[N FAF 4 THEESBRABY—2ay 7)) ERI1THENA

A Parallel GNFS Algorithm with Reliable Look Ahead Block Lanczos
for Integer Factorization

Li Xu, Laurence T. Yang, Man Lin
Department of Computer Science

St. Francis Xavier University, NS, B2G 2W5, Canada
{x2002uwf ,lyang,mlin}@stfx.ca

Abstract

RSA is a very popular and secure public key cryp-
tosystem, but the security relies on the difficulty of fac-
toring large integers. The General Number Field Sieve
(GNFS) algorithm is currently the best known method
for factoring large integers over 110 digits. Our previ-
ous work on the parallel GNFS algorithm, which inte-
grated the Montgomery’s block Lanczos [13] algorithm
to solve the large and sparse linear systems over GF(2),
is less reliable.

In this paper, we successfully implemented the par-
allel General Number Field Sieve (GNFS) algorithm
and integrated with a new algorithm for solving large
and sparse linear system called lookahead block Lanc-
zos algorithm [6]. This new algorithm is based on the
look-ahead technique, which can provide more reliabil-
ity. The algorithm can find more dependencies than
Montgomery’s block Lanczos method using less itera-
tions. The detailed experimental results on a SUN clus-
ter will be presented as well.

1 Introduction

Today, Rivest-Shamir-Adleman (RSA) algorithm
[17] is the most popular algorithm in public-key cryp-
tosystem. It also has been widely used in the real-
world applications such as: internet explorer, email
systems, online banking, cell phones and many other
places. The security of this algorithm mainly relies on
the difficulty of factoring large integers. Many integer
factorization algorithms have been developed. Exam-
ples are: Trial division [18], Pollard’s p-1 algorithm
[15], Lenstra Elliptic Curve Factorization (ECM) [10],
Quadratic Sieve (QS) [16] and General Number Field
Sieve (GNFS) [1, 2, 3, 12] algorithm. GNFS is the best
known method for factoring large composite numbers
over 110 digits so far.

Although GNFS algorithm is the fastest one so far,
it still takes a long time to factor large integers. In

order to reduce the execution time, one natural solu-
tion is to use parallel computers. The GNFS algorithm
contains several steps. The most time consuming step
is sieving which is used to generate enough relations.
This step is very suitable for parallelization because the
relation generations are independent. Another possi-
ble step is, in GNFS, the Montgomery’s block Lanczos
[13] algorithm. It is used to solve large and sparse
linear systems over GF(2) generated by the GNFS al-
gorithm. The disadvantage of this block Lanczos is less
reliable. The lookahead block Lanczos [6] has overcome
this disadvantage and improved the reliability of block
Lanczos algorithm. In this paper we have successfully
implemented the lookahead block Lanczos algorithm
together with the GNFS algorithm.

The left of the paper is organized as follows: we first
briefly describe the original GNFS algorithm in sec-
tion 2. Then we present two block Lanczos algorithms,
namely the Montgomery’s block Lanczos [13] and the
lookahead block Lanczos algorithm {6] in section 3 and
4 respectively. Section 5 shows the detailed implemen-
tation and corresponding parallel performance results.

2 The GNFS Algorithm

The General Number Field Sieve (GNFS) algorithm
[2, 3, 12] is derived from the number fields sieve (NFS)
algorithm, developed by Lenstra et al [11]. It is the
fastest known algorithm for integer factorization. The
idea of GNFS is from the congruence of squares algo-
rithm [9].

Suppose we want to factor an integer n where n has
two prime factors p and g. Let’s assume we have two
integers s and r, such that s% and r? are perfect squares
and satisfy the constraint s> = r?(mod n). Since n =
pq, the following conditions must hold [2]:

pal(8-r%) =pql(s-r)(s+r)
=p|(s-r)(s+r) and g|(s-r)(s+7).
We know that, if ¢|ab and ged(b,c) = 1, then cla.

— 245 —

So p, g, r and s must satisfy p|(s-r) or p|(s+r) and
g|(s-r) or g|(s+r). Based on this, it can be proved
that we can find factors of n by computing the greatest
common divisor ged(n,(s+r)) and gcd(n,(s-r)) with the
possibility of 2/3 (see [2]).

