
IPSJ Transactions on Programming Vol.6 No.1 9–16 (Jan. 2013)

Regular Paper

Just-in-time Compiler for KonohaScript Using LLVM

Masahiro Ide1,a) Kimio Kuramitsu1,†1,b)

Received: April 20, 2012, Accepted: September 17, 2012

Abstract: In recent years, as a method to improve the language performance of scripting languages has attracted the
attention of the Just-In-Time (JIT) compilation techniques for scripting language. The difficulty of JIT compilation
for scripting language is its dynamically typed code and in its own language runtime. The purpose of this paper is to
evaluate the performance overhead of JIT compilation of runtime library’s overhead by using a statically typed script-
ing language. In this study, we use a statically typed scripting language KonohaScript to analyze language runtime
performance impact of the code generated by the JIT compiler.

Keywords: just-in-time compiler, scripting language

1. Introduction

In the past decade, significant advances have been seen in
scripting language just-in-time (JIT) compilers for JavaScript [1],
[2], as well as for other languages such as Python [3]. JIT com-
pilers can dramatically improve performance by converting ap-
plication code into machine code in the execution time. Unlike
a simple interpreter for scripting language, JIT compiled code is
executed directly on the CPU.

The initial implementation of a scripting language JIT com-
piler is to typically generate native code by translating a higher-
level bytecode into native code naively, where applications run
slower than equivalent implementations in C and Java. This trans-
lation is straightforward, but it leads to the following two over-
heads being introduced into a scripting language. First, the script-
ing language JIT compiler needs to take into account the dynamic
typed code. Second, this JIT compiler needs to perform code gen-
eration with a consideration of collaboration and with runtime for
its own language.

Relevance for dynamic typing and performance of code that the
JIT compiler generates is well documented by Chang et al. [4].
They evaluate JIT compilers by measuring their performance
changes for each full-typed, partially-typed, and un-typed piece
of code. As a result, they report that speed improvements of about
60 percent, on average, are gained by adding type information in
the benchmark codes.

In this paper, we evaluate an overhead on JIT compiled code
except where this is caused by dynamically typing on that in-
terpreted source code. To achieve this goal, we constructed a
JIT compiler for a statically typed scripting language, Kono-
haScript. Furthermore, we describe the design of a JIT com-
piler for KonohaScript based on a Low Level Virtual Machine

1 Graduate School of Yokohama National University, Yokohama, Kana-
gawa 240–8501, Japan

†1 Presently with Japan Science and Technology Agency/CREST
a) ide@konohascript.org
b) kimio@ynu.ac.jp

(LLVM [5]) as the compiler backend. In addition, we identify
three main performance-inhibiting issues in the naive translation
of the code in order for it to work together with the scripting lan-
guage runtime. Finally, we evaluate the execution performance
by using a benchmark application with our JIT compiler.

This paper is organized as follows: In Section 2 we give an
overview of scripting languages. Section 3 provides an overview
of our JIT compiler, followed by a description of our optimiza-
tion techniques in Section 4. Then, Section 5 evaluates the ef-
fectiveness of our JIT compiler and related work is discussed in
Section 6. Section 7 concludes this paper.

2. Scripting Language Runtime

In this section, we define the word Scripting Language. We
describe the features provided by the runtime system of scripting
languages such as Ruby, Python, and Lua. In addition, this sec-
tion describes the design of KonohaScript and the relevant parts
to our JIT compile.

2.1 Definition of Scripting Language
Scripting language is not clearly defined scientifically, but one

of the common features of scripting languages is its dynamic
type. The classification of the language to perform as a dynami-
cally typed language is included with Lisp and Scheme, but these
are not called scripting languages. In recent years, several at-
tempts have been made to integrate static typing features into ex-
isting dynamic languages such as ActionScript and Thorn. An-
other feature for scripting language is an interpreter. Scripting
languages require source code (or scripts) at runtime, which need
to load and execute scripts.

In recent years, in an effort to improve their performance,
scripting languages were often accompanied by a JIT or bytecode
compiler. Therefore, a scripting language is not able to be classi-
fied simply by the presence of the compiler. The main difference
between compiled languages (e.g., C and Java) and scripting lan-
guages is that scripting languages can load a script and execute

c© 2013 Information Processing Society of Japan 9

IPSJ Transactions on Programming Vol.6 No.1 9–16 (Jan. 2013)

it at runtime. In this paper, we define a scripting language as a
program processing system that has an interpretation engine and
an execution engine, which are both integral parts of the system.

