
IPSJ SIG Technical Report

BEMAP: BEnchMark for Auto-Parallelizer

Yuri Ardila1,a) Natsuki Kawai1,b) Takashi Nakamura1,c) Yosuke Tamura1,d)

Abstract: This paper presents BEMAP, a benchmark suite to measure an auto-parallelizer tool. BEMAP aims to

assist a development of an auto-parallelizer tool by comparing the code compiled using it, to the corresponding hand-

tuned parallelized OpenCL program. It is an open-source project, and the documentations on code explanations and

experimental results of the hand-tuned parallelized programs are also provided.

Keywords: parallel programming, benchmark, auto-parallelizer, OpenCL

1. Introduction

Major rapid development in multicore platforms recently pro-

liferates the efforts in the parallel computing world. For in-

stance NVIDIA has developed three GPGPU archictures in the

last six years, namely Tesla, Ferm, and Kepler. Intel recently has

also released a powerful coprocessor, Xeon PhiTM. Many pro-

cessor vendors are racing on the market for the highest FLOPS

(Floating-point Operations Per Second) while maintaining the

energy-efficiency and low price.

The improvements of multicore processors have forced soft-

ware developers to be more subtle in retrieving the most efficient

outcome of their programs. In order to acquire that, the pro-

gram flow must be designed so that each processing element con-

tributes equally and seamlessly to the computations, while main-

taining the consistency of resources.

Traditionally, processors were only developed with only one

core attached, which means those processors are only capable

of calculating a consecutive and ordered set of instructions. De-

signing a sequential program is the elementary level of program-

ming and very simple to debug. In contrast, a parallel program

needs a tedious error-checking and the debugging process can be

extremely complex, since the execution scheduling process may

change over time.

The convertion of sequential program into multi-threaded or

vectorized (or both) code is usually where time mostly used, al-

beit parallel programming APIs have become handier to use, and

programmers can use language they prefer to port the code. For

example, OpenCL, a parallel programming API aimed at easing

code porting across different hardware platforms, has had its run-

time library available for C, C++, Java, and Python.

However, the manual parallelization process tends to be time-

consuming and error-prone. In the past several decades, an au-

tomatic parallelizer, which is a tool that implies automation in

1 Fixstars Corporation, Tokyo, Japan
a) y ardila@fixstars.com
b) kawai@fixstars.com
c) nakamura@fixstars.com
d) tamura@fixstars.com

the convertion process, has been studied scrupulously by com-

piler researchers. Up to this point, no robust auto-parallelizer has

been achieved. Due to the inherent difficulties in building a fully

automated parallelizer, several semi-automatic parallelizer exist

which gives the obligation to the programmers to inject some

“hints” to the program in the form of preprocessor directives, such

as OpenACC and OpenHMPP.

When developing an auto-parallelizer, a benchmark to run

standard tests and trials is compulsory to investigate the credi-

bility of the implemented parallelization analysis by comparing

to a manually parallelized program using an existing API.

In this paper, we introduce BEMAP (BEnchmark for Auto-

Parallelizer), which is a collection of sequential and manually

parallelized programs, aimed at supporting the development of

auto-parallelizer tool.

This paper is organized as follows. Section 2 describes BE-

MAP’s overview, and experimental results of BEMAP’s hand-

tuned parallel programs on a certain platform, and Section 3 con-

cludes the whole paper.

2. BEMAP Overview

BEMAP is a benchmark for parallelizer consisting of reference

codes (C/C++ single thread) implementation and hand-tuned

parallel codes. This is an open-source project and the software

can be downloaded from. The main purposes of BEMAP

benchmark suite are mainly:

• To investigate the work or the outcome of a compiler de-

signed for a specific multi/many core platform by comparing

the results (runtime, output, etc.) between compiled codes

retrieved by compiling the reference code and the hand-

tuned parallelized codes

• To identify performance bottlenecks, and to help finding sev-

eral potential solutions for a particular problem to be exe-

cuted in a particular platform. This applies for for both soft-

ware’s and hardware’s point of view

The hand-tuned parallel codes are currently implemented us-

ing the OpenCL framework. Rising aside with the heterogeneous

c© 2013 Information Processing Society of Japan 1

Vol.2013-ARC-203 No.3
2013/1/31



IPSJ SIG Technical Report

Fig. 1 BEMAP Usage Flow

computing, the OpenCL framework gives a standardized parallel

programming API, and aims to provide the base of parallel com-

puting paradigm to simplify cross-platform code porting. More-

over, OpenCL has both C and C++ API interfaces (but not for

the kernel code) in which most programmers are familiar with,

and recently frontends in other language wrappers are also in

progress, such as Python (PyOpenCL ) and Java (jocl and javacl

).

