.87 1.87 1.51
single node ' (1.00) (0.81)
was compromised
Execution time 1.36 1.40 4.20
(sec) (1.03) (3.08)
Amount of data 36.0 41.0 124
(Byte) (1.14) (3.44)

Table 3 shows the results of the experiment. All
data in Table 3 are the average of 10 trials. The
bracketed numbers in Table 3 indicates an increas-
ing ratio based on each value of its “Tiny0S.” As
seen in Table 3 the proposed improvement in the
ratio of execution time and the number of packets.
Meanwhile, we have eliminated the captured of the
sink node by third party. Next, we consider the
relation between the shortest number of hops and
fraction of data compromised. We determine the
fraction of data compromised versus the shortest
hops on the probability of stolen data of a node
with the shortest hops, when a single node is cap-
tured. Figure 5 shows the fraction of data compro-
mised versus the shortest hops. Figure 5 indicates
that our proposed method becomes more effective
as the number of hops increases.

method so as not to use it on a node that has 1 hop.
Table 4 shows the results of our observed data. In
Table 4, “Modified” means the modified method
mentioned above; “Proposed” means the original
proposed method. The results of Table 4 indicate
that our “Modified” method can reduce the over-
head by decreasing the execution time, amount of
packets, and amount of memory, without perfor-
mance degradation of the resiliency (of single node
capture attacks).

o 08
2 - .
[0.5 P
] [4
£ 04 e
g - Tiny0s, -
TinySec, g e
g » -~ J P sed
S 02 e nope
g /
g0l
frag
0 1 1 1 1
1 2 3 4 5

Minimum hop counts to the sink node

Figure 5: Fraction of data compromised and short-
est hops from nodes to sink

Table 4: Overhead comparison of Modified and
Proposed methods

On the shared secret or public key based cryp- Items || Modified Proposed
tosystems, the system needs to re-key when it de- [Number of data streams N
tects compromising keys and so on. When the sys- | when a single node was || 1.51 (0.81) | 1.51 (0.81)
tem changes the keys of two nodes, the nodes must compromised
exchange the information to create new keys a num- Execution time (sec) 3.05 (2.24) | 4.20 (3.08)
ber of times. As a result, the key based systems ™Zp5unt of data (Byte) || 90.2 (2.51) | 124 (3.44)
affect the length of the hops. However, our system ROM (kByte) 12.3 (1.14) | 12.7 (1L.17) |
can change the threshold number and the polyno- RAM (Byte) 505 (1.13) | 521 (L.18)
mial f(z) without any agreement. This is the sig- - -

nificant advantage over the key based systems.

4.2 Overhead

Now we will look at the overhead of nodes that have
1 hop to the sink node. We modified the proposed

5 Conclusion

In many cases, the sensor nodes are exposed to

the environment for a long time. Therefore node
28\
P

— 289 —

capture attacks associated with stealing nodes are
important to take into account when considering
network security.

In this paper, we proposed applying the Secret
Sharing Scheme as a new method resilient to node
capture attacks. This method was implemented on
the Mote nodes. In addition, we performed sim-
ulations with TOSSIM. From the experiments, we
confirmed that our method is more effective against
node capture attacks than the existing TinySec sys-
tem is. Additionally, we found our method tends
to be more effective as the number of hops to sink
node increases. On the other hand, we were able
to observe an increased overhead on shorter hop
nodes. We have shown a countermeasure capable
of reducing excess dispersals without degrading the
resilience of node capture attacks.

Acknowledgements

This work was supported in part by the Min-
istry of Internal Affairs and Communications of
Japan under Grant-in-Aid for Strategic Informa-
tion and Communications R&D Promotion Pro-
gramme (SCOPE), the Ministry of Education, Sci-
ence, Sports and Culture of Japan under Grant-
in-Aid for Scientific Research (C) (No.18500062)
and Hiroshima City University under their research
grants.

References

[1] 1. Stojmenovié (ed.), “Handbook of Sensor
Networks: Algorithms and Architectures,”
Wiley, 2005.

[2] C. Karlof, N. Sastry, and D. Wagner, “Tiny-
Sec: A Link Layer Security Architecture
for Wireless Sensor Networks,” Proc. 2nd
Int. Conf. on Embedded Networked Sensor
Systems (SenSys’04), pp.162-175, Baltimore,
Maryland, USA, November 2004.

[3] M. Horton, D. Culler, K. Pister, J. Hill, R.
Szewczyk, and A. Woo, “MICA, The Com-
mercialization of Microsensor Motes,” Sensors,
vol. 19, no. 4, pp. 40-48, April 2002.

[4] P. Levis, N. Lee, M. Welsh, and D. Culler,
“TOSSIM: Accurate and Scalable Simulation
of Entire TinyOS Applications,” Proc. 1st Int.
Conf. on Embedded Networked Sensor Sys-
tems (SenSys'03), pp.126-137, Los Angeles,
California, USA, November 2003. -

[5] W. Zhang, S. K. Das, and Y. Liu, “Security in
Wireless Sensor Networks: A Survey,” In Secu-
rity in Sensor Networks, Y. Xiao ed., Auerbach
Publications, pp.237-272, 2007.

[6] L. Ecshenauer, and V. D. Gligor, “A Key-
management Scheme for Distributed Sen-
sor Networks,” Proc. 9th ACM Conf. Com-
puter and Communication Security (CCS ’02),
pp-41-47, Washington, DC, USA, November

- 2002.

[7] A. C. Chan, “Probabilistic Distributed Key
Pre-distribution for Mobile Ad hoc Networks,”
Proc. IEEE Int. Conf. on Commun. (ICC
2004), vol.6, pp.3743-3747, Paris, France,
June 2004.

[8] H. Chan, A. Perrig, D. Song, “Random
Key Predistribution Schemes for Sensor Net-
works,” Proc. IEEE Symposium on Security
and Privacy, pp.197-213, Oakland, California,
USA, May 2003.

[9] C. Linn, and S. Debray, “Obfuscation of
Executable Code to Improve Resistance to
Static Disassembly,” Proc. 10th ACM Conf. on
Computer and Commun. Security (CCS '03),
pp-290-299, New York, NY, USA, 2003.

(10] A. Alarifi, and W. Du, “Diversify Sensor
Nodes to Improve Resilience Against Node
Compromise,” Proc. 4th ACM Workshop on
Security of Ad Hoc and Sensor Networks
(SASN’06), pp.101-112, Alexandria, Virginia,
USA, October 2006.

[11] G. J. Simmons, “Key Distribution via Shared
Secret Schemes,” Contemporary Cryptology:
The Science of Information Integrity, pp.441—
497, IEEE Press, 1992.

[12] A.Shamir, “How to Share a Secret,” Commun.
ACM, vol.22, no.11, pp.612-613, 1979.

[13] G. R. Blakley, “Safeguarding Cryptographic
Keys,” Proc. American Federation of Informa- -
tion Processing Societies National Computer
Conf., vol.48, pp.313-317, Arlington, Virginia,
USA, September 1979.

[14] ETSI, “Radio broadcasting systems; DAta Ra-
dio Channel (DARC): System for wireless in-
fotainment forwarding and teledistribution,”
ETSI, EN300 751, V1.2.1, October 2002.

— 290 -