2.2 Scripting Language Runtime
Scripting languages are composed from the following four

components: an execution engine, a compiler, an extension li-
brary, and a memory management system.

Execution Engine and Compiler
The runtime library for a scripting language has an interpreter that
is a mechanism to convert a script to its own format in order to ex-
ecute a script. Execution of a script is carried out to coordinate the
execution engine and run-time libraries. In recent years, script-
ing languages have often provided a bytecode interpreter and JIT
compiler to improve performance.

Extension Library
Script language runtime can be enhanced by a library written in C
and a function provided by a script. The scripting language user
can then use a function not only written in the scripting language
but also those provided by the library extension. This runtime has
two variations of function extended by the user. One is written in
C and is compiled before execution, while the other is written in
a script and is compiled as bytecode. From a user’s perspective,
they can treat these functions equally.

Each function provided by the runtime library has a calling
convention to make calls to each other. Furthermore, the scripting
language stack structure is used to transfer data both to and from
the execution engine and run-time libraries. There are two main
methods used when implementing a stack structure. One uses the
native stack and the other uses its own stack that is allocated on
the heap.

Memory Management
Memory management is one of the most difficult parts when writ-
ing a program correctly and efficiently. In order to manage the
memory, the scripting language runtime makes use of the garbage
collection (GC). When the runtime library allocates new data,
the runtime library uses the memory region managed by the GC.
Then the runtime library modifies these memory regions based on
its own memory layout policy.

The memory layout of the data structure consists of two main
memory regions, the header region and the body region. In the
header region there are both object type information and flags
to indicate the characteristics of each object. For example, the
runtime uses the type information for type checking, while the
runtime uses the body region to store the actual data.

2.3 KonohaScript Runtime System
This section describes the runtime library of KonohaScript in

relation to the following sections. KonohaScript [6] is a statically
typed object-oriented scripting language that has been developed
from scratch in C. More information about the language design of
KonohaScript can be found in Ref. [7]. KonohaScript has adopted
a class-based, object-oriented model. This means that the behav-
ior of objects such as methods and fields are defined in the class.
In KonohaScript the user can provide attributes for classes and
methods, and the following is an attribute that can be granted.

Fig. 1 Architecture of KonohaScript.

• @Final: Class with no inheritable
• @Singleton: Class is guaranteed to be a single instance
• @Native: Method is implemented in C
• @Static: Static method

Figure 1 shows the elements that make up the KonohaScript run-
times.

Execution Engine and Compiler
Based on the compile-time type information included in an anno-
tation, KonohaScript implements the well-typed bytecode and a
register-based bytecode interpreter (KonohaVM).

KonohaVM executes the source code in the following order.
First, the KonohaScript compiler compiles the source code into
bytecode as a single compilation unit. Next, KonohaVM evalu-
ates the different methods in the order to which they are described
in a script. Finally, KonohaVM executes the main method.

Extension Library
In KonohaScript, as an interface to calling the extended library
functions, all methods are defined in Fmethod type that is defined
in C.

void (*Fmethod)(CTX ctx, ksfp_t *sfp, long rix)

ctx (Context) is a pointer to the run-time management infor-
mation and sfp indicates a pointer to the top of the call stack
(KonohaStack) that is managed by the runtime of KonohaScript.
In addition, rix indicates the index on the stack where the return
value of the method is to be placed. If the C function matches
this interface then the KonohaScript runtime can call this func-
tion from a script.

KonohaStack is used to pass data between the methods, such
as arguments, and then return values of the method. When Kono-
haScript’s runtime invokes a method, the caller will push the ar-
guments onto the stack pointer in order to call the target method.

With static typing, KonohaScript boxes and unboxes primi-
tive values automatically; such values include integer, float and
boolean. Values of primitive types are handled as unboxed val-
ues, unless it is necessary to treat them as objects. The data struc-
ture of KonohaStack is adopted as being clearly distinguishable
between object reference and primitive. The following code is the
data structure of KonohaStack.

struct ksfp {

union {int i;float f;} data;
kObject *optr;

}

Memory Management
The memory management system of KonohaScript provides au-
tomatic memory management using GC. In 64-bit architecture,

c© 2013 Information Processing Society of Japan 10

IPSJ Transactions on Programming Vol.6 No.1 9–16 (Jan. 2013)

typedef struct {

struct hObject {

ClassInfo *cinfo; // type infomation

void *gcinfo; // used by GC
long flags;
void *metadata;

} h; // object header

struct kObject **fields; //Object body

} kObject;

Fig. 2 Memory layout of Object.

each object is aligned in 64 byte and has a memory layout as
shown in Fig. 2. The header region of the object is composed
of a flag which indicates the object state, information type, and a
field that GC is used.