Therefore, the essence of GNFS algorithm is based
on the idea of the factoring n by computing the ged(n,
s+r) and ged(n, s-r). There are six major steps [12]:

1. Selecting parameters: Choose an integer meZ and
a polynomial f which satisfy f(m) = 0 (mod n).

2. Defining three factor bases: rational factor base
R, algebraic factor base A and quadratic character
base Q.

3. Sieving: Generate enough pairs (a,b) (relations)
to build a linear dependence.

4. Processing relations: Filter out useful pairs (a,b)
that were found from sieving.

5. Building up a large and sparse linear system over
GF(2) and solve it.

6. Squaring root, use the results from the previous
step to generate two perfect squares, then factor
n.

3 Montgomery’s Block Lanczos Algo-
rithm

Montgomery’s block Lanczos algorithm was pro-
posed by Montgomery in 1995 [13]. This block Lanc-
zos algorithm is a variant of standard Lancozs method
[7, 8). Both Lanczos algorithms are used to solve linear
systems. In the standard Lanczos algorithm, suppose
we have a symmetric matrix A€R"*". Based on the
notations used in [13], the algorithm can be described
as follows:

Wy = b,
i—-1 'LUJTA.z'w;'_l

wl Aw; @

Aw;_; -

w;
=0

The iteration will stop when w; =0. {wp, w, ... w;}
are basis of span{b, Ab, A2b, ...} with the properties:

Yo<i<m, wlAw;#0, (2)

VW<i<j<m, wlAw;=w]Aw;=0. (3)

The solution z can be computed as follows:

m-1 T
T = Z -M'w 1)

= w;TAw;

Furthermore the iteration of w; can be simplified as
follows:

(Aw,-..l)T (Awi_ 1) ws
wl (Awig)

(Awi—2)"(Awi—y)
wl,(Awig) ®)

w; = Awi-—

The total time for the Standard Lanczos algorithm
is O(dn?)+0(n?).

The block Lanczos algorithm is an extension of the
Standard Lanczos algorithm by applying it over field
GF(2). There are some good properties on GF(2), for
example, we can apply matrix to N vectors at a time
(N is the computer word) and we can also do bitwise
operations. Instead of using vectors for iteration, we
using subspace instead. First we generate subspace:

W; i8 A — invertible,
WIAW; = {0}, {i#j}, -~ (6)
AWCW, W=Wo+W;+...4+Wn_1.

Then we define z to be:

= E : RAE RAY I (7
w? '
=0 J

where W is a basis of W. The iteration in the stan-
dard Lanczos algorithm will be changed to:

W, = VS,
Vier = AWS[+Vi=) W;Cip; (i 20),
=0
W, = (Wi7) (8)
in which
WTAAW,ST +V;)
Cit1,j = WIAW . 9)
J J

This iteration will stop when V;TAV;=0 where i =
m. The iteration can also be simplified as follows:

Vit1 = AViSiST + ViDig1 + Vis1Eig1 + VieoFiga.

— 246 —

name number

tst1003p | 727563736353655223147641208603 =
7437743393374990978204944528897

FTag 680564733841876926926749214863536422914 =
5704689200685129054721059649589127497217

tst15045 | 799356282580692644127991443712991753990450969 =
32823111293257851893153024353458617583497303673

Briggss: | 556158012756522140970101270050308458769458529626977 =
1236405128000120870775846228354119184397¢449818591141

tst200g; | 1241445153765162090376032461564730757085137334450817128010073 =
1127192007137697372923951166979¢1101360855918052649813406915187

tst25076 | 3675041894739039405533259197211548846143110109152323761665377505538520830273 =
6911985578081562539099797454222489432353169119831396634916152282437374262651

Table 1. The composite number n and the results after integer factorization

where Djy1,D;41,D;i41 can be computed:

Diyni = In-Wi(VTA%V,S:ST + VTAVY),
Eis1 = -Wi™VTAvV;S;ST, (10)
Fin = —-Win(Iy - VI_,AV,,Winy

(VI A%V, 18187, + VI ,AV,,)S:ST.

S; is an N x N; projection matrix. We can reduce
the iteration time from O(n) to O(n/N) using the block
Lanczos algorithm.

4 Look-ahead Block Lanczos Algo-
rithm

The Look-ahead block Lanczos algorithm proposed
in Hovinen [6] has some advantages compared with
Montgomery’s block Lanczos algorithm: first of all,
this algorithm is bi-orthogonalizing, so the input ma-
trix does not need to be symmetric. Secondly, it solves
the breakdown problem, namely (W;TAW;={0}).

First we choose v and up from R**N, 1 and up
are choosing uniformly and randomly. Then we will
compute v, %2, *-* , Um—1 &0d U, U, --¢ , Um-1.
For each iteration, we build up two matrices §; and w;
satisfy the following conditions:

1. é;Aw; is invertible.
2. Foreach0 <i<j<m,&Ay=0and uf Aw;=0.

