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Abstract

This paper purposes a protocol synthesis method for protocol entities whose behaviours
are described in LOTOS. In this method, a single entity described in LOTOS is given.
The peer entity is generated automatically from the given entity if the given entity posses
certain desirable properties. The two entities interact via synchronous communication.
One of the main problems in synchronous communication is deadlock which arises when
synchronously communicating entities are unable to synchronize for communication and
wait for each other for synchronization. The synthesis method presented in this paper
ensures that the interactions between the given entity and the generated peer entity are

deadlock free.

1 Introduction

Protocol synthesis is a process of design-
ing new communication protocols. Since
the development of computer communica-
tions and networkings, the role of commu-
nication protocols in maintaining smooth
operation of computer communications
and networkings has been recognized.

The objective of developing automatic
protocol synthesis method is to provide
systematic way of designing protocols
such that their correctness can be en-
sured. Broadly speaking there are two
types of protocol synthesis methods(8§].
They are service oriented and non-service
oriented. In the service oriented protocol
synthesis method, a protocol specification
is derived from the service specification.
However, the assumption is that the given
service specification provides the proper-

ties required for the correctness. The ser-
vice oriented method is based on Finite
State Machine(FSM)[1][2] and LOTOS|[3].
In non-service oriented protocol synthe-
sis method, incomplete protocols or pro-
tocols with errors are given and the syn-
thesis methods generate the correct pro-
tocols. It is based on FSM[4]. The brief
comparison of them is given in figure 1.
Our synthesis method is non-service ori-
ented based on LOTOS. One of the main
features and advantages of LOTOS over
FSM is the ability of synchronization for
communication among entities. One of
the main problems in synchronous com-
munication is deadlock, which is a sit-
uation when synchronously communicat-
ing entities are unable to synchronize and
enter in a state where no further syn-
chronization is possible. Our synthesis
method automatically generates a peer
entity from a given single entity by de-
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Figure 1: Comparison of Service ori-

ented and Non-service oriented Synthesis
Method 4

composing the given entity into compo-
nents. Using the components and pre-
defined rules the components of the peer
entity are generated which are then com-
bined in order to obtain the complete
specification of the peer entity. The pro-
tocol generated is guaranteed to be well
behaved and deadlock free if the given en-
tity model posses a certain desirable prop-
erties.

2 LOTOS

LOTOS (Language Of Temporal Order-
ing Specification) is an FDT(Formal De-
scription Technique) developed by ISO
(International Organization for Standard-
ization) [5] for the formal description of
distributed systems. A distributed system
specified in LOTOS consists a number
of processes interacting with each other.
A process in LOTOS is considered as
an abstract entity which is capable of
performing internal events and communi-
cates with other processes via communi-
cation events by synchronizing at points

called gates. An event or an action is
considered as an atomic (i.e. not divisi-
ble in time) event. A behaviour of a pro-
cess is defined by stating the temporal
relation of events of the process. There
are various LOTOS operators (eg. pre-
fiz(;), choice(f])) to form behaviour ex-
pressions and combine behaviour expres-
sions to yield complex behaviour expres-
sions. LOTOS has two parts, process part
and data part. In this paper we are con-
cerned with process part whose seman-
tic is modeled by Labeled Transition Sys-
tem(LTS).

A LTS has a 4-tuples < S, Act, T, sp >
where S is a finite state set, Act is a set
of actions, T is a set of transition relation
such that T C S x S and s¢ € S is the
initial state.

3 Component Based
Synthesis Methodol-

ogy

In this section, we will describe our proto-
col synthesis problem and our approach to
solve the problem. Protocol entities (pro-
cesses in LOTOS) involved in communi-
cation are described in LOTOS. In this
paper we will use a protocol entity and a
process synonymously.

3.1 Synthesis Problem

The number of entities involved in our
synthesis method are two and interaction
between them is via synchronous commu-
nication.

Two protocol entities communicating
with each other synchronously and pro-
viding services to their users can be de-
picted as shown in figure 2.
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Figure 2: Synchronous Communication
Model

points (gates in LOTOS):

(1) a set of interaction points at which
an entity and its service user interact for
communication (i.e. ' and B ).

(2) a set of interaction points at which two
entities interact for communication (i.e.

A).