3. Design of KonohaLLVMJIT Compiler

In this section, we describe the design of the KonohaLLVMJIT
compiler. LLVMJIT is a JIT compiler that uses LLVM as a com-
piler backend. LLVMJIT receives an intermediate representation
of a script and converts it to LLVM Intermediate Representation
(LLVM IR). We describe how to generate LLVM IR in LLVMJIT
and devised a point at which we convert scripts to LLVM IR.

3.1 Konoha-LLVMJIT compiler
In order to achieve the generation of highly efficient code, we

designed a new intermediate representation KonohaIR and con-
verted KonohaIR to LLVM Intermediate Representation (LLVM
IR). With the LLVM backend compiler optimizations such as
common sub expression elimination, LLVMJIT finally generated
a machine code.

KonohaIR is an intermediate language for the purpose of gen-
erating efficient code using LLVM compiler optimizations, and it
has made the design of instruction much easier based on the in-
termediate representation of both the LLVMIR and KonohaVM
bytecode.

KonohaIR consists of two elements, expression and annotation.
We designed the expression based on a representation of the static
single assignment (SSA) form. The operation of each expres-
sion has multiple inputs and a single output. The expression and
its operand have been given type information, and the LLVMJIT
provides higher-level information to generate better code such as
a constant value by annotations. Annotations are used and then
converted to LLVM IR and used in the LLVM backhand opti-
mization phase.

3.2 LLVM IR Code Generation
In this section, we describe the process of LLVM IR code gen-

eration from KonohaIR. All methods are converted to KonohaIR
and then converted to LLVM IR by LLVMJIT. The instruction
sets of the LLVM IR and KonohaIR take a one-to-one corre-
spondence. LLVM IR is converted to produce the corresponding
instructions from KonohaIR. For example, KonohaIR’s integer
“add” instruction supports the “add” instruction of LLVM IR.

LLVM supports the aggressive optimization of a universal lan-
guage, yet KonohaScript supports high-level language features
such as garbage collection. Both LLVM IR and KonohaIR pro-

int f(int n) {
int v = 0;
for (int i = 0; i < n; i++)

v += i;

return v;
}

Fig. 3 An example KonohaScript program.

vide a mechanism for the representation of data structures and
function calls. As it could not be expressed in a one-to-one cor-
respondence between LLVM IR and KonohaIR, we provided a
mechanism to convert KonohaIR to LLVM IR individually. In the
following sections we will compare each type system and func-
tion call mechanism, and describe how to convert each correspon-
dence.
3.2.1 LLVM Types

LLVM type systems were originally similar to C, supporting
boolean (i1), char (i8), long (i32), and float. Now its type system
supports structs and arrays.

i1, i2, i8, i16, i32, i64

float, double, fp80
array = type [3 x i64] /* array type */

struct = type {i64, float} /*struct type */

KonohaScript has three primitive types, boolean, integer, and
float. On LLVM IR, these primitive types are made to correspond
to the type bit length matches. In order to represent type conver-
sion in LLVM IR, we also built the data structure of the object that
is compatible with that used in runtime, and LLVMJIT inserts the
LLVM IR express type conversion.
3.2.2 LLVM Functions

In LLVM IR, a function is called based on the calling conven-
tion of the architecture. On the other hand, in KonohaScript all
methods are defined in a manner tailored to Fmethod type and
arguments, and return values are then passed through KonohaS-
tack before and after the method call. When LLVMJIT converts
the methods to LLVM IR, we generate the LLVM IR function by
adjusting to the Fmethod interface. In addition, LLVMJIT inserts
the instruction that is stored in the return value to KonohaStack,
and then adds a process to load arguments from the KonohaStack
when converting LLVMIR from KonohaIR.

3.3 Sample LLVMJIT Execution
In this section, we describe the compilation flow of LLVMJIT

using an example. Figure 3 shows the source code used in the
following description.

