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In distributed applications, group communicetion among multiple objects is required. Group communication
protocols provide a group of multiple objects with reliable and ordered delivery of messages. Kinds of group
communication protocols have been discussed so far, which support the reliable and ordered delivery of messages
at the communication network level. Only messages to be ordered at the application level have to be delivered
in the required order. In the distributed applications, objects receive requests and send back the responses. The
state of the object depends on in what order the requests are computed. In addition, the object state depend
on in what order the responses are received. In this paper, we would like to discuss how to support the ordered
delivery of request and response messages which are significant to the application objects.

1 Introduction

Distributed applications like teleconferences
and teleclassrooms [8] are composed of multiple
objects. Objects support operations for manip-
ulating the states of the objects. Here, a group
of multiple application objects have to be com-
municated in the distributed applications. First,
the group is established among multiple objects.
Then, messages sent by each object are delivered
to the destination objects in the group. This type
is inira-group communication [19-22, 25, 28, 29].
For example, multiple objects make a group, i.e.
conference and they send messages to the objects
in the group. Another type of group communi-
cation is multicaatJS, 4], where each object sends
messages to a pre-defined group or groups of ob-
jects. In this paper, we would like to discuss the
intra~group communication among multiple appli-
cation objecta. * - i

It is important to support the causally ordered
delivery of messages in the group. Many pa-
pers [1, 3,4, 6, 10, 11, 13, 16, 18-22, 24, 25, 28-30
have discussed how to support the reliable an
ordered delivery of network messages, i.e. packets
at the network level in the presence of message
loss and object faults. O(n?) processing overhead
and O(n) to O(n?) communication overhead are
implied for number n of objects in the group [19].
On the other hand, it is pointed out in [5] that it
might be meaningleas at the application level to
support the causally ordered delivery of all mes-
sages transmitted in the network. Only the mes-
sages required to be causally ordered for the appli-
cations have to be causally delivered in order to
reduce the communication and -processing over-
head. [23] discusses how to support the ordered
delivery based on the precedence relation among
messages specified by the application. However,
it is not easy for users to specify the precedence
relation. [15] defines the significant messages in
the distributed checkpoint. That is, if the state of
the object is changed on receiving a message m,
m is significant. The receivers of the significant
message m have to be rolled back if the sender of
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m is rolled back.

In the distributed application, each object o
supports abstract operations for manipulating the
objects. The computation on objects is based on
the remote procedure call (RPCi [31). A reguest
message m with an operation op is sent to 0. On
receipt of m, o computes op. op might change
the state of o, e.g. write on a file object. On
completion of op, op sends back a response mes-
sage m’ with the result of op. Here, m precedes
m’ because m' is the response of m. Next, the
states of the objects depend on in what order the
operations are computed. The compatibility rela-
tion [2].among the operations is defined for each
object based on the semantics of the object. That
is, two operations are compatible if the same ab-
stract state is obtained by applying them in any
order. Thirdly, the responses of operations like
reed and the requests like wrile carry data from
the sender object to thé receiver. For example, if
o sends a write request m after receiving a read
response m’, m’ causally effects m. Thus, the sig-
nificant causal relation among messages for the
applications can be defined by the compatibility
relation on the requests and the information flow
relation on the requests and responses. In this pa-
per, we would like to discuss how to support the
causally ordered delivery of messages.

In section 2, we present the system model and
the significant causal relation among requests and
responses at the application level. In section 3 and
4, we discuss how to realize the significant causal
order. In section 5, the protocol.for supporting
the application-oriented causally ordered delivery
of messages in the group.

2 System Model

2.1 Computation model

The distributed application is composed of
multiple application objects interconnected by
the communication system [Figure 1]. The dis-
tributed computation of the application is com-
posed of computations in the objects 'and com-



munications among the objects. An object o is
defined to be a pair of abstract state D, and a
collection P, of abstract operations for manipu-
lating D,. Another object o' can manipulate o
only through the operations in P,. On receipt of
a request message of an operation op from o, o
computes op and sends back the response of op.
op may change D,. Here, o' and o are referred to
as sender and receiver of m, respectively.