3. D5 (€:)=D0(AT w),
o' {wi)=@B2o(Aw).

We also define variables @;, i, 0i, 0i, 0%, &, o} and
o} have the properties:

1. 9T Ay = 0;

2. ul Ady;

3. @l A, is invertible.

o? and o} are two matrices in KV*V and 9;=v0?,
@;=u;0Y. vi4+1 and u;4y can be compute by:

wipr = ATwi —) 4k (@) T AT) (@) (AT) s, (11)
k=0

vigr = Av; — »_ 0h((a)T AvE) " (@h) T A%u. (12)
k=0

If 4T A%y, is full rank, 9:*! can be defined as:

%+ = (Bilnig) (13)
otherwise _ _
o = (5] Ins) - (14)

Ni+1 is & matrix consisting of columns of V4.
Finally, the solution z can be calculated by:

m—1 .m;—m\T
a™(@)’b

g=9S Al) (15)
2, r AT

5 Implementation Details

As we mentioned before, the most time consuming
part in GNFS is the sieving part. This part has al-
ready been parallelized in our previous work [19]). An-
other part in GNFS program can be significantly im-
proved is to solve the large and sparse linear systems
over GF(2) in parallel by look-ahead block Lanczos al-
gorithm, instead of the Montgomery’s block Lanczos
algorithm which is less reliable. Our parallel code is
built on the sequential source GNFS code from Mon-
ico [12].

— 247 —

5.1 Parallel sieving

The sieving step in sequential GNFS is very suitable
for parallel. The purpose of sieving is to find enough
(a,b) pairs. The way we do sieving is: fixing b, let a
change from -N to N (N is a integer, usually larger
than 500), then we check each (a,b) pair whether it
smooth over factor bases. The sieving for next b can
not start until the previous sieving is finished.

In parallel, we use several processors do sieving si-
multaneously, each slave node takes a small range of b,
then send results back to master node. The detailed
parallel sieving implementation can be found in [19)].

5.2 Hardware and programming environment

The whole implementation uses two software pack-
ages, the sequential GNFS code from Monico [12]
(Written in ANSI C) and sequential Look-ahead block
Lanczos code from Hovinen [6) (Written in C++). For
parallel implementation, MPI (Message Passing Inter-
face) [5] library is used. In order to do arbitrary preci-
sion arithmetic, the GMP 4.x is also used [4]. We use
GUN compiler to compile whole program and MPICH1
[14] for our MPI library. The version of MPICH? is
1.2.5.2. The cluster we use is a Sun cluster from Uni-
versity of New Brunswick Canada whose system con-
figurations is:

e Model: Sun Microsystems V60.
e Architecture: x86 cluster.
e Processor count: 164.

e Master node: 3 GB registered DDR-266 ECC
SDRAM.

o Slave node: 2 to 3 GB registered DDR-266 ECC
SDRAM.

In the program, Each slave node only communicates
with the master node. Figure 1 shows the flow chart
of our parallel program.

6 Performance Evaluation

We have six test cases, each test case have a different
size of n, all are listed in Table 1.

The sieving time increases when the size of n in-
creases. Table 2 shows the average sieving time for
each n with one processor. Table 3 shows the number
of processors we use for each test case. Figure 2 and
3 show the total execution time for each test case in
seconds. . ‘ v ‘

The total sieve time for test case: tst100, F'7, tst150,
Briggs and tst200 are presented in Figure 4. Figure 5
gives the speed-ups and parallel efficiency for each test
case with different processor numbers.

Main Program

Figure 1. Each processors do the sieving at
the same time, and all the slave nodes send
the result back to master node

One explanation of inefficiency in this parallel imple-
mentation is the communication time. In this program,
we assume b change from by to b;, use p processors,
the total message send and receive is ($(bo-b1)-9";—"*)
(every sieve result contains three messages), these mes-
sages will be buffered and send to master when sieving
is finished in each processor. This cause a lots of com-
munications and makes the master node very busy.

Another explanation source of inefficiency is the
loading balance. The master node has to wait until all
the messages are received from slave nodes. Further
improvement is being conducted. The detailed results
will be reported in the near future.

7 Acknowledgements

We would like to thank C. Monico of Texas Tech
University and B. Hovinen of University of Waterloo.
Our work is based on their sequential source codes.
They also helped us with some technical problems
through emails. Dr. Silva from IBM advised us many
good ideas for our parallel program.

References

[1] M. E. Briggs. An introduction to the general num-
ber field sieve. Master’s thesis, Virginia Polytechnic
Institute and State University, 1998.

{2] M. Case. A beginner’s guide to the general number
field sieve. pages 1-4, Winter 2003.

[3] J. Dreibellbis. Implementing the general number field
sieve. pages 5-14, June 2003.