At first, LLVMJIT translates the KonohaScript code in Fig. 3
into KonohaIR in Fig. 4. At this time, each block of a script is
converted to basic blocks and each part of the code is translated
to SSA form. When LLVMJIT converts code to SSA form, to be
unique of usage and declaration of a variable, LLVMJIT inserts
the PHI instruction. The PHI instruction is represented by a list
of pairs of variables and basic blocks. Next, LLVMJIT performs
the translation from KonohaIR into LLVM IR in Fig. 5. With the
exception of those mentioned in the previous section, the conver-
sion to LLVM IR is a one-to-one transformation from KonohaIR.
Finally, LLVMJIT converts from LLVM IR to a machine code
using the LLVM backend.

c© 2013 Information Processing Society of Japan 11

IPSJ Transactions on Programming Vol.6 No.1 9–16 (Jan. 2013)

def Int Script.f (Int i1_0) {

bb0:

i2_0 = @const Int 0

i3_0 = @const Int 0

_ = jmp bb1

bb1: @loop:cond

i1_1 = mov Int i1_0

i2_1 = phi [(i2_0, bb0), (i4_0, bb3)]

i3_1 = phi [(i3_0, bb0), (i4_1, bb3)]

b5_0 = lt Boolean i3_1 i1_1

_ = cond Boolean b5_0 bb2 bb4

bb2: @loop:body

i4_0 = add Int i2_1 i3_1

_ = jmp bb3

bb3:

i6_0 = @const Int 1

i4_1 = add Int i3_1 i6_0

_ = jmp bb1

bb4

_ = return i2_1
}

Fig. 4 The KonohaIR sequence for the program in Fig. 3.

define void @f(%ctx* %ctx, %sfp* %sfp, i64 _rix){
bb0:

%0 = getelementptr %sfp* %1, i32 1, i32 1

%arg = load i64* %0

;; Konoha to load the arguments from the stack

br label %bb1
bb1:

%3 = phi i64 [0, %bb0], [%6, % bb3]

%4 = phi i64 [0, %bb0], [%7, % bb3]

%5 = icmp slt i64 %4, %arg

br i1 %5, label %bb2, label %bb4
bb2:

%6 = add i64 %3, %4

br label % bb3
bb3:

%7 = add i64 %4, 1

br label %bb1
bb4:

%8 = getelementptr %sfp* %1, i32 _rix, i32 1

store i64 %3, i64* %6

;; Make the store of arguments from KonohaStack

ret void
}

Fig. 5 The LLVM IR sequence for the program in Fig. 4.

4. Implementation

In this section, we describe the optimization applied to the
LLVMJIT compiler. LLVMJIT optimizes for the following items
to be considered in the code, which it generates for the JIT com-
piler to work with language runtime, and is associated with high
execution performance.
• Method interface
• Calling runtime library function
• Memory layout of objects

4.1 Direct Invocation Between Compiled Methods
In KonohaScript, various kinds of methods co-exist simultane-

ously, such as methods represented with bytecode and executed
by an interpreter, native methods written in C and provided by
an extension library, and methods compiled by a LLVMJIT com-
piler. To agree a calling convention to call each other between
different kinds of methods, KonohaScript provides a single com-

/* factorial method */

int factorial(int n) {
if (n < 2) return 1;
else return n * factorial(n-1);

}

Fig. 6 Factorial program written in KonohaScript.

/* Common calling interface version */

void fact(CTX ctx, ksfp_t *sfp, long rix) {

int n = sfp[1].ivalue;
int ret = fact_opt(ctx, n);
sfp[rix].ivalue = ret;

}

/* specialized interface version */

int fact_opt(CTX ctx, int x) {
if (n < 2) return 1;
return n * fact_opt(ctx, n-1);

}

Fig. 7 The KonohaIR sequence for the program in Fig. 6 with specialized
interface.

mon calling convention. LLVMJIT generates that code and is
responsible for matching the common method interface.

As described in Section 2, all methods for KonohaScript are de-
fined with the common method interface Fmethod. Therefore, the
code of method invocation that LLVMJIT generates is not only a
simple function call instruction but also contains the operation of
the arguments and return values to KonohaStack. However, in a
case where both the caller method and callee method are com-
piled by LLVMJIT, the common interface does not have to be
involved and it can eliminate load and store operations to Kono-
haStack for arguments and return values. In addition to the com-
mon method interface, when both the caller method and callee
method are compiled by LLVMJIT, LLVMJIT provides a spe-
cialized interface that eliminates the operation of the return value
and arguments through KonohaStack, and the compiler generates
a call instruction directly.

