RIWF AT TREEHTHUET - a3y T FRRI0FELLA

Checkpoint and Recovery for Reliable Mobile Computing

Hiroaki Higaki and Makoto Takizawa
Department of Computers and Systems Engineering

Tokyo Denki University
{hig,taki}@takilab.k.dendai.ac.jp

Abstract

Information systems consist of multiple mobile sta-
tions and fized stations communicating with each
other. Mission critical applications are required to be
ezecuted fauli-tolerantly in these systems. However,
mobile stations support neither enough volume of stor-
age and processing power nor enough capacity of bat-
tery to do reliable communication for a long period.
Moreover, wireless communication channels are less
reliable. Hence, the communication channels with the
mobile stations are ofien disconnected. Therefore, il
1s difficull for multiple mobile stations to take check-
points synchronously since the communication chan-
nels with the mobile stations may be disconnecied even
during taking the checkpoints. We have proposed hy-
brid checkpointing where checkpoints are taken asyn-
chronously by the mobile stations and synchronously
by the fized stations. In addition, the mobile stations
record messages for getling local states consistent with
the checkpoints taken by the fized stations. In this
paper, we popose the method how the mobile stations
record the messages, gather the messages stored in the
stable storages distributed in multiple mobile stations,
and recompute the messages in the consistent order.

1 Introduction

According to the advances of communication and
computer technologies, many kinds of mobile stations
like notebook computers and personal data assistants

PDAs) are widely available. Intelligent Transport
ystems (ITSs) with mobile communications are now
being developed. New computation paradigms like no-
madic computing [3] are also proposed.

A mobile system is composed of fized stations and
mobile stations interconnected by communication net-
works. The fixed stations are located at the fixed
locations in the network. The mobile stations move
from one location to another in the network. The net-
work is divided into a number of cells, i.e. mobile
stations move from one cell to another. There is a mo-
bile support station (MSS) in each cell. A mobile sta-
tion communicates with another station only through
the MSS. The MSSs and the fixed stations are inter-
connected by the high-speed network. The network
addresses of the mobile stations are automatically as-
signed by using DHCP (Dynamic Host Configuration
Protocol) (7]. The connections with the mobile sta-
tions can be automatically maintained by the mobile
protocols [14,18,19] even if the mobile stations move
among the cells. The mobile stations sometimes move
out of the cells and do not have so much capacity of

battery that the communication with the other sta-
tions can be continued for a long period. Hence, the
communication channels with the mobile stations may
be disconnected. However, some applications are com-
puted on mobile and fixed stations and are required
to be continued even while the communication chan-
nel is disconnected. Many papers (4,9, 11] discuss how
to handle the disconnected operations.

The checkpoint-restart [5,6,10,12,17,20-22] is one of
the well-known methods to realize reliable distributed
systems. Every station s; takes a checkpoint ¢; where
the local state information of s; is stored in the stable
storage. If some station fails, s; restarts the compu-
tation from c;. A set of checkpoints taken by all the
stations is required to be consistent [6]. A fixed sta-
tion F; can easily take checkpoints consistent with the
others by using synchronous distributed checkpoint-
ing protocols [6,8,12,17,20] since F; can communicate
with each other by using the high-speed network and
have enough volume of stable storage to store the state
information. Papers [13,16] discuss how the mobile
stations M; take the checkpoint cps, synchronously in
the stable storage. However, it is difficult for M; to
take cpr, due to the lack of stable storage and battery
capacity. Moreover, it gets more difficult for F; and
M; to take checkpoints synchronously if the commu-
nication channels between M; and the MSSs are often
disconnected.