We define actions occurring at (1) and
(2) as non-synchronization actions and
synchronization actions of a entity respec-
tively as defined in definitions 2 and 3.

[Definition 1] (Actions of process P):
Actions of process P, Act(P), is defined

as a set of all possible actions executed
by P. o

[Definition 2] (Synchronization actions
of process P):

Synchronization actions of process P,
Sync(P), is defined as a set of actions at
which P synchronizes with a process (peer
entity) @. a

Example: If Pl[a,c]|@ then Sync(P) =

Sync(Q) = {a,c} o

[Definition 3] (Non-synchronization ac-
tions of process P):

Non-synchronization actions of process P,
Nonsync(P) is defined as Nonsync(P) =
Act(P) — Sync(P) (ie. Act(P) =
Nonsyne(P) U Sync(P)). o

Observable actions for a user are non-
synchronization actions. Synchronization
actions are hidden from the user. But
we are concerned with the specification
of a protocol entity. From the pro-
tocol entity’s point of view both non-
synchronization and synchronization ac-
tions are observable actions. The com-
munication model in figure 2 is closely re-
lated to OSI layer systems. So we will
consider actions occurring at points (1)
and (2) as service primitives and protocol
data units(PDUs) respectively.

[Definition 4] (Definition of System
Deadlock )

Let a system, S P|[sync actions]|Q,
where P and @ are processes then § is
said to be deadlock whenever;

Va € Act(S), 35, Elt € (Act(S)- {6 "
such that § == ' 7‘) w
Here

(1) S’ + means that —3S5” such that
S! S"

(2) S == S’ means that 35; (1
n),t; € t, such that § = So

z.
S, B . s

<:<
S B

The deadlock defined in definition 4 is
different from the definition of deadlock
defined in FSM based protocol synthesis
methods. In definition 4, system S after
executing sequences of actions ¢ enters a
intermediate state S’ from which it can-
not execute any actions.
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[Example](System Deadlock)

Let us assume that the system consist of
two processes P and @) and synchroniza-
tion actions are a and b as shown in figure
3. It is easy to note that P and @ cannot
synchronize for communication and enter
into deadlock state.

S =P |[syncactions ]11Q P Q
=Pllab]l Q P o
a b
I[a,b]I
b a

Figure 3: Example of Deadlock

Now we are ready to define our synthe-
sis problem.

[Definition 5)(Protocol Synthesns Prob-
lem)

Given a single entity P, whose speczﬁca-
tion is described in Basic LOTOS, derive
a specification of the peer entity Q, which
is synchronously communicating with P,
in Basic LOTOS such that their interac-
tions are deadlock-free and complete. O

Deadlock-freeness guarantees that no
communicating entities are waiting for
each other forever. Completeness ensures
that each send message in an entity. ap-
pears as receive message in its peer entity.

[Notations]

We use the following notations in the
rest of the discussion.

I'p: a set of non-synchronization actions
of P.

BQ : aset of non-synchronization actions
of Q.

A PQ : aset of synchronization actions(of
P and Q).

Let

Yadsl,.. € I'p be service primi-
tives(interactions points) from the user to
P representing send actions.

mT,721,... € I'p be service primitives
from P to the user representing receive
actions.

BT, 5T, € BQ be service primitives
from @ to the user representing receive
actions.

bil,B2l,... € BQ be service primitives
from the user to @) representing send ac-
tions. ,

Qg Apy... € Ap be Protocol Data
Umts(PDUs) from P to Q.

ay,8,,.. € Agp be Protocol Data
Units(PDUs) £rom Q to P.

3.2 Outline
Method

of Synthesis

The outline of our synthesis method can
be summarized by figure 4. The specifi-
cation of the given entity P, which is the
input to our algorithm, is described in ba-
sic LOTOS and satisfies the following four
assumptions.

[Assumption 1] Whenever P synchro-
nizes with its user to receive a message
in order to send to @ then P must im-
mediately synchronize with @ to send the

message,(i.e.if P 24 P’ then P’ ).

[Assumption 2] Whenever P synchro-
nizes with @ to receive a message from
@ then P must immediately synchronize
with its usr to deliver the message,(i.e. if
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Figure 4: Protocol Synthesis Method

P 2 P'then P' 1)

[Assumption 3] There are no internal
actions i in the specification of P.