When LLVMJIT compiles a method it generates code that con-
forms to two method interfaces, a specialized interface and a
common calling interface. If the method is called from a non-
compiled script, it makes a call via the common calling interface.
On the other hand, the method is called from the compiled code
calling convention, switches to a specialized interface, and the
methods are called but not allowed to pass through the KonohaS-
tack. As a side note, with dynamic binding the LLVMJIT com-
piler cannot guarantee that both the callee and caller methods will
always be compiled code. Therefore, LLVMJIT is restricted to
adapt the ideas when the callee method is a final method or static
method so that dynamic binding does not occur.

Figure 6 shows an example of the factorial method written in
KonohaScript and JIT compiled code, with a common method
interface and specialized interface in Fig. 7. We noted that we
would rewrite JIT compiled code for implementation in C for
readability.

4.2 Inlining Runtime Library
Inlining is a well-known optimization technique to reduce the

number and cost of method calls, and it introduces more oppor-
tunities of inter-procedural analysis and optimization. In script-

c© 2013 Information Processing Society of Japan 12

IPSJ Transactions on Programming Vol.6 No.1 9–16 (Jan. 2013)

ing languages, there are many functions provided by extension
libraries. To adjust the difference between the common interface
and calling convention of the native method, wrapping functions
are provided in these libraries.

Expanding the scope of JIT compiler optimization by inlining
to the runtime library can be expected to lead to a reduction in the
number and cost of method calls, including wrapper functions.
However, in the existing JIT compiler, it is not easy to inline the
native method provided by the runtime library because it is neces-
sary to disassemble the runtime library and analyze the behavior
of each native method at runtime operation.

Our approach is to convert the runtime library code to LLVM
IR at the same time the user compiles the runtime library to native
code. The native function expressed as a LLVM IR is expanded
to the main memory at runtime, and LLVMJIT can easily inline
native function code into LLVM IR that is converted from Kono-
haIR.

We assume that native functions are composed of two parts, the
function body and the wrapper to adjust with the common inter-
face. As mentioned in the previous section, the inlining wrapper
function of the native function can allow the removal of the opera-
tion relevant to KonohaStack and thus remove the cost of method
calls.

With inlining the wrapper function, LLVMJIT will remove op-
erations relevant to KonohaStack in the following steps. At first,
LLVMJIT determines the layout of KonohaStack at the time the
wrapper function is called. The layout can be analyzed from the
type information of the method. Next, LLVMJIT performs the in-
line wrapper function to the caller code. Finally, based on the lay-
out of the KonohaStack, LLVMJIT transforms the values placed
on KonohaStack, such as arguments and return values, to local
variables of the caller functions.

We perform inlining with the following rules:
• File size of the runtime library is less than 32 KB.
• The length of the wrapper function is equal to, or less than,

64.
The above magic numbers, 32 KB and 64, are the parameters

to determine how often inlining happens. Inlining can make per-
formance levels worse by filling up the instruction cache if it is
applied excessively. We determined the above default parameters
of 64 and 32 KB heuristically. 64 is a number for inline wrap-
per functions to prevent over inlining. When the LLVMJIT inline
native function is provided by a large scale library, we cannot ig-
nore the startup and execution time of the LLVM inline optimizer,
which includes loading the LLVM IR of the library into the main
memory. To reduce the compile time, we set the threshold to
32 KB. Figure 8 shows the conversion process of the runtime li-
brary into LLVM IR, written in C. Before the user executes the
application code, we compile runtime libraries with an LLVM-
based C compiler, named clang, into the LLVM IR. At the same
time, we compiled native code for these libraries. In carrying
out the generation of the LLVM IR from KonohaIR, LLVMJIT
performs inlining native methods using LLVM IR that clang gen-
erates. Finally, LLVMJIT removes the stack operations relevant
to KonohaStack and the procedure of inlining is completed.

Fig. 8 inlining native method provied by runtime library.

typedef struct {

hObject h;

kObject **fields; /* fields == &fields*/

kObject *fieldsI[3];

} kSmallObject;

Fig. 9 The memory layout of the object that has less than 3 fields.

4.3 Field Access and Memory Layout
Field access is one of the functions frequently used in an

object-oriented programming language. We can expect that ac-
celerating field access will have a high impact on performance.