We assume that every MSS S; is equipped with
enough volume of stable storage to store the local state
information of all the mobile stations in the cell of S;.
M; takes cp, by storing the local state information in
S;. M; may fail to take cps, due to the lack of battery
capacity or the movement to the outside of the cell. If
the checkpoints are taken synchronously, all the sta-
tions have to give up to take the checkpoints if some
mobile station fails to take the checkpoint. Hence,
asynchronous checkpointing protocols [5,10,21,22] are
preferable for the mobile stations. Papers (1, 15] pro-
pose the mobile asynchronous checkpointing proto-
cols. Here, the protocol overhead is high since S; is
required to take a new checkpoint of M; each time
a message is transmitted between them. In this pa-
per, we newly propose a hybrid checkpoiniing proto-
col where the checkpoints are asynchronously taken by
the mobile stations while synchronously by the fixed
stations. Here, a checkpoint cpr; of M; is taken only
when M; sends a checkpointing request to S;. Hence,
the number of accesses to the stable storages of the
MSSs can be reduced. Therefore, the hybrid check-
pointing protocol makes the mobile systems so reliable
that the mission critical applications can be computed

- 3107

with less overhead.

The rest of this paper is organized as follows. In
section 2, we show the system model. In section 3, we
overview the hybrid checkpointing protocol. In section
4, the recovery protocol for the hybrid checkpointing
protocol is discussed.

2 System Model

A distributed system S = (V, L) is composed of
multiple stations V = {s1,...,5n} interconnected by
communication channels £ C V2. The computation
is realized by cooperation of multiple stations com-
municating with each other by exchanging messages
through the channels. (s;,s;) € £ indicates a channel
from s; to s;. We assume that each channel (s;, s;) is
reliable and bidirectional. In s;, two kinds of events
occur: communication events and local events. A local
state of s; is assumed to be changed when a commu-
nication event, i.e. a message-sending event s(m) or
a message- recelpt event r(gof a message ™, OCCUIS.
Hence, a local state of s; is determined by "the ini-
tial sta.te and the sequence of communication events
occurring in s;. '

In a mobile computing system MS, there are three
kinds of stations: fized stations F,..., Fy, mobile sta-
tions My, ..., M,, and mobile support stations (MSSs)
Si,...,8, as shown in Figure 1. Every F; is connected
at the fixed location of the network. Each M; moves
from one location to another. If M; is in a cell sup-
ported by S;, M; communicates with S; by using the
wireless or cable communication channe Jl S; forwards
messages from M; to the destination statlons and de-
livers the messages from the other stations to M;. The
connection between M; and another station is auto-
matically maintained by the cooperation of the MSSs
even if M; moves among the cells [14, 18, 19]. The
fixed stations and the MSSs are interconnected by the
high-speed network.

M {: mobile station|
Fj: fixed station
S i: mobile support station

Figure 1: Mobile computing system.

Each M; does not have so much capacity of battery
that M; can continue to communicate with an S; for a
long penod Hence, M; often disconnects the connec-
tion with another station in order to reduce the power
consumption of the battery while the applications are
being computed in M;. Furthermore, since M; has
neither enough computation power nor enough volume
of storage like hard-disks, it is difficult for M; to take
checkpoints by itself. In this paper, we discuss a way
where a mobile station stores the local state informa-
tion in a stable storage of an MSS at a checkpoint and
messages sent and received by the mobile station after
the checkpoint are also stored in the MSS to realize
consistent recovery.

3 Hybrid Checkpointing
3.1 Overview

The computation in MS is realized by coopera-
tion of mobile stations My, ..., M,, and fixed stations
Fy,...,Fs. Each M; is in one of the cells supported
by MSSs Sl, ,S,. Here, M; is supported by S; and
Sj is a current MSS of M The stations excﬂange
messa.ges by using the mobxle communication proto-
col [14,18,19]. That is, each stations can communi-
cate with the others without being conscious of the
locations of the stations.

The advantage of the synchronous checkpointing
protocols is that the computation can be restarted
without domino effect. However, it is difficult for M;
to take cas, synchronously. Here, we propose a hybrid
checkpomtmy protocol which has the following prop-
erties:

o The fixed stations take local checkpoints by using
the synchronous checkpointing protocol. A collec-
tion of the checkpoints taken by the fixed stations
is referred to as a coordinated checkpoint.

e The mobile stations take local checkpoints by us-
ing the asynchronous checkpointing protocol.