— 248 —

name | number of sieve | average sieve time(s)
tst10030 1 35.6

F739 1 28.8
tst1504s 5 50.6
Briggss: 3 85.67
tst20061 7 560.6
tst250+¢ 7 4757.91

Table 2. Average sieving time for each n

name | number of slave processors
tst10030 1,4,8,16
F739 1,4,8,16
tst15045 1,4,8,16
Brigg851 1,4,8,16
tst200¢: 1,4,8,16
tst2507¢ 1

Table 3. Number of processors for each test case

A~ F7

g
e

a ?\
g H
£ W
Ed0} 1t
S s:&\
3 i
g { e &
i 30 B
K] L B
8 \\.m_m_w&j”/

20 -)

10 |

0 4 s N . |

Number of Processors

Figure 2. Execution time for tst100 and F7

[4] T.Granlund. The GNU Multiple Precision Arithmetic
Library. TMG Datakonsult, Boston, MA, USA, 2.0.2
edition, June 1996.

[5] W. Gropp, E. Lusk, and A. Skjellum. Using
MPI: portable parallel programming with the message-
passing interface. MIT Press, 1994.

[6] B. Hovinen. Blocked lanczos-style algorithms over
small finite fields. Master Thesis of Mathematics, Uni-
versity of Waterloo, Canada, 2004.

[7] C. Lanczos. An iteration method for the solution of
the eigenvalue problem of linear differential and inte-
gral operators. In Journal of Research of the National
Bureau of Standards, volume 45, pages 255-282, 1950.

(8] C. Lanczos. Solutions of linread equations by mini-
mized iterations. In Journal of Research.of the Na-
tional Bureau of Standards, volume 45, pages 33-53,
1952.

[9] A. K. Lenstra. Integer factoring. Des. Codes Cryptog-
raphy, 19(2-3):101-128, 2000.

{10) H. W. Lenstra. Factoring integers with elliptic curves.
Annals of Mathematics(2), 126:649-673, 1987.

(11] H. W. Lenstra, C. Pomerance, and J. P. Buhler. Fac-
toring integers with the number field sieve. In The
Development of the Number Field Sieve, volume 1554,
pages 50-94, New York, 1993. Lecture Notes in Math-
ematics, Springer-Verlag.

[12] C. Monico. General number field sieve documentation.
Nov, 2004.

[13] P. L. Montgomery. A block lanczos algorithm for find-
ing dependencies over gf(2). In EUROCRYPT ’95,
volume 921 of LNCS, pages 106-120. Springer, 1995.

[14] MPICH. http://www-unix.mcs.anl.gov/mpi/mpich/.

[15] J. M. Pollard. Theorems on factorization and primal-
ity testing. In Proceedings of the Cambridge Philo-
sophical Society, pages 521-528, 1974.

[16] C. Pomerance. The quadratic sieve factoring algo-
rithm. In Proceeding of the EUROCRYPT 84 Work-
shop on Advances in Cryptology: Theory end Appli-
cations of Cryptographic Techniques, pages 169-182.
Springer-Verlag, 1985.

(17] R. L. Rivest, A. Shamir, and L. M. Adelman. A
method for obtaining digital signatures and public-key
cryptosystems. Technical Report MIT/LCS/TM-82,
1977.

(18] M. C. Wunderlich and J. L. Selfridge. A design for a
number theory package with an optimized trial divi-
sion routine. Communications of ACM, 17(5):272-276,
1974.

[19] L. Xu, L. T. Yang, and M. Lin. Parallel general num-
ber field sieve method for integer factorization. In Pro-
ceedings of the 2005 International Conference on Par-
allel and Distributed Processing Techniques and Ap-
plications (PDPTA-05), pages 1017-1023, Las Vegas,
USA, June, 2005.

— 249 —

<
,_ 1200 + :::um 10000 |
1 0
E £ 9000
[L J
8 .
g 1o §
d 8000 |
] 3
" et i
g 7000 |
600, 4 8 12 I 6000 5] i3 5
Number of Processors Number of Processors
Figure 3. Execution time for tst150, Briggs and tst200
200 4000
150 | 3000 | 4
3 -
2 £
E E
§ 100 2 2000 |
] »
g B
2 e
50 \ 1000 |]
\:,_?w«
% P 8 12 16 0 8 12 16 20
Number of Processors Number of Processors
Figure 4. Sieve time for tst100, F7, tst150, Briggs and tst200
10 . - .
14 ¢ ey B
o—aFf?
8} 12 om0
o - o BOEEO0
1 -
a 6F
Eost]
:
4t 06 | .
0.4
2 -
0.2
% 4 8 12 6 % 8 12 16 20
Number of Processors Number of Processors

Figure 5. Speedups and parallel efficiency

— 250 —