How to access fields of the object will be determined by a
memory layout of the object that the runtime has been estab-
lished. As a native way, when the JIT compiler adopts its own
layout to represent the object, the compiler needs to track all parts
of the runtime that handle the objects.

In KonohaScript, the object type has an array field to store the
member variables (see Fig. 2) and the fields are allocated in a heap
and managed by GC. By improving the data locality of the ob-
ject’s field, we store member values directly in the region of the
object, as long as the object has less than three fields (Fig. 9).

We also modified the data layout of the object instance of the
class annotated with @Final, which has less than three fields to
examine whether the changes in memory layout affect the perfor-
mance of the accessing fields.

5. Performance Evaluation

In this section, we describe the effects derived from the
LLVMJIT compiler and our optimization techniques. Bench-
marks run on the following computing environment.
• CPU: Intel(R) CoreTM i7 2.2 GHz
• Memory: 8 GB, 1333 MHz
• OS: MacOSX 10.7.2
• C compiler: GCC 4.4.5, G++ 4.4.5
• LLVM: version 3.0
• Java: HotSpot 64 Bit 1.6.0 33
We use a set of optimization configurations provided by

LLVM. We use StandardFunctionPass for the function’s opti-
mization pass and StandardModulePass for the entire program
optimization.

As described in Section 4, we developed three different opti-
mization techniques to improve performance of the JIT compiled
code: API, INL, and FLD short. We selected these techniques to
make it clear how much improved these techniques are:
• LLVMJIT without our optimizer (JIT)

c© 2013 Information Processing Society of Japan 13

IPSJ Transactions on Programming Vol.6 No.1 9–16 (Jan. 2013)

Table 1 Description of benchmarks.

Benchmark Description

AObench [8] Ray Tracing (object creation, field ac-
cess)

DeltaBlue [9] Constraint solver benchmark (field ac-
cess)

NBody Simulation of N-body problem of plan-
etary NBody (field access)

Binarytrees A large amount of the product a binary
tree of depth n (object creation)

Mandelbrot Compute the Mandelbrot set (floating-
point arithmetic)

Richards [9] OS kernel simulation (Field access,
method call)

Spectralnorm compute the 2-norm of a square matrix
(floating-point arithmetic, array access)

Fig. 10 Performance improvements of each optimization.

• LLVMJIT with a specialized interface (JIT+API)
• LLVMJIT with inlining native function (JIT+ILN)
• LLVMJIT with optimizing field accessing (JIT+FLD)
• LLVMJIT with a specialized interface and optimizing field

accessing (JIT+API+FLD)
• LLVMJIT with all optimizations (JIT+API+FLD+ILN)

5.1 Benchmark Programs
We evaluated the performance of seven programs ported to

KonohaScript (details of the benchmark programs are listed in
Table 1).

5.2 Effectiveness of LLVMJIT and Optimizations
Figure 10 shows a comparison of the performance of our JIT

compiler with optimization, which is described in Section 4. The
overall execution time includes the compilation time of our JIT
compiler. In Fig. 10, the vertical axis shows the execution time
that is normalized by the default LLVMJIT.

We observed about 20 percent performance improvements in
the fully optimized code for AOBench, DeltaBlue, Nbody, and
Binarytrees. In addition, these performance improvements in-
dicate that LLVMJIT reduced the overhead of using runtime li-
braries. Our optimization technique implemented in this paper is
only eligible for the object that contains more than three fields.
This is because benchmarks such as AOBench and Binarytrees
create the object with small sized fields, and we observed that
this optimization reduced the number of memory references by
fixing the memory layout of an object.

Table 2 Comparison of the compilation time of the benchmark program.

Benchamrk CompileTime
(0, 0) (msec)

CompileTime
(32, 64) (msec)

CompileTime
(∞,∞) (msec)

AOBench 240 281 3106
DeltaBlue 328 336 1584
NBody 198 203 3375
BinaryTrees 101 136 1702
Mandelbrot 120 140 1562
Richards 255 266 1877
Spectralnorm 140 151 1340

In contrast, we no longer see any performance improvements
on Mandelbrot, Richards and Spectralnorm. With the observation
of the benchmark code and LLMV IR generated by LLVMJIT, we
consider there to be three reasons why the performance did not
improve. First, Mandelbrot and Spectralnorm consist of floating-
point arithmetic operations and operations of an array, and each
operation does not use the runtime libraries. Therefore, we ob-
served no performance improvement compared to the no opti-
mization option. Second, because Richards uses the method call
with dynamic bindings in many places, we are not able to per-
form optimization for the specializing method interface of the JIT
compiled code. The third reason is that Mandelbrot and Richards
use the object with more than four fields and that means our op-
timization technique is not available. In the main kernel of each
benchmark, we are not able to improve speed field access.