A group G is defined to be a collection of ob-
jects 0y, ..., 0p (n > 2),ie. G =a$1, ooy On)-
The objects are cooperated with e other in G
by sending requesta and responses. For example,
in the teleconferences, objetts representing agents
of the members make a group, i.e. conference,
and they send measages to others in the group,
i.e. intra-group. communication [25, 28).

The communication system takes' messages
from the application objects and delivers them to
the destination objects by using the communica-
tion networks. The communication system deliv-
ers the destinations in the causal order only the
messages which have to be causally ordered from
the application point of view R4‘] rather than all
the messages. We assume that the communication
network is relicble and synchronous, i.e. messages
sent by each object are delivered to the destina-
tions with no message loss in the sending order
and the delay time is bounded.
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Figure 1: Group G

2.2 Conflict operations

For every operation op and state s of o, let
op(s) denote a state obtained by applying op to
a 4
[Definition] Two operations op; and op, sup-
ported by an object o are compatidle iff
opl(op,(ag') = opy(op(3)) for every state s of o.
[m]

op, and op, are referred to as conflict iff they are
not compatible. If op, and op, conflict, the state
obtainedp by .applying opy ang ops to o depends
on in which order op, and op, are computed, i.e.
opy(opa(s)) # opy(op,(s)) for some state s. The
compatibilily relation C, C P? for o is defined as
follows: for every pair of operations op, and op, in
P,, {op,, op;) € C, iff op, and op, are compatir)le
Suppose that op, is currently being computed in
o and then op, is issued to o. If op, and op, are
compatible in o, op; can be computed. If op, and
op, conflict, op, has to wait until op; completes.

Maultiple operations are issued to o. Some oper-
ations may be computed concurrently in 0. Two
operations op; and op; are referred to as mulu-

ally ezclusive iff op; and op;z cannot be computed
concurrently in o. In this paper, we assume that
op, and op; are mutually exclusive if op; and opz
conflict.

2.3 Information flow

The request message m; sent by an object oy
carries the operation op; and input data in,, i.e.
my = (opy,'tny ) to 0;. Forexample, the Bank ob-
ject supports operations deposit, withdrawel, and
transfer, and the.file object supports reed and
write. The request of deposit carries the amount
of money to be added to the account in the Bank
object as the input in,, but the request of read
brings no input data. If in; # ¢, information in o
is flown into 0;. The response message ma of m;
carries the output data of op,, i.e. my = (outy ).
For example, the response of read includes data
derived from the file as the output out; but the
response of deposit carries no output data. If the
response my = ( outy ) includes data, the informa-
tion in o; is flown into 0. If o, issues a request
mg of ( ops, in3 ) after receiving mij which has
data, mz may forward the information carried by
my, i.e. My is causally effected by m;.

2.4 Instantiation of operation

Each. time the object o receives an operation
op, a thread for computing op is created if op
is not mutually exclusive with all operations be-
ing computed or being waited in the ready queue
RQ,. If not, op is enqueued into RQ,. If op
completes, the response is sent to the sender of
op and the thread is removed. If the top opera-
tion in, RQ, is not mutually exclusive with every
operation being computed, it is started to be com-
puted by creating the thread. Each thread for op
is computed sequentially, i.e. a sequence of ec-
tions. The action is a primitive operation which
is an atomic unit of computation in the object.
The action cannot be directly used by the users.
The computation of the thread in o is referred to
as instance of op in o. The computation of op is
viewed to be atomic by the sender of op;. That
is, only.if all the actions computed in op complete
successfully, op completes successfully, i.e. com-
mits, If some action in op fails, no action in op
are computed, i.e. aboris. The completion of op
means that op commits or aborts. That is, op can
be considered to be a transaction [12].

op may compute an operation op; of another
object 0;. o sends the request op; to o;. On re-
celpt of 0p;, o; creates the mstance of op; and op;
is computed. This action is referred to as instan-
tiation of op;. There are the following ways to
instantiate op; in op:

(1) Dependent instantiation:
» blocked instantiation:
. op; completes.

s non-blocked instantiation: op. computed
while op; is being computed, but. ep
completes after op; completes.