Big processor vendors such as Intel, NVIDIA, AMD, IBM,

and ARM have released their own compiler for the OpenCL lan-

guage, in which each of them is provided with its own way to op-

timize the code. In BEMAP, we strictly focus on optimizing ref-

erence codes for CPUs with Streaming SIMD Extensions (SSE)

and NVIDIA GPUs.

Streaming SIMD Extensions (SSE) architecture is equipped

with vector registers that can store a group of data elements con-

currently (XMM 128-bit registers); for instance, float4 preserves

4 32-bit floats in one XMM register. With the use of these vector

registers, a considerable speedup can be achieved by calculating

two packed up 128-bit registers in a simultaneous execution. This

kind of execution is commonly known as an SIMD execution.

NVIDIA’s GPUs are optimized in a different way to conduct

a parallel execution. These GPUs are not equipped with wide

registers, instead they are fully covered by a bunch of powerful

streaming multiprocessors (SMs). Therefore, to gain a maximum

exploitation of the architecture, the amount of work has to be di-

vided into a small unit of execution. Also, these GPUs do not

have SIMD registers, they must load the data one-by-one from

the global memory. The overhead of memory transfers caused by

load-store from global memory may be a choking bottleneck for

the whole program runtime. Fortunately, for this kind of case, a

shared memory space for threadblock is provided. The transfer

rate is incredibly fast compared to that of global memory space,

and for a chunk of data that is oftenly loaded several times, it is

more subtle to use this memory space.

2.1 Backprojection (BP)

Backprojection is an image enhancing/transforming technique

where the image is brought to a higher dimensional space by us-

ing the predefined projectors’ variables, such as coordinates and

weights. In BEMAP, the Backprojection problem is used to solve

a problem listed as one in the ACM Programming Contest, South

Pacific Regionals 2000 . The problem detail and solution expla-

nation can be found in. The computational complexity of Back-

projection in the mentioned problem is O(n3).

The implementation of Backprojection in OpenCL consists of

three kernels, each of which has different implementation for both

CPUs and GPUs. The implementation for GPUs maintains a co-

alesced access memory, and also maximize the usage of shared

memory. The implementation for CPUs use the SIMD instruc-

tions with the vector registers, and the amount of computation

is heavier the GPU kernel. Also, to reduce the overhead caused

by memory transfer, a memory mapping technique is also imple-

mented. The comparison of calculation speed can be found in

Table 2.

2.2 Black-Scholes for European Call-Put Option (BS)

Black-Scholes formula is a mathematical model used in a pric-

ing of complex financial instruments; for instance, the one that

exists in the European call-put option equation. The computa-

tional complexity for this formula is O(n) and it takes the follow-

ing inputs: a set of stock prices for the underlying asset (S []), a

set of strike price of the option (K[]), a set of time of maturity

for the corresponding strike price (∆t[]), risk-free rate (r), and

volatility of returns of the underlying asset (σ).

For the SIMD kernel, we use the XMM registers and execute

4 elements at once. Since CPU has powerful cores but not many

threads execution, the weight of calculation is heavier than that

of GPU’s kernel. As for the scalar kernel, the implementation is

very simple where each thread calculates the element one by one.

The comparison of calculation speed can be found in Table 2.

2.3 Gaussian Blur (GB)

Gaussian Blur is a commonly used filter for image pro-

cessing, especially to reduce the image noise. The result-

ing blurred image is retrieved by applying the two dimen-

sional Gaussian Filter with a predefined standard deviation value

(σ). In BEMAP, two ways to conduct Gaussian Blur are cov-

ered: a 4-nested loops method with a computational complex-

ity of O(w f ilterh f ilterwimagehimage) , and the convolution separable

method with O(w f ilterwimagehimage) + O(h f ilterwimagehimage).