Table 2 shows the compilation time for different optimization
levels of native method inlining. Each configuration for optimiza-
tion is classified by the size of the extension library file and the
number of instructions in the native function.
• (Filesize, Instructions) = (0, 0) disables method inlining for

the runtime library. In this configuration, LLVMJIT per-
forms inlining of only user-defined methods.

• (Filesize, Instructions) = (32 KB, 64) enables method inlin-
ing of the runtime library when the size of the runtime li-
brary is less than 32 KB and the length of the native function
is equal to, or less than, 64. In this case, the native method
provided by Math library is inlined but IO library is not.

• (Filesize, Instructions) = (∞,∞) preforms inlining of all the
methods provided by the runtime libraries.

The compilation time performing inlining on all native meth-
ods results in 20–40 percent of execution time and takes up a lot
of execution time. On the other hand, with two other configu-
rations, the compile time accounted for about 5 percent of the
execution time and we observed that performing inlining of the
native method does not adversely affect execution time.

5.3 Comparison to C++, and Java
In this section, we compare the performance of our JIT com-

piler with C++ and Java. We have chosen four benchmarks from
the benchmarks shown in Table 1 and used equivalent implemen-
tations of benchmark programs in C and Java.

Figure 11 compares the execution time of our JIT compiler
with C++ and Java. We observed that our JIT compiler has an
approximate equivalence to the performance of C++ and Java in
NBody, Spectralnorm, and Mandelbrot. On the other hand, our
LLVMJIT with all optimizations is inferior to C++ and Java on
Binarytrees.

c© 2013 Information Processing Society of Japan 14

IPSJ Transactions on Programming Vol.6 No.1 9–16 (Jan. 2013)

Fig. 11 Performance comparisons between C++, Java and our JIT compiler.

Table 3 Comparisons of memory usage of a native code generation between
Java and our JIT compiler.

Benchamrk LLVMJIT
(bytes)

Java (bytes)

Nbody 7700 3233
Spectralnorm 5591 3915
Mandelbrot 6223 3272
Binarytrees 7521 4211

Table 4 Comparisons of the compilation time of a native code generation
between Java and our JIT compiler.

Benchmark LLVMJIT
(sec)

Java (sec)

Nbody 0.203 0.083
Spectralnorm 0.151 0.095
Mandelbrot 0.14 0.087
Binarytrees 0.136 0.091

As described in Table 1, Binarytrees composes a large part of
the computation with object creation. We observed that garbage
collection is devoted to about 70 percent of the execution time.
We now use a simple mark-and-sweep algorithm for garbage col-
lection, and we will use a smart GC algorithm to fill the perfor-
mance gap.

Table 3 compares memory usage for the compiled code that
Java and our JIT compiler generate, and Table 4 compares the
compilation time of our JIT compiler and Java’s JIT compiler.
Because our JIT compiler does not yet preform compilation selec-
tively, and Java’s JIT compiler does, our JIT compiler is inferior
to both memory usage and the compilation time when compared
with Java’s.

6. Related Work

Due to the popularity of JavaScript and Ruby on the Web,
scripting languages have received both industrial and academic
attention more recently. Several attempts have been made to-
wards a JIT compiler of the existing scripting languages based on
LLVM. Rubinius [10] is one implementation on Ruby that uses
LLVM as a JIT compiler backend. The main parts of the run-
time library of Rubinius are written in Ruby and the JIT compiler
compiles the application code into machine code at runtime.

Compilation techniques for dynamic language have a long
history from Smalltalk and Self, to more recent languages like
Python and JavaScript. Today, the trace-based JIT for dynam-

ically typed languages are TraceMonkey [1] (JavaScript) and
PyPy [3] (Python). This approach of tracing through the runtime
lends itself well to specialization due to the collected trace cap-
ture type information.

As these compilers collect trace information using the inter-
preter, it is difficult to make a comparison with the runtime library
written in other languages such as C. In this work, we compile
both application code and the runtime library to LLVM IR, and
our JIT compiler provides the opportunity to optimize the runtime
library.

As with the inlining of the native method described in Sec-
tion 4, VMKit [11] compiles the runtime libraries into LLVM IR,
and VMKit performs the inlining of the native method at run-
time. VMKit only prepares LLVM IR of the runtime library, but
we generate both LLVM IR and machine code in the library. In
addition, our JIT compiler performs inlining selectively, depend-
ing on the size of the library and length of native methods.

7. Conclution

In this paper, we have described the design and implementa-
tion of our JIT compiler, LLVMJIT and three optimization tech-
niques to help reduce language runtime overhead. We evaluated
the performance by using a benchmark application built on a JIT
compiler. We conclude that modification of the object layout and
method invocation mechanism can affect the performance of the
JIT compiler generated code.

Acknowledgments This work is done in part by JST/CREST
research grant “Dependable Operating System for Practical
Use”.

References

[1] Gal, A., Eich, B., Shaver, M., Anderson, D., Mandelin, D.,
Haghighat, M.R., Kaplan, B., Hoare, G., Zbarsky, B., Oren-
dorff, J., Ruderman, J., Smith, E.W., Reitmaier, R., Bebenita, M.,
Chang, M. and Franz, M.: Trace-based just-in-time type special-
ization for dynamic languages, Proc. 2009 ACM SIGPLAN Con-
ference on Programming Language Design and Implementation,
PLDI ’09, New York, NY, USA, pp.465–478, ACM (online), DOI:
http://doi.acm.org/10.1145/1542476.1542528 (2009).

[2] Google: V8 JavaScript Engine, available from
〈http://code.google.com/p/v8/〉.

[3] Bolz, C.F., Cuni, A., Fijalkowski, M. and Rigo, A.: Tracing the
meta-level: PyPy’s tracing JIT compiler, ICOOOLPS ’09: Proc.
4th Workshop on the Implementation, Compilation, Optimization of
Object-Oriented Languages and Programming Systems, New York,
NY, USA, pp.18–25, ACM (online), DOI: http://doi.acm.org/10.1145/
1565824.1565827 (2009).

[4] Chang, M., Mathiske, B., Smith, E., Chaudhuri, A., Gal, A., Bebenita,
M., Wimmer, C. and Franz, M.: The impact of optional type in-
formation on jit compilation of dynamically typed languages, Proc.
7th Symposium on Dynamic Languages, DLS ’11, New York, NY,
USA, pp.13–24, ACM (online), DOI: http://doi.acm.org/10.1145/
2047849.2047853 (2011).

[5] Lattner, C. and Adve, V.: LLVM: A Compilation Framework for Life-
long Program Analysis & Transformation, Proc. 2004 International
Symposium on Code Generation and Optimization (CGO’04), Palo
Alto, California (2004).

[6] Kuramitsu, K.: Konoha — Implementing a Static Scripting Language
with Dynamic Behaviors, Workshop on Self-sustaining Systems 2010,
S3, The University of Tokyo, Japan (2010).

[7] Kuramitsu, K.: KonohaScript The design and evolution of statically
typed scripting language (in Japanese), Japan Society for Software
Science and Technology (2011).

[8] Syoyo Fujita: Ambient Occlusion Benchmark, available from
〈http://code.google.com/p/aobench/〉.

[9] Laboratories, S.M.: Benchmarking Java with Richards and DeltaBlue,
available from 〈http://labs.oracle.com/people/mario/

c© 2013 Information Processing Society of Japan 15

IPSJ Transactions on Programming Vol.6 No.1 9–16 (Jan. 2013)

java benchmarking/index.html〉.
[10] Evan Phoenix: available from 〈http://rubini.us/〉.
[11] Geoffray, N., Thomas, G., Lawall, J., Muller, G. and Folliot, B.:

VMKit: A substrate for managed runtime environments, Proc. 6th
ACM SIGPLAN/SIGOPS International Conference on Virtual Execu-
tion Environments, VEE ’10, New York, NY, USA, pp.51–62, ACM
(online), DOI: 10.1145/1735997.1736006 (2010).

Masahiro Ide was born in 1988. He re-
ceived his M.S. degree from Yokohama
National University in 2012. He is a mem-
ber of IPSJ, ACM.

Kimio Kuramitsu was born in 1972. He
has been Associate Professor of Yoko-
hama National University since 2007. He
received Yamashita Memorial Research
Award 2008. He is a member of JSSST,
IPJS and ACM.

c© 2013 Information Processing Society of Japan 16