(2) Independent instantiation: op; is computed
independently of op. ‘

The dependent instantiation means the remote

procedure call (RPC). op; is instantiated in op and

op blocks until



op; completes before op completes. On the other
hand, in the independent instantiation, op; may
complete before op; completes. In this paper, we
would like to discuss the dependant instantiation.

Suppose that op in an object o; instantiates
op;. Here, op; may be computed in more than
one object, i.e. 0;1, ..., oim, (mi > 1). Let op?
denote an instance of op; which is computed in
o;5. It is noted here that op} and op{* (j # k)
may be different. For examp‘)e, a travel agent T
issues a booking request op to a hotel object H
and airline object A. op is instantiated in H as
op™ to book the room and in A as op” to book the
flight. If e;; and o; are replicated objects, opy
and opi* are the same. There are the following
ways to compute op;.

(1) Atomic computation, i.e. o; completes only
if all the instances opi!, ..., op::""" complete.
If some op::’. fails, op; fails:

(2) Alternative computation, i.e. op; completes
only if at least one instance op::j completes
even if another instance opi* fails.

(3) (*) computation, i.e. o; completes only if at

least r (< n) instances of opil, ..., opi™
complete.

2.5 Coordination

In addition to supporting the ordered delivery
of operations, it is important for applications to
discuss in what order each object receives the re-
sponses. Here, suppose that an object o; sends an
operation op; to multiple objects o;y, ..., Oim;.
There are two approaches to sending the responses
after each o;; computes the instance op}’. In one
way, every o;; sends back the response of op;’, suc-
cess or failure, to o; [Figure 2(1)]. If the atomic
computation of opi!, ..., opi™ is required, o;
sends the commil message to every o;; if o; re-
ceives the response success of op} from every o;;.
If o; receives failure from some o3, o; sends abori.
This is the famous two-phase commiiment proto-
col [12]. The sender o; plays a role of the cen-
tralized controller. Since only o; receives the re-
sponses from all the receivers, o; can decide on the
receipt order of the responses.

In another way, each o;; sends the response to
o; and the other receivers o;y, ..., Oim; if op?
completes [Figure 2(2)]. Here, 0;; knows how the
other objects compute the instances of op;. It is
the distributed control. The sender o; and each
receiver o;; may receive the responses not in the
same order. For example, suppose that three ob-
jects A, B, and C which are agents of persons
are holding the conference. Each object has the
schedule of the person. One object, say A would
like to hold a meeting with B and C. A sends
the request of the meeting to B and C. B and C
change the schedules on receipt of the request, and
sends the responses to all the objects. Each object
can decide on the meeting by itaelf if it receives
all the responses. In addition, each object may
compute operations based on the receipt order of

the responses. Here, each object has to receive the
responses in the same order.
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Figure 2: Atomic computation

3 Significant Precedence of Opera-
tions '

It is important to consider in what order the
operations are computed in the objects. The fol-
lowing notations for an operation op are used for
an object o; in this paper.

e op' = instance of op in o;.

» [op* = begin action in op'.

o 0p'] = end action in op’.

o (op" = instantiation action of op,ie. opis

started to be computed in o*.
e 0p)’ = completion of instantiation of op in o;.

. (op)" = (opi and op)i, i.e. op is instantiated
and completed in o;.

The instance op® is modeled as sequences of ac-
tions in o;. Each action is computed atomically in
0;. The local precedence relation “—;" among the
actions in o; is defined as follows.

[Definition] For every pair of actions a; and o,
supported by object o;, a; precedes a; in o; (e
—; a3) iff a; is computed after g, 0;. O

“—;" is transitive. a; and e; are computed con-
currently iff neither a) — 0z nor a3 —; ay. It is
trivial that {op* —; op']. If op, is instantiated in
op, {opi —: (oph — op']. If op, is dependently
instantiated in opl, [op} —; (ops)’ —: op), i.e.
op; is computed by the remote procedure call in
op;.

Now, we would like to discuss the precedence
relation among the operation instances in o;.
Here, let op] and op} be instances of operations
op, and op, computed in o;, respectively. There
are the following transitive precedence relations
from op! to op} [Figure 3].

(1) op§ fully precedes op} (op} =i op}) iff opi]
=i [op}. )

(2) op} top-precedes op} in o; (op} +v op}) iff
[op} —¢ (075

(3) op} tail-precedes op} in o; (op} v op}) iff
opi] — opj).

(4) opt dependently instantiates op‘; in o; (op}
F: op3) iff [0p} —i (0p3) —i opi].



(5) op} independently instantiates op} in o; (op}
Fi op}) iff [opd —; (oph —; opil.

(l) api = opg : [olp{ e opi] ees [ap§ ee op;']
(2) opt =i oph:  [opl .- [op) --- -
(3) op{ hb.; op; A opi ‘e cp;]

(4) op} |=; oph : [op} -+~ (opd -+- op}) -+ op]

(5) opi Fiop3:  [op; -+ (op} -+ opi] -+ op})

time

Figure 3: Precedence relation among operations

op} = op, means that op} is started after op}
completes in o;, If op} and op} are mutually ex-
clusive, one of them has to fully precede the other.
Otherwme, they can be computed concurrently
op} +»; op} means that op] is started before op,
but does not necessarily mean that op} = op,
op} < op, means that ap, completes before op;
Hence, op] —; op} and ap1 =y oph xt'op1 =5 op,.
op1 partially precedes op} if op} 1 op or op} —
op}. If[op1 — [op} — 0p}), op} and op} are in-
terleaved in o;. If opl top-precedes op} and op}
tanl-precedes opl, i.e. ["?l — [o;;2 —; opi] —
opi], 0p; is included in op}. op} |5; op} and op}
b; oph mean that op} is instantiated in opi.

Next, we would like to consider the full prece-
dence relation “=>" among the operations com-
puted in different objects.

o op} = op} iff (1) opl = op} for 3 =7, (2)
0?1] — ("Pa) , or (3) for some op}, opj =>
°P3 = opj.

opi = op} means that op} completes before op;

starts. In Flgure 4, o; computes opj, instantiates
op; computed in o;, and computes ops, ie. op,]
-—q opy —; [opy. Here, op} => op} and op} =
In this paper, we would like to discuss the
ﬂ precedence relation among the operations.

o; 0;

op} ) op}

timeY \

Figure 4: Full precedency

As presented before, if two operations op, and
op, conflict in an object o, the state obtained by

applying op; and op; to o depends on the com-
putation order of op, and op;. The axgmﬁcant
precedence relation < between op} and op) is de-
fined as follows [Figure 5).

[Deﬂmtlon] opt significantly precedes op; (op} <

op}) iff op} = op;, and .

(1) op} and opj conflict in o; and op} =>; op} for
i=

(2) theri'ls some ops such that op} =>; op} and
op$ F; op; ( op) instantiates °p ), or

(3) g\ere is some op¥ such that op} < op% < op}.

e S
)"P'l pop';
I Wl
time ¥ time V]op';'
(1) (2)

Figure 5: Significant precedency (opi < on%)

4 Significant Precedence of Mes-
sages

The communication system delivers messages
to the destinations in the group so that every ob-
ject in the group can compute actions specified by
the messages in the receipt order.

4.1 Message types

There are two kinds of messages, i.e. request
and response ones as presented before. The re-
quest message includes the operation op and the
input in of op. The response message includes the
output out of op. If a message m carries data as
the input or output, information in the sender of
m is flown into the receiver. Hence, it is impor-
tant to consider whether the messages carry data
or not. For example, the request of deposit carries
the amount of money as the input.

The second point is concerned with whether
the operation op of the request message changes
the state of the object or not. For example, read
does not change the state of the file object while
deposit changes the state of the Bank object.