The implementation of OpenCL kernels for GB is divided into

four kinds: Scalar, SIMD, Scalar Fast, and SIMD Fast. The

Scalar mode runs the Gaussian Blur with two-dimensional cir-

cular kernel in parallel by calculating each pixel in one workitem

(thread), hence the number of workitems is equal to wimagehimage).

The SIMD mode is executed by calculating one image row per

workitem. This kind of implementation will only bring disad-

vantagesfor GPUs since executing less instructions with more

workitems is better for them. The Scalar Fast and SIMD Fast

mode execute with the same logic, and the only difference is that

they are divided into two kernels: one for the row-wise calcula-

tion, and the other for column-wise calculation. From bemap-5.1

, we added another mode for GPUs, which is to execute the Con-

c© 2013 Information Processing Society of Japan 2

Vol.2013-ARC-203 No.3
2013/1/31



IPSJ SIG Technical Report

volution Separable method using the shared memory space. The

comparison of calculation speed can be found in Table 2.

2.4 Grayscale (GS)

Grayscale (or Greyscale) is a method to convert a color im-

age (or RGB image) to a monochromatic image. The algorithm

is done by taking a weighted value of the red, green, and blue

part of the image. It weighs green pixels more than the other two,

since human’s eyes are more sensitive to them. The computa-

tional complexity of Grayscale is O(wimagehimage).

Grayscale’s kernel implementation is very simple. Basically

we only need three multiplications and additions for each pixel

and one time memory load; therefore shared memory usage

will not give more speedup per se. For the scalar kernel, each

workitem calculates one pixel, and the SIMD kernel calculates

one image row per workitem. The comparison of calculation

speed can be found in Table 2.

2.5 Linear Search (LS)

The Linear Search algorithm checks all n elements one by one

until a desired value is found which returns a sucess, or the oppo-

site which returns a fail run. This algorithm is the most naive and

simples implementation of a search algorithm, for it is a brute-

force algorithm. Linear search computational complexity com-

pletely depends on the number of elements (O(n)).

To investigate memory latency caused by serialization due to

bank conflicts, we demonstrate two kidns of implementations in

this paper: Scalar and STMD. The Scalar implementation is a

straight-forward implementation, where each workitem examines

one item, wheter it meets the desired value or not. If it does, then

that particular workitem writes its global ID to a single integer

memory space with an atomic function. Note here that since two

or more workitems may write concurrently to the same memory

space, triggering a condition called a bank conflict, we have to

use an atomic function to avoid an unwanted memory overwrite.

The STMD (Single Thread Multiple Data) implementation

gives more work to a workitem, where each of them examines

several elements. This implementation may seem weird since it

executes more instructions for a workitem, with no explicit use of

a vector data type register; however, throughout hypothesis and

experiments, apparently it is more subtle and works better for

CPU because it reduces the bottleneck caused by bank conflicts.

For both implementations, we run the kernel by a number of

iterations to demonstrate the advantage of memory mapping tech-

nique in OpenLCL, where in each iteration, the result has to be

transferred back to the host before the next iteration begins.

The comparison of calculation speed can be found in Table 2.

2.6 Monte-Carlo for Finance (MC)

The Monte-Carlo methods are a class of simulation algorithm

which take the advantage of a (pseudo) random number sequence

generator. In BEMAP, the Monte-Carlo method is used to sim-

ulate a finance pricing model, which is similar to that of Black-

Scholes workload’s problem. With the number of inputs of n, and

the number of paths (random numbers) of p, the computational

complexity of Monte-Carlo is O(np).

Table 2 Benchmark Kernel Peak Performance [ms]

Workload
Intel Core Intel Core GeForce GeForce

i7-3770k 990X GTX 680 GTX 570

GS (Ref) 4.77 5.44

(OCL) 0.42 0.45 0.07 0.05

BS (Ref) 1556.96 6100.41

(OCL) 21.73 42.36 1.45 1.70

LS (Ref) 29.90 24.52

(OCL) 16.78 7.02 24.18 47.00

GB (Ref) 25.51 30.08

(OCL) 1.13 1.23 0.15 0.19

BP (Ref) 11881.17 11297.62

(OCL) 123.44 196.85 71.26 75.86

MC (Ref) 23944.01 193803.17

(OCL) 269.56 671.17 41.69 49

The implementation of the program in OpenCL is divided into

three kernels: Scalar with no shared memory, Scalar with shared

memory, and SIMD. The scalar version with no shared memory

runs the formula in the traditional way of parallelization; which

is to run the formula for one call option in each thread hence

finding the sum for all paths is a gruesome bottleneck. The one

using shared memory also executes with this algorithm, but uses

a parallel reduction technique when finding the sum. The SIMD

kernel uses the similar technique with the shared memory ver-

sion, except that this kernel takes the advantage of vector data

type instead of shared memory, since there is no such architec-

ture in CPUs. The comparison of calculation speed can be found

in Table 2.

3. Conclusion

We have introduced our tool, BEMAP, which is a benchmark

suite to aid the development of an auto-parallelizer to measure its

performance, and in the same time can also help to measure the

performance of the targeted machine.

References

[1] J. Meng, V. A. Morozov, K. Kumaran, V. Vishwanath, T. D. Uram,

“GROPHECY: GPU performance projection from CPU code skeletons”

SC ’11, 2011.

[2] S. Hong, H. Kim, “An analytical model for a GPU architecture with

memory-level and thread-level parallelism awareness” ISCA ’09, 2009.

[3] NVIDIA Corporation. NVIDIA CUDA C Programming Guide Version

4.2

[4] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, F. K. Zadeck,

“Efficiently Computing Static Single Assignment Form and the Control

Dependence Graph” ACM Transactions on Programming Languages

and Systems Volume 13 Issue 4, October 1991

[5] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. Lee, and K.

Skadron, “Rodinia: A Benchmark Suite for Heterogeneous Comput-

ing,” In Proceedings of the IEEE International Symposium on Workload

Characterization (IISWC), October, 2009.

[6] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth, K. Spaf-

ford, V. Tipparaju, J. S. Vetter, “The Scalable HeterOgeneous Comput-

ing (SHOC) Benchmark Suite,” In Proceedings of the Third Workshop

on General-Purpose Computation on Graphic Processors (GPGPU

2010), March, 2010.

[7] BEMAP: BEnchmarks for Automatic Parallelizer.

https://sourceforge.net/projects/bemap/

[8] Intel Corporation, “Intel 64 and IA-32 Architectures Optimization Ref-

erence Manual,” June, 2011.

[9] R. Hochberg, “Matrix Multiplication with CUDA – A basic introduc-

tion to the CUDA programming model,” August, 2012.

[10] D. Lee, I. Dinov, B. Dong, B. Gutman, I. Yanovsky, A. W. Toga,

“CUDA Optmization Strategies for Compute and Memory-Bound Neu-

roimaging Algorithms,” June, 2010.

[11] S. Kawai, “’Program Promenade: Digital Tomography,” In IPSJ Mag-

c© 2013 Information Processing Society of Japan 3

Vol.2013-ARC-203 No.3
2013/1/31



IPSJ SIG Technical Report

Table 1 Testing Hardware Specifications

Hardware Intel Core Intel Core GeForce GeForce

Type i7-3770k 990X GTX 680 GTX 570

Microarchitecture Ivy Bridge Nehalem Kepler Fermi

Core Frequency (GHz) 3.5 3.47 1.058 1.46

Number of Cores 4 6 1536 480

GFLOPs per core 28 13.88 2.116 2.92

Device peak GFLOPs 112 83.28 3250.176 1401.6

L1-cache size (KB) 64 64 64 64

L2-cache size (KB) 256 256 512 512

L3-cache size (MB) 8 12 - -

Memory type DDR3-1600 DDR3-1066 GDDR5 GDDR5

Memory clock rate (GHz) 1.6 1.066 6.008 3.8

Memory bus width (bit) 128 (dual) 192 (tripple) 256 320

Memory peak bandwidth (GB/s) 25.6 25.6 192.256 152

azine, Vol. 46, No.3, Mar, 2005.

[12] F. Black and M. Scholes, “The Pricing of Options and Corporate Li-

abilities,” In the Journal of Political Economy, Vol. 81, No. 3 (May -

Jun., 1973), pp. 637-654, The University of Chicago Press, 1973.

[13] B. Lu, “Monte Carlo Simulations and Option Pricing,” Pennsylvania

State University, July, 2011.

Acknowledgments This project is partially funded by the

Department of the New Energy and Industrial Technology De-

velopment Organization (NEDO).

c© 2013 Information Processing Society of Japan 4

Vol.2013-ARC-203 No.3
2013/1/31