The state information of M; at cp; is stored in the
stable storage of S; which is the current MSS of M;.
In addition, the messages sent and received by M; are
also stored in the stable storage of S;. M; fails to take
cM; if the channel between M; and S’_7 is dlsconnected
owing that M; moves out of the cell or the battery of
M; is exhausted during taking cp,. Thus, M; takes
cpy, when M; surely could take cpr,. That is, M; takes
cy, only if M does not move out of the cell and has
enough capacity of battery to take cpr,. Therefore,
M; asynchronously takes cpy;, i.e. independently of
the other stations.

3.2 Checkpointing protocol

In the hybrid checkpointing protocol, the fixed
stations Fy,..., Fy synchronously take a coordinated
checkpoint CC = (c,,...,cr,) while the mobile sta-
tions My,..., M,, asynchronously take local check-
points cum, ..., CM,,. Each M; has to restart the com-
putation from a state consistent with CC. However,
cu, is not always consistent with CC because M; takes
cm; independently of the other stations. Hence, M;
restarts the computation by using the message log (2.
Here, the messages sent and received after cpy, by M;
are stored in the message log in the stable storage of
the current MSS Sj;. If M; restarts the computation,
M; recomputes the messages stored in the message log
to get the state consistent with CC.

Suppose M; is supported by S{ . Since every mes-
sage sent and received by M; is transmitted via S},

the message can be stored in the stable storage of S!
even if M; has no stable storage. A checkpoint agent

process A':: in Sf records messages sent and received by
M; in the message log mlj on behalf of M;. Moreover,
A’ takes the local checkpoint car; of M; by recording
the state information in the state log sl’ if M; requests
A‘Z to take cp;,.

—108—

Fy, ..., Fy take CC by using the following protocol
proposed in [12]:

[Coordinated Checkpoint CC]
1) A coordinator station CS sends a request message
Creq to Fy,...,Fy and §y,...,S,.

2) On receipt of Creq, each F; and S; take a tentative
checkpoint tcp, and tcs,, respectlvely, and send
back a reply message Crep to CS.

3) If CS receives Creps from all the stations, CS
?qends asﬁnal message Cfin to Fy,...,F; and
1)

4) On receipt of Cfin, each F; and S; makes tcg, and

tcs permanent, i.e. cp; and CS;s respechvely

In order for CC to be consistent, each station suspends
the computation and the transmission of application
messages while the station has a tentative checkpoint.

Next, we discuss how M; takes cyr,. Here, suppose

M; is supported by S?. The checkpoint agent A7 in S?
takes a tentative local checkpoint tcpy, mdependently
of the other stations. The state information required
for M; to restart the computation from tepy, is carried
by a tentative checkpoint request message TCreq. On

receipt of TCreq, A} stores the state information of M;
in the tentative state log tal‘! in the volatile storage of
5.
[Tentative checkpoint tcy, in A’]
1) M; sends TCreq to Af
information SI; of M;.
2) On receipt of TCreq, Af: takes tcpr, of M; by stor-
ing SI; in tslf . If some checkpoint agent A*
(k < j) has taken another tentative checkpoint
tchy, of M;, A{ requests A¥ to discard tchy,-

TCreq carries the state

Let (A],..., Af) be a sequence of checkpoint agents
where A} has tcp, and Af is the current checkpoint

agent of M;. If SF receives Creq, A! makes tcy, a
permanent checkpomt cy, by moving "the state infor-

mation from tsl! in the volatile storage to si} in the
stable storage of S!. In addition, A* (1 < k < ¢)
moves the messages from tmif in the volatile storage
to ml* in the stable storage of S¥.

[Permanent checkpoint cp, in Af]
e If S! receives Creg, A} moves the state informa-
tion from tsi} to si! before S} sends back Crep.
o If S¥ (k # 1) receives Creg, A¥ moves the mes-

sages from tml* to mif before S¥ sends back
Crep.

If there is another permanent checkpoint cjs, when
cpm, is taken, cM and the messages for the recovery
can be discarded from the stable storage after taking
CM,-

‘There are three cases with respect to in which order
Al receives Creq and TCregq messages:

1) If A’ receives TCreq before Creg, i.e. Aj takes
tcyr, before receipt of Creg, tea, is changed to

cy;.- That is, the messages in tml'z and the
state information in tslf in the volatile storage
are stored in ml‘z and slf in the stable storage,
respectively [Figure 2.

2) If A, receives TCreq and T'Creq’ successively, i.e.

A’ takes tcp, on recelpt of TCreg and receives
TCreq without receiving Creq, tcpr; is discarded

and AJ takes another tentative checkpoint thi
The messages in tml! recorded between tcp, and
tcyy, are discarded [Fxgure 3].

3) If A receives Creg and Creq’ successively, i.e. A’

takes cm, on receipt of Creq and receives Creq
without receiving T'Creq, cpy, is still a permanent

checkpoint. The messages in tml} are stored in
mi! [Figure 4].

TCreq

tGu _
creg||tml i

Figure 2: TCreq and Creq (1).

A’ M,
TCreq
£Gui
1 L TCreq
ECy:

Figure 3: TCreq and Creq (2).

Figure 4: TCreq and Creg (3).

The hybrid checkpointing protocol has the follow-
ing properties:
e Each M; has one permanent checkpoint cps, con-
sistent with the most recent CC.
e Each M; has at most one tentative checkpoint
tcp;.

=109

4 Recovery Protocol
4.1 Message ordering for recovery

Suppose A! receives two messages m and m’ des-
tined to M; in this order. M; receives m and m' for-
warded by A! in the same order. Next, suppose M;
sends m and m’ in this order. Af: forwards m and
m/ to the destinations in the same order as M; sends.
Then, suppose M; sends m’ after receipt of m. A! for-
wards m to M; before receipt of m’. In these cases, A‘:f
can keep the sequence of the messages exchanged with
M; in ml!. However, if M; sends m' before receipt of
m, Al may receive m’ after sending m as shown in

Figure 5. This means that A{: cannot know the occur-
rence sequence of the communication events in M;.
Hence, if M; restarts the computation from ¢y, and
recomputes the messages in ml‘} , the state of M; may

be inconsistent with CC. In order that A] records the
messages in the same order as handled in M;, each
message m carries two sequence numbers m.seq and
m.ack. Here, let m.sender and m.receiver mean the
sender and receiver of m, respectively.

AJ,: Mi

Figure 5: Crossing messages.

e m has a unique sequence number m.seq. If m is
sent after a message m/, m.seq > m’.seq.

e m.ack means that m.s receives every message m’
where m’.seq < m.ack. That is, m.ack is the
same as m'.seq of a message m’ that is the most
recently received message by m.sender.

If A] sends or receives messages m and m/' in this

order, m and m’ are ordered in ml;? according to the
following ordering rules:

[Ordering rules]
e If m and m' are sent by the same sender, i.e.
m.sender = m'.sender, m precedes m/.
e If m and m' are sent by different senders, i.e.
m.sender # m'.sender, m precedes m’ if m.seq <
m’.ack. Otherwise, m’ precedes m.

In Figref 5, m.seq > m'.ack because M; sends m’
before receipt of m. Hence, m’ precedes m although
Al sends m before m’. Thus, A! stores m’ before m

in mlf and a sequence of messages in mlf is the same
as M; handles the messages.

Suppose that M; is initially supported by S} and
moves from S* to S¥*! (1 < k < ¢). S¢ is the current
MSS of M;. In each S¥, there exists a checkpoint agent
AF of M;. (A},..., Af) is a sequence of checkpoint

agents and Af is a current checkpoint agent of M;.

Each A} stores the messages exchanged with M; in a
tentative message log tml¥ in the volatile storage of

Sk. Hence, a sequence of messages that M; has sent
and received are stored in a sequence of the message
logs (tml}, ..., tmlS).

4.2 Message logging for recovery

In (Al,..., Af), suppose A} and A! (1 <t < ¢)
have cpr, and tcyy,, respectively. That is, A} and A!
receive TCreq from M; and some A} (1 < u < t) re-
ceives Creq. Since A? (1 < v < u) stores the messages
exchanged with M; in ml}, M; gets a state consistent
with CC by computing the messages in ml} from cps,

at which the state information is in si}. The mes-
sages forwarded by A (u < k < c) are stored in tmif.
When tcpr, taken by A! is changed to cpr; on receipt

of Creg, some messages in tmlf (u < k < t) can be
discarded since these messages never be recomputed
for restarting the computation of M; from cps,. Here,
we discuss which messages have to be stored in the

stable storage of A].

Suppose A{: sends a messages m to M; while re-
ceiving T'Creq and Creq. There are the following four
cases:

Aj M AJ M,
1

4 i

y 'Wr}

Gy Gu

Creqg &. Creq

\ \ m i
m‘ JCr

i gTE5ean 2

Figure 6: Logging m from AZ: to M;.

1) A’ sends m after receipt of TCreq and before re-
ceipt of Creq like m, in Figure 6. M; recomputes
m if M; is restarted from cps,. Hence, m is stored

in ml{ in the stable storage on receipt of Creq.

2) A! sends m after receipt of Creg and before re-
ceipt of T'Creq, and M; receives m before send-
ing TCreq like m; in Figure 6. Since M; restarts
the computation from a state consistent with CC
without m, m is discarded.

3) Af: sends m before receipt of Creg, and M; receives
m after sending T'Creq like m3 in Figure 6. M;
recomputes m if M; is restarted from cpr,. Hence,

m is stored in ml’ in the stable storage on receipt
of Creq. In addition, m has to be recorded for
M; to restart the computation from tcpy, if tep,
is changed to be permanent. Thus, m is still in
tml;; in the volatile storage even after receipt of
TCrreq.

4) A} sends m after receipt of Creq and before re-
ceipt of T'Creq, and M; receives m after sending
TCreq like my4 in Figure 6. Though M; restarts
the computation from a state consistent with CC
without m, m has to be recorded for M; to restart
the computation from tcpy, if tepy, is changed to

be permanent. Thus, m is recorded in tmlf even

after receipt of T'Creq.
A messages which can be discarded is referred to as
insignificant. When A’ forwards m to M;, A! cannot
identify which case from 1) to 4) m shows. Thus, A’
records every message in tmlf: in the volatile storage
of S!. If A’ receives TCreq and m is insignificant, A{
discards m from tml.

Next, suppose Af receives a messages m from M;
while receiving T'Creq and Creq. There are following
two cases:

aj M,

TCreq

S
Creqg

!&\

TCre

i

CCM

Figure 7: Logging m from M; to A‘:

1) A’ receives m after receipt of TCreq and before
recelpt of Creq like m; in Figure 7. M; recom-

putes m for restarting from cpr,. Hence, A’ stores
m in mk in the stable storage on receipt of Creq.

2) AJ receives m after receipt of Creg and before
recelpt of TCreq like m; in Figure 7. If m.ack <
my.seq where m; is the message most recently sent

by Af: to M; before receipt of Creg, M; recomputes
m for restarting from cp,. Hence, A} stores m

in ml’ in the stable storage on receipt of Creq.
Othermse m is discarded.

The procedure for logging the messages in Af: is as
follows:
[Message logging in 4!]

e On sending m to M;, m is stored in tmil.

e On receipt of m from M;, m is stored in tmlj if

some A* (k < j) has tcpr,. If no A has tepy, and
m.ack < my.seq where m is the message most re-

cently transmitted from A‘: to M; before receipt

of the most recent Creg, m is stored in ml!. Oth-
erwise, m is discarded.

e On receipt of TCreq, m € tmlj transmitted from

Al to M; is removed from tml;; and discarded if
m. seq > TCreq.ack.

¢ On receipt of Creg, all the messages in tmlf are
stored in ml.

4.3 Restart protocol for recovery

We discuss how to restart the fixed stations and the
mobile stations if some station is faulty. Fi,...,Fy
restart the computation from CC by using the restart
protocol in [12].

[Restarting F; from cp, € CC|

1) A coordinator station CS sends a request mes-
sages Rreq to Fy,...,Fy and S,,...,S,.

2) On receipt of Rreq, each F; and S; send back a
reply message Rrep to CS.

3) If CS receives Rreps from all the stations, C'S
sends a final messages Rfin to Fy,...,F; and
sl: ,S

4) On receipt of Rfin, each F; and S; restart the
computation from cp, and cs,, respcctwely

In order to restart M,,..., M,, from states consis-
tent with CC, the mobile agents have to cooperate.
Let (A},..., Af) be a sequence of checkpoint agents
of M; where A} has cp,, some A! (1 < t < c) has
tcy,, and A{ is the current agent. That is, A} and
A! receive TCreq and some A} (1 < u < t) receives
Creq The messages transmitted between M; and A}
(1 < v < u) are stored in ml! in the stable stora.ge
and recomputed by M; to get a state consistent with
CC. Here, the followmg restart protocol is used:

[Restarting M; from cpz,]

1) If Sf receives Rreg, Af sends a state log request
message SLreq to A} and a message log request
message MLreg to every AY (1< v < u).

2) On receipt of SLreg, A! sends A{ back a state log
reply message SLrep conta.mmg the state infor-
mation at ¢; stored in al

3) On receipt of MLreg, each A} sends Af back a
message log reply message MLrep contammg the
messages stored in ml.

4) A sends a tentative state log cancellation request
message SLCreg to Af.

5) On receipt of SLCreq, A} discards tcpy,, i.e. dis-
cards the messages in tslf, and sends Af back
a tentative state log cancellation reply message
SLCrep.

6) A? sends a message log cancellation request mes-
sage MLCreq to every A¥ (u< k < c).

7) On receipt of MLCreq, A* discards the messages
in tmlf and sends A{ back a message log cancel-
lation reply message ML Crep.

8) On receipt of SLrep, MLreps, SLCrep and ML-
Creps sent at steps 2), 3), 5) and 7), respectively,
Af forwards them to M;.

9) On receipt of the messages sent at step 8), M; gets
a state consistent with CC by using the state in-
formation at cpr, carried by SLrep and recomput-
ing the messages carried by MLreps in the order
discussed in subsection 4.1.

5 Evaluation

We evaluate the following checkpointing protocols
in terms of the total processing time:
o Synchronous checkpointing protocol : every mo-
bile station synchronously takes the checkpoint.
o Hybrid checkpointing'protocol : every mobile sta-
tion asynchronously takes the checkpoint.

Suppose there are n mobile stations My,..., M,. It
is assumed to take L [sec] for each M; to take the
checkpoint. Here, we assume L = 60 and no message

—111-

transmission delay between the stations.

In the synchronous checkpointing protocol, the
checkpoint ¢; of M; is taken only if all the stations
successfully take the checkpoints. If M; fails, all the
other stations have to throw away the effort to take
the checkpoints and the stations have to restart the
checkpointing procedure again. Let f be a probability
that M; fails to take the checkpoint, which is com-
puted to be 0.12 as presented in section 3. M; takes
60[sec] to take the checkpoint by sending the state in-
formation of M; to the current MSS. The probability
that at least one mobile station fