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Worm Containment with Dummy Addresses
and Connection Trace Back

Taro Inaba' , Nobutaka Kawaguchi' , Shinya Taharal |,
Hiroshi Shigeno! and Kenichi Okada?

Most of existing network worms have used address scanning to find vulnerable hosts. Recently,
however, worms with more effective propagation strategies have emerged. Among the worms, we
focus on the worms that exploit address lists obtained from infected hosts to find other vulnerable
hosts effectively. In this paper, we propose a method to detect and contain such worms that try to -
infect all hosts in an enterprise network. In our method, a detection system inserts some dummy
addresses into the address lists of hosts in the network. Then, the system detects the existence -
of worms when a host tries to open a connection to a dummy address, and then traces back the
connection logs to find potential infected hosts and removes them from the network. Computer
simulation results showed our method contained worms with less than 1% infected hosts and less

than 5% removed hosts.

1 Introduction

Resent years, many worms such as CodeRed and
Slammer have caused significant damages to many
networks [1] [2]. Most of these worms have used ad-
dress scanning to find vulnerable hosts. In address
scans, an infected host generates a list of random
addresses and tries to infect hosts in the list. So
scanning worms open connections at very high speed
and may connect to nonexistent hosts. Therefore,
the strategy is inefficient and makes network con-
ditions anomaly. Thus, by exploiting such features,
many methods can contain scanning worms [4] [5].

Recently, however, worms with more effective
propagation strategies have emerged (7] [8]. Among
the worms, we focus on the worms that exploit ad-
dress lists obtained from infected hosts to find vic-
tims [7]. By using these lists, worms surely can
connect to existing hosts. Therefore, infected hosts
can steadily increase and the speed of infection can
be slower. It is difficult to detect and contain
such worms by anomaly based methods because the
worms don’t make network conditions anomaly.

In this paper, we propose a method that contains
these worms by using dummy addresses and connec-
tion trace back. In our method, Address Monitoring
Server (AMS) monitors a whole enterprise network
and adds some dummy addresses to hosts in the net-
work. If a host tries to connect to a dummy address,
AMS can detect the existence of a worm and judges
the host is infected. Then AMS removes the host
from the network to prevent further propagation.
Moreover, AMS has connection logs of the network
and traces back the logs from the infected host to
find and remove potential infected hosts. Each time
a host connects to dummy addresses, AMS conducts
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the process to remove all infected hosts from the net-
work. To the best of our knowledge, this paper is
the first work that presents a network based con-
tainment method of such worms.

The rest of this paper is organized as follows. Sec-
tion 2 introduces the worm propagation strategies
and related works. Section 3 proposes a worm con-
taining method with dummy addresses and connec-
tion trace back. Section 4 evaluates our method by
computer simulation based experiments. We con-
clude this paper in section 5.

2 Background

2.1 Scanning Worms

Existing worms such as CodeRed find vulnera-
ble hosts by address scanning [1] [2] [3]. Scanning
worms try to open so many connections that the
worms make the network condition anomaly. So by
focusing on this anomaly condition, scanning worms
can be detected and contained [5] [6].

Matthew M. Williamson proposed Throttling
Viruses to restrict scanning worms [4]. This method
limits the rate of connections to hosts, with which
the source hosts have not communicated, to restrict
worms’ propagation. Although normal traffic can
be affected by this method, in reality, most of be-
nign hosts tend to open connections to peers they
have contacted with recently, and therefore only a
few of connections will be used for the first contacts
with new peers. Therefore, this method can restrict
worms without the significant detrimental effect on
normal traffic.

2.2 Worms Exploiting Internal Ad-
dress Lists

If worms exploit internal address lists obtained

from already infected hosts [7] [8], they can connect

to surely existing hosts and can propagate slowly.

Methods against scanning worm cannot detect such
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slow worms. Therefore, new methods against worms
exploiting internal address lists are required.
Chin-Tser Huang et al. proposed a method us-
ing a dummy address to detect E-mail worms [9].
In this method, a detection server inserts a dummy
address into users’ address lists of their E-mail soft-
ware. If a host sends an E-mail to the dummy ad-
dress, the sender host and the signature of the mail
contents are added to a black list. After that, the
detection server uses the black list to restrict E-mail
worms that have an identical signature. Since the
method relies on signatures of worms for contain-

ment, however, it is ineffective against polymorphic

worms and encrypted worms since they can change
their signatures freely.

3 Proposal
3.1 Target

The targets. of our method are worms which get
addresses of vulnerable hosts from internal address
lists obtained from infected hosts. In this paper,
internal address lists mean all address lists stored
in each host machine, such as address books of E-
mail, ARP caches, or connection histories to other
hosts.

3.2 Contain Process
3.2.1 Overview
Figure 1 is an overview of our method.
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Figure 1: overview of our method

Address Monitoring Server (AMS) is a server that
monitors a whole enterprise network. AMS adds
some dummy addresses to each host’s address lists.
If a host connects to a dummy address, AMS detects
the connection and regards that the source host is
infected. Then AMS traces back connection logs of
the network to identify potential infected hosts, and
removes them from the network to prevent further
propagation.

Figure 2 shows an overview of the connection
trace back. In this figure, host H connects to a
dummy address at t3. Then, AMS removes the host
at first. And AMS traces back from the host H to
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Figure 2: overview of connection trace back

find potential infected hosts and removes them. In
the figure, host D, F, G, A and E are potential in-
fected hosts and removed. This process is applied
each time a new connection to a dummy address is
detected in order to completely contain the worm.
Since our method detects and contains worms based
on only connection information, our method is also
effective against polymorphic worms different from
existing method [9].
The roles of AMS are as follows:

1. Monitoring all hosts in an enterprise nétwork.

2. Adding dummy addresses to internal hosts in
the network.

3. Maintaining all connection logs in the network.

4. Removing arbitrary hosts at will from the net-
work.

In our method, all of detection and containment
are done by AMS.

3.2.2 Detection

In our method, AMS detects the existence of a
worm when a connection to a dummy address is
opened. Because benign hosts will never connect
to dummies in normal behavior, if a connection to
a dummy is detected, AMS judges that the host is
infected by a worm.

3.2.3 Containment by removing hosts

If a connection to a dummy address is detected,
AMS removes the source host. In this section, we
discuss the performance of a system that contains
worms by removing the source hosts.

Now, assume a host is infected by a worm that
exploits internal address lists. The infected hosts
attempt to connect and infect other hosts in every
At. When every host in the network has n valid
addresses and d dummy addresses, the probability
that the first infection connection is to a dummy
address (P;) is expressed as

Py=— )
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Figure 3: connection logs

Therefore, the system can remove the infected
host with the probability P;. However, with the
probability P, (= 1 - P;) the worm cannot be cap-
tured and infects new one host. Then, at next At,
two hosts attempt to connect other hosts. The prob-
ability that both of the infected hosts connect to
dummy addresses is

d?
@y = @

Pjo is smaller than P;. Thus, as the number of
infected hosts increases, it becomes more difficult for
the system to identify and contain all the infected
hosts. Therefore, it is rather impossible to contain
worms by removing only the source hosts.

sz = sz.

3.2.4 Containment by trace back
As discussed above, removing only the source

hosts of connections to dummy is not enough to
contain worms. To solve this problem, we introduce
a connection trace back approach. Since AMS has
logs of connections, AMS can trace back the logs
from the source hosts. By doing this, AMS can find
potential infected hosts and removes them from the
network. '

‘We describe the approach of the trace back. First,
we classify potential infected hosts into the following
3 groups.

e Trigger Host (TH)
e Potential Source of Infection (PS)
e Potential Infected Host (PI)

Here, TH is a host that opens a connection to
a dummy address. Therefore, TH is definitely in-
fected. PS is a host that have connected to TH or
PS. Thus, PS is suspected as a source of a worm.
PI is a host which have been connected from THs,
PSs, or PIs and may be infected.

Figure 3 shows connection logs of hosts. Each al-
phabet and horizontal line indicate a host, and Dum
is a dummy address. The horizontal axis indicates
time line. For the simplicity of analysis, we assume
interval between ¢, and f,4+; is lut. Here, ut de-
notes an unit of time. In Figure 3, host G connects

Figure 4: Ny =1, T; = 2ut
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Figure 5: Ny =2, T} = 2ut

to a dummy address at tg. In this case, host G is a
TH and AMS traces back connection logs from G.

The trace back method has two parameters, N;
(Trace Number) and T; (Trace Time). N; specifies
the number of steps the system traces back to find
PSs, and T; specifies the length of time AMS traces
back on 1 step.

Figure 4 shows trace back with N; = 1 and
T, = 2ut. First, since G connects to a dummy ad-
dress, G is regarded as TH and removed from the
network. Second, the hosts to which G has con-
nected earlier are also suspicious because G is sus-
pected as an infected host. As Ty = 2ut, the hosts
G has connected to at ¢4 or later are regarded as
PIs and removed. In Figure 4, F is a PL. Further-
more, as Ny = 1, the system traces back 1 step from
the TH. In Figure 4, host E, which has connected
to G at t4, is regarded as PS and removed from the
network. And since the hosts to which host E con-
nected are also suspicious, they are regarded as Pls
and removed. In Figure 4, host E connects host D
at t5 and D is a PI.

Figure 5 shows another case with N; = 2 and
T; = 2ut. In this case, AMS finds PIs and PSs by
tracing back from PSs at N; = 1 as well as a TH. In
Figure 5, in addition to the case of Figure 4, AMS
traces back from host E which is a PS with N; = 1.
Then, AMS removes host C as a PS and host A as
a PI. If N, is increased more, the same step will be
recursively conducted.

In our proposal, AMS cannot distinguish normal
connections from infection connections since we as-
sume there is no worms signatures available. There-
fore, AMS may remove potential infected hosts
which are not infected in fact. Although it is dif-
ficult to prevent false detections, the number of
falsely removed hosts must be minimized. We eval-
uate and discuss how our method minimize removed
hosts in section 4. -

4 Evaluation

We evaluated our method with some computer
simulations written in C language.
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Figure 6: infected hosts

4.1 Conditions

We assume there are 10,000 hosts in the network.
AMS can monitor all hosts and get connection logs
in real time. At the start of this simulation, all the
hosts of the network are not infected and connect
to other hosts normally. At 100ut later, a worm
appears and 5 hosts are infected. Then they begin
to infect other hosts, and AMS finds and removes
potential infected hosts each time a connection to a
dummy address is opened. By processing this pro-
cedure repeatedly, we evaluated the number of in-
fected hosts and removed hosts when AMS removes
all active infected hosts.

Table 1: Simulation parameter

simulation times: R , 30
the number of hosts: N 10000
initial infected hosts: Iy 5
vulnerable host rate: R 1.0
initial hosts at BA model: M, 6
initial links at BA model: M 5
average addresses: A 15
dummy addresses: d 5
fraction of hosts

having dummy addresses: F' 1.0
trace number: N; : 2
trace time: T; : 8ut
normal connection interval: B, Sut
infection connection interval: B; 5ut
delay of removing hests: Q 2ut

We set the default simulation parameters as Ta-
ble 1 and the network topology as a scale free net-
work [10], which follows BA model [11]. In our sim-
ulation, we set the number of initial hosts (Mp) to
6 and the number of initial links (M) to 5. As a re-
sult, the average addresses (A) become 15. Since we
assume relatively slow worms, the interval of contin-
uous infection connections (B;) and that of normal
connections (B, ) have the same value, which is 5ut.
And for N; and T;, we set values that minimize the
removed hosts when worms infection speed is equals
to the speed of normal connections.
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‘Figure 7: removed hosts

4.2 Comparison to
Method

an Existing

We compared our method to an existing method
which uses only dummy addresses for detection and
containment. - We varied the number of dummy
addresses, and evaluated the performance of both
methods. Figure 6 and Figure 7 show the number
of infected hosts and that of removed hosts respec-
tively. Each figure’s vertical axis is written in loga-
rithmic scale. Since the optimized N; and T;, which
minimize the number of removed hosts, dépend on
the number of dummy addresses (d), however, we
experimented beforehand and determined the best
N; and T; for each d in advance.

Figure 6 indicates that our method is much more
effective than the existing method in the terms of
the number of infected hosts. With d = 5, only
about 30 hosts (0.3% of whole network) is infected
with our method, while about 6000 hosts (60%) are
infected with the existing method, when all worms
are removed. The existing method can reduce in-
fected hosts to less than 100 using about 20 dummy
addresses, but ours achieves the same result with
only 5 dummy addresses. Since the number of
dummy addresses is preferred to be minimized, our
proposed method is much better than the existing
method on this point.

Figure 7 shows the number of removed hosts.
With the existing method, the number of infected
hosts and removed hosts are same. This is because
the existing method only removes the hosts which
try to connect to dummy addresses. On the other
hand, with our method, the number of removed
hosts is larger than that of infected hosts since AMS
may falsely remove hosts that are not infected in
fact by connection trace back. Nevertheless, the
number of removed hosts with our method is still
less than that with the existing method. In the case
of d = 5, our method removed only 200 hosts while
the existing method removed 6000 hosts before the
containments are completed. Thus, from the view
point of minimizing removed hosts, our method is
better than the existing one.
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4.3 Performance against Worms with
Various Speed

To confirm that our method can deal with worms
with various infection speed, we varied the inter-
val -of infection connection (Bi) from lut to 30ut
and evaluated the number of infected hosts and re-
moved hosts. Figure 8 and 9 show the results. Here
@ means the delay to remove each host from the
network.

As a result, with each Q, the number of infected
hosts was less than 100 (1%) and that of removed
hosts was less than 500 (5%) against every infec-
tious connection speed except the case of B; = lut
and @ = 2ut. Against high speed worms, such as
B; = lut or 2ut, the difference between Q = 2ut
and @ = Out is large, but against slower worms, the
difference is small. This is because infection connec-
tion interval is much longer than Q. Therefore, if
AMS can keep @ much shorter than infection con-
nection interval, our system can contain worms with
various speed.

Now, we discuss the relation between speed of
worms and performances of our method. In the fig-
ures, the performances are best at about B; = Sut.
This is because we set the parameters that minimize
removed hosts at B; = 5ut. Against faster worms
with smaller B;, the performances are degraded.

On the other hand, however, against slower worms
with B; > 15ut, the performance are relatively con-
stant. The result is due to the features of worms
that exploit internal address lists. Hit List Worms,
which include worms that exploit internal address
lists, can only infect hosts that are included in the
address list of already infected hosts.

If the interval of infection connections is longer
than T;, AMS cannot trace back most of causal
connections, which are actually used to infect other
hosts. Nevertheless, AMS can trace back some nor-
mal connections. In our simulation, we assume ev-
ery host opens normal connections to the hosts in
its address list at random. Here, assume every host
have A normal addresses. If T; is twice as large
as the normal connection interval (B,), there are
2 normal connections from 1 host on an average.
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Figure 9: removed host: at various speed

And to remove the causal host, AMS can utilize
not only a connection from the causal host to a TH
but also a connection with opposite direction. Thus,
when a infected host opens a connection to a dummy
address, the probability that the causal host is re-
moved (P;) is
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Figure 10: connections

In this figure, the host X infects the host Y at ¢;
and Y connects to a dummy address at t4. Since
T; is shorter than ¢4 — t;, AMS cannot trace back
the causal connection ¢;. However, if a normal con-
nection between X and Y is opened within T; from
t4, AMS can trace back this connection and remove
the host X as well as Y. Like this, even the case
where a causal connection cannot be traced back, it
is possible to remove the source host by tracing back
normal connections if A is enough small. As a result
of this process, AMS can stop worms that propagate
at slow speed when each host has relatively a few
addresses.

4.4 Performance against Fraction of
Hosts Having Dummy Addresses

In this paper, we assume all hosts cooperate to
AMS and add dummy addresses to their address
lists. In this section, we assume another case where
some hosts do not add dummy addresses due to
the various reasons. Here, we evaluate the perfor-
mance of our method with the case where only 80%
hosts insert dummy addresses with the parameters
of list.1. Figure 11 and 12 show the result com-
pared to the case where 100% hosts have dummy
addresses.
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Figure 11: infected hosts: 80% hosts have dummy

In these results, the performance with 80% de-
grades compared to 100%. With d = 5, infected
hosts and removed hosts with 80% are about 4 times
as many as those with 100%. To get a similar perfor-
mance to the case with 100% and d = 5, each host
must have 9 dummy addresses when the fraction
of hosts having dummy addresses is 80%. There-
fore, the fraction of hosts having dummy addresses
has significant impact on our performance that it is
important for AMS to insert dummy addresses to
all of monitored hosts surely. If AMS cannot in-
sert dummy addresses to all the hosts, the number
of dummy addresses per each host need to be in-
creased.

5 Conclusion

These years, worms which do not use address
scans to find victim hosts have emerged, and it be-
comes necessary to establish a method that can con-
tain such worms. Among these worms, we focus on
the worms which exploit address lists at already in-
fected hosts and proposed a method that contain
worms by combing dummy addresses and connec-
tion trace back. In our method, if a host connects to
a dummy address, the system removes not only the
trigger host but also potential infected hosts which
are identified by trace back from the host. Using
this method, worms could be contained when less
than 1% hosts were infected and less than 5% hosts
were removed.

In the future work, we will conduct more detailed
simulations for practical use, and implement a pro-
totype and try it in the real network environments.
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Figure 12: removed host: 80% hosts have dummy
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