[Assumption 4] P does not contain any
choice between 7] and a.

It is easy to note that the given assump-
tions are not special assumptions but very
natural in protocol design systems. If
the specification of P satisfies these as-
sumptions then it is guaranteed that the
communication between P and its peer
entity (generated by our synthesis algo-
rithm) progresses without deadlock.

Our synthesis method can be described
informally in three steps as shown below.

step 1: Using the decomposing algorithm,
the given specification is decomposed into
components p,, Pz, ..., Pn in such way that
each components has a pair/s of synchro-
nization and non-synchronization actions.

step 2: Using the pre-defined rules and
the components p,, ps, ..., pn, the compo-
nents g1, ¢z, ..., ¢, of the peer entity Q are
generated. ‘

step 8: Using the composing algorithm
which uses the information relating com-

ponents of P, the components of @ are
combined in order to obtain the complete
specification of Q.

The peer entity @ is unique to P.

4 Synthesis Method

In this section, we will describe decompos-
ing algorithm, synthesis rules, composing
algorithm and finally an application ex-
ample.

4.1 Decomposition of Given
Entity

The specification of a given entity P is
decomposed at certain states of P into
components py, P2, P3,-.- such a 'way that
each component has n(n = {1,2}) pairs of
synchronization and non-synchronization
actions. If a component has only prefix
operator then n = 1 and if it has choice
operator then n = 2. In the initial decom-
position of P, n can be greater that 2 for a
component. In such cases the component
is further decomposed.

It is important to maintain the inter-
component information (i.e. information
of states of components) for future use
such as in composing algorithm to com-
bine the components of @ and to know
how the specification of P was decom-
posed. So we define the state relation be-
tween components of P as in definition 6.

[Definition 6](State Relation)

Let pi1,p2,...; Pn be the components of P
obtained sequentially as a result of apply-
ing decomposing algorithm on P and let
S1 be the set of states of p;, S; be the set
of states of p, and so on, then the state
relation R, is defined as R,C S x Ss.
R = {Ry;} where R;; C S; x Sj.
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Algorithm for Decomposing Given
Entity

We assume that the given entity is in
the form as shown bellow.
P = "{ai;b; P | 1 € I} for finite index
set I, where P; is either process identifier
or is in the form of P again.
Please note that if a; € v then ¥; €a and
if a; €a then b; € 71 (from assumptions
1 and 2).

( * Repeat *)
[step 1]

(Decomposition of P and Generation of
State Relation R)

Y {pi; Decomp(P)li €

(2)R={(finalstate(p;)) =
(initialstate(F;)) }

(1) Decomnp(P) =
I}

where p; = a;; b;

[step 2]

(Generation of components)
If I = {1} then py = a1; b,

[step 8]

(Generation of components)

IfI={1,23,..,n} and n is even then
mn= Pu[]Pu = a, blﬂaz; b,
P2 = Pzn[]Pzz = as; 53[104; by

Prj2 = P21 lP(nj2)2 = @n1; baca[lan; bn
Ry, =
{(initialstate(p,)) = (initialstate(p;))}

Ri(n-2)2)(nf2) =
{(initialstate(pm-2y/2)) =
(initialstate(pnsa))}

[step 4]

(Generation of components)

If I = {1,2,3,...,n} and n is odd then
p1 = pullpiz = ar; bifJaz; ba
P2 = P21[]P22 = as, ba[]a4; bs

P(n+1)/2 = @n; bn

Ry =

{(initialstate(p)) = (initialstate(ps))}
Rim-1)2(n41)2) =
{(initialstate(pin-1)/2)) =
(initialstate(p(niry/2)) }

( * Until P cannot be decomposed *)

4.2 Synthesis Rules

These synthesis rules are applied on the
components of given entity P to generate
the components of peer entity Q. Prefix
rules are applied if the given component
of P is in prefix form and choice rules are
applied if it is in choice form. Here p(h)
denotes the component p and the state A
of P and q(k) denotes the component ¢
and the state k of @ and other notations
are same as in section 3.1 .

Prefix Rules

Ruledl If p(h) 3 p(h+1)2 p(h+2)
then (k)% gk +1) X g(k +2)
Rule2 If p(h)™s p(h + 1) p(h+2)

then q(k) 28 q(k +1) % q(k +2)

Choice Rules

Rule3 If  p(h) B ph+1)2 p(h +2)
0 p(h) 33 p(h+3) 2 p(h +4)
then  q(k) % gk +1) 3 g(k +2)
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[0 4k)
Ruled4 If p(h) =
)

‘_.

0 (k)™ p(k +3) 28 p(h + 4)
then  q(k) 28 q(k +1) % gk +2)
0 o(k) 8 g(k +3) 2 g(k+4)

4.3 Composition of Peer

Entity

Two components of @ are combined at
a time starting from the first component
i.e. ¢ and ¢, g2 and g3, and so on, un-
til no components are left for combina-
tions. In case of recursion in a given entity
a higher number component is combined
with a lower number component. In or-
der to combine the components of @ we
need to know the intercomponent infor-
mation of P; i.e. state relation R other-
wise correct combinations of components
is not possible. Besides, it is used for com-
bining two components by LOTOS oper-
ators (prefix or choice). How R is used
to combine components by LOTOS oper-
ators will be clear in the following algo-
rithm.

Algorithm for Composing @

The composing function takes two ar-
guments.
Suppose ¢; is obtained by applying syn-
thesis rules on p; and ¢; is obtained by
applying synthesis rules on p; then

(* Repeat™* )

[step 1]
(R is converted into prefix operator)

B gk +3) 5 gk + 4)
p(h +1) =% p(h +2)

If R12 =
{(finalstate(p,)) = (initialstate(p,))}
then

Comp(q1,%) = q1; 02

[step 2]
(R is converted into choice operator)

If ng =
{(initialstate(p,)) = (initialstate(p,))}
then
Comp(g1,¢2) = allg

. ( ¥ Until there are no components of @
to be combined *)

4.4 An Application Exam-
ple

The example shown in figure 5 and figure
6 is a three phases (i.e. connection es-
tablishment, data transfer and disconnect
phases) protocol.. For simplicity, the spec-
ification of the given entity P, is shown in
the LTS form of LOTOS specification and
the generated peer entity is also in LTS
form.

4.5 Theorems and Proof of
Theorem

[Theorem]
System S consisting of processes P and Q@
defined as,

s % P|[synchronization actions)|Q is
deadlock free.

[Proof]

The proof directly follows from Decom-
posing algorithm, Synthesis Rules and
Composing algorithm. The decompos-
ing algorithm decomposes the specifica-
tion of P into finite number of compo-
nents py, p, .. such that the synthesis rules
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Figuie 5: Decomposition of Given Entity

P

Applying Synthesis Rules
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R 5, =[(final state(p22) )= (initial statep] ))) therefore

Comp( q22,41) =q22 : g
R 2 =((final state(p2] )) = (initial state3 )} therefore

Comp(q2143) =q21 ; q3
R 34 ={(final state(p32)) = (initia! statep3))) thesefore

Comp(q32.43) =¢32 ; ¢3

OUTPUT

Figure 6: Generation of Peer Eﬁtity Q
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can be directly applied on them to gener-
ate components ¢, ¢.. of . The synthe-
sis rules generate one and only one com-
ponent of @ from a given component of P
(i.e. one to one component mapping) and
pi |[synchronization actions]| ¢; is always
deadlock free. The composing algorithm
combines the components of @ to gener-
ate the complete specification of @ using
the knowledge of R such that interaction
among the specifications of P and @ oc-
curs components by components (i.e. p;
interacts with ¢, p, interacts with ¢, ...)
as shown bellow;

1 |[sync actions)| ¢

Traces of py |[sync actions]| ¢

4

P2 |[sync actions]| ¢,

Traces of p, |[sync actions]| ¢,
J
I
Traces of pn—1 |[sync actions]| g1

4

Pn |[sync actions]| ¢,

Traces of pn |[sync actions]| ¢,

U

Since the interactions of P and @ pro-
ceed from corresponding components to
components and the interactions between
components to components is deadlock
free, the system is deadlock free.

5 Conclusion

In this paper we have developed a system-
atic way of generating a peer entity from
the specification of a given entity in ba-
sic LOTOS for the synchronous commu-
nication model. One main logical error in
synchronous communication is deadlock.
Our synthesis method guarantees that the
communicating entities progress without
deadlock. Our future work is to eliminate
assumptions on given entity.
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