Thus, the request message m = é op, in ) is

iped as af3-request where o is S if op changes

e state of the object, N otherwise, and 8 is I
ifin# ¢, N otherwise. For example, the request
of read is NN, and deposit is SI. The response
message m = { out ) is typed as y-response where
v is O if out # ¢, N otherwise.: For example, the
response of read is O, and deposit is N.



4.2 Message precedence in object

We would like to discuss the precedence rela-
tion “~<;” among messages sent and received by
an object o;. There are three cases, (1) o; sends
m,; before ma, (2) o; sends m; after receiving m,
and (3) o; receives my before m;.

4.2.1 Send-send precedence

First, suppose that o; sends m, before m;. There
are the following cases:

S1. m, and m; are sent by the same instance op}
[Figure 6(1)].

52. m; and m; are sent by different instances opt
and op}, respectively:
S2.1. op} = op} [Figure 6(2.1)].
S2.2.( 20;31 and op} are interleaved [Figure 6

0; o; 0;
op;' op'; OP:
m ms op3
m,
m3
"Pg my
ma
timeY time timeY
(1) (2.1) (22)

Figure 6: Send-send precedence

In 81, m, precedes my in o; ( my <; M3 ).
In S2, if my and m; carry no data, m; and m;

are not ordered ( my || mz )

. Here, my ||; my

means that neither m; <; m3 nor my <; m;.
my or my carries data, the information is flown

my\m,; [IS [IN NS
IS Ol -~ 1O - TOT -
IN - - - - - | -
NS Ol -1O 1 - 1TO7] -
[ NN - - - - - | -
[¢) - - - - O -
Table 1: Send - send (2.1)
0; o; o;
I N S N R )
=~ = °P;
ma .
op: my
IS
time? timeJ’ time
(1) (2.1) (2.2)

Figure 7: Receive-send precedence

If m; is the response without data, i.e. N-
response, there is no precedence relation between
m; and m;j.

Here, suppose that m; is the reguest of op}
or O-response. In case Rl, if my does not in-
clude data, m, does not precede m; (m; [|i m2).
Hence, m, precedes m; in o; (m; <; mg .if m,
is O-response, or m; is the request of op}, and
m; includes data or the response of op). Table 2
shows “<;” between m; and mj in o; for R1. A
shows that m; <; mz if m, is the request of op}
and m; is the response of op}.

out from o;. In $2.1, if op} and op} conflict in o;
and m; or my carries data, m, <; m; if op} =
opb. Because the data carried by m; or mz depend
on the computation order of op} and op}. Table 1
shows the precedence relation in case S2.1 where
O means “m, <; m," if op and op} conflict and
- means “m, [|. m3". If m; and m; are responses
of op! and op}, respectively, m; <; my if m; and
m, carries data.

" In S2.2, op! and op} are interleaved. Here, m,
s Ma.

4.2.2 Receive-send precedence
Next, suppose that o; sends m; after receiving m,.
There are the following cases [Figure 7):

R1l. m; and m; are communicated in the same
instance opj. :

R2. m, is received in op} and m; is sent in op}
(# opi): _
R2.1. op; => op}.
R2.2. op} and op} are interleaved.

In R2.1, if op} and op} conflict in o; and m,
carries data, the data carried by m; may be de-
rived from the data changed by opj. Here, if m;
is the request of op} or O-response, m; <; mj if

. and opt'
gggl)ws “-(."?

op} and op} conflict.
In R2.2, op! and op} are interleaved. Here, m;
1 2

conflict and m; carries data. Table 3
between m,; and m3 for R2.1 where

ll: ma.

m\m;, [IS[IN]NS[NN[O [N

S OJOJTOTI - 10
N O10T1 - - [O1TA
NS O]l - 10 - 1AlA
NN -1 - [ - - [A1TA
0 O1O0T - - O] -
—x 2101 - RO e

Table 2: Receive - send (1)



ISTINTRSTRN
Ol1O10O ] -
O

"'O'oo

[8) - -

Table 3: Receive - send (2.1)

4.2.3 Receive-receive precedence

Let us consider a case that messages are sent to
multiple objects. Suppose that an object o; sends
a message m, after receiving m; and o, receives
my and m; as shown in Figure 8. Here, suppose
that m; <; m. Problem is in which order o, has
to receive m; and mz. There are the following
cases on types of messages m; and m;:

C1l. m, and m; are requests.

C2. m, is a request and mg is a response.

C3. m, is a response and m; is a request.

C4. m; and m; are responses.

0; 0j Ox

m,

time
Figure 8: Receive-receive precedence (1)

In addition, there are two points on how m,
and my are received in o;.

{a) m, and m; are received by a same instance
]

(b) m: and mg are received by different instances
op! and opf, respectively.

For case (a), only C2 and C4 can be considered

because m; must not be a request. Here, m; has

to precede my, i.e. m; <z ma.

Next, let us consider case (b) as shown in Fig-
ure 9. In Cl, suppose that m; and m; are the
request of opt and op}. If opf and opf conflict in
ok, opt has to fully precede opk, i.e. opt = opl.
Here, m; < mjy. Otherwise, m, ||} m;.

In C2, m, is a request of op. If opf-and op}
conflict in oy, op} has to fully precede opf, i.e. opt
= op§ Hence, m; is received after m,, i.e. m;
<& my. If not conflict, my || ma2.

In C3, m; is a request of opk. Like C2, my <
Iflnq if op} and op conflict in oi. Otherwise, m,

k M3.

In C4, the responses m; and m; are received

by op} and op%, respectively. Unless op* and op}

conflict in 0z, m; || ma. Suppose that opf and
opk conflict in o;. If m; and m, are N-responses,
i.e. without data, m; ||z m3. If not, m; <; ma.
This requires that op} = opf. However, if opk
starts before op% and waita for mz, op§ has to wait
indefinitely because m;j is delivered to o; after m;.
That is, the communication deadlock occurs. In

this case, opf has to be aborted by the time out
or deadlock resolution mechanism.

0§ ] Ok

my

ke
opy

x
0
time P

Figure 9: Receive-receive precedence (2)

4.3 Message precedence among ob-
jects

Suppose that messages m; and m3 are sent to
multiple objects and there are multiple common
destination objects of m; and mj;. Suppose that
op sends my to o;, o0j, and ok, and o sends m; to
oy, 0;, and oj. o; and oj receive both m; and m;.
Problem is in which order o; and o; receive m; and
mg. There are four cases on types of messages m;
and m; as discussed in the receive-receive prece-
dence. In Cl, suppose that m; and m; are re-
quests of op; and ops, respectively [Figure 10].
The common destination objects o; and o; receive

my and mj. If op} and op} conflict in o, and op]
and op} conflict in o;, then op} = op} iff op) =
op to realize the serialisability {2].

In C4, m; and m; are responses. Suppose that
m, and m; are the responses of operations op;
and op;, respectively. The common destination
obcjiecta o; and o; receive m; and mz in the same
order. :

opn ' o "o oL
(op? R
™2_A (op}

op2

time 1 y

Figure 10: Receive-receive precedence (3)

5 Protocol

We would like to present a protocol for sup-
porting the significantly causally ordered delivery



of messages.

5.1 Assumptions

The communication system delivers the mes-
sages to the application objects so that each ap-
plication object o; can receive the request and re-
sponse messages in the application-oriented causal
precedence order <;. In this paper, we as-
sume that the communication network is reliable
and synchronous, i.e. the loss-less, FIFO deliv-
ery is supported and the communication delay is
bounded to be §. According to the advances of
the hardware technologies, each object can have
the real-time clock. Hence, we assume that each
object o; has the real-time clock C; which shows
the same global time. o; has a variable T; which
denotes the current value of C;. Each time o; ini-
tiates the computation of op®, the value of T; is
given to op® as its time stamp ts(op®).

Each time o; sends a message m, o; gives the
value of T} to m as the time stamp ts(m). Hence,
for every pair of messages m; and m3, we assume
either ts(m,) < ts(ma) or ta(m,) > ts(m;).

According to the assumptions, every destina-
tion object o; of each message m sent by o; re-
ceives m in § time units after o; sends m, i.e. o;
receives m at time ¢ where ts(m) < t < ts(m) +
&. It is sure that every message m’ causally pre-
ceding m ( m’ <; m ) is sent by o; before ts(m).
Hence, the following theorem holds.

[Theorem] Every object o; can receive every mes-
sage m’ causally preceding m, i.e. m' <; m, until
ts(m) + 6. O

Following this theorem, o; can deliver every mes-
sage m sent by o; in the order <; at ts(m) + 4.
However, m has to stay in the queue of o; for §.
In this paper, we present a scheme in which each
object o; can deliver m to the application object
in § time units after o; sends m.

5.2 Transmission and receipt

We would like to present the data transmission
procedure by which each object o; in the group G
= {01, ..+ On ) can deliver the messages in <;. For
each message m, let type(m) denote the type of m,
ie. t pe(;:s € { IS, NS,IN,NN,O, N }, and
send(m) and rec(m) be the sender and receiver of
m. :

First, suppose that o; sends a message m to
o;. On receipt of m, o; enqueues m into a receipt
queue RQ);. Since the network supports the FIFO
delivery, it is sure that ts(m,) < ts(m3) if m; and
m, are received from the same object and m; pre-
cedes m; in RQ;. As presented in the preceding
subsection, all the messages in RQ; whose time
stamps are smaller than or equal to ¢ — § can be
delivered in the timé stamp order at time ¢. How-
ever, the message m has to stay in the queue until
ts(m) + §. We would like to present a method
by which every message m can be delivered for
shorter time than &,

Each message m carries a vector of time values
P.clock = { t;, ..., tp ). Let P_clock,(m) denote
the k-th element t; of Pclockin m (k =1, ..., n).
Here, suppose that m is sent by o;, i.e. send(m)
= o;. Each object o; has a clock stack CS;; which

is a stack of message type and vector clock piggy-
backed by messages sent by o;. First, o; stores the
value of T; in P.clock;(m) which denotes ts(m).
For each o; (# o;), o; finds messages which pre-
cede m in <; by comparing the message types in
CQi; with type(m) by using Table 2. Then, a
message m; where ts(m) is the maximum among
these messages is selected. ts(m;) is stored in
P_clock;(m). Then, o; sends m. If the receiver
o; receives m from o;, oj knows what messages
precede m in ;.

Next, let us consider how o; delivers messages
received in RQ;. Suppose that o; receives a mes-
sage m from o;. Here, m is enqueued into RQ;
and then RQ; 1s sorted in the time stamp order.
If m in RQ; satisfies the following delivery rule,
m is delivered to the application.

[Delivery rule] For every o; (# 0:),

(1) every message m’ where P_clockj(m) >
P_clockj(m') has already been delivered, or

(2) Pclocki(im)<T; - 6. D

Suupose that m is delivered by the delivery
rule. The information on m, ie. { type(m),
P_clock;(m) } is enqueued into CQy; for j = 1,
...y 7. At each time ¢, the tuple ( type, time ) in
CQ;yy -y CQin is removed if time < t — 4. Be-
cause messages whose time stamp is smaller than
t — 6 have aieady been delivered in all the desti-
nation objects. .

5.3 Operations

Suppose that an operation op' is started in o;.
First, CQ;1, ..., CQin are copied to CQjy, ..,
CQl,. op' uses CQl,, ..., CQ/, to send and re-
ceive messages. On completion of op', only tuples
whose types are IS or NS (from Table 3) in CQ},,
-y CQ}, and which are not in CQy, ..., CQin are
stored 1n CQ;y, ..., CQin.

6 Concluding Remarks

In this paper, we have discussed how to support
the causally ordered delivery of messages from the
application point of view while most group com-
munication protocols discuss it at the network
level. Only messages to be causally ordered at
the application level are causally ordered. The
system is modeled to be a collection of objects in
this paper. Based on the compatibility relation
among the operations supported by each object,
the meaningful order is decided.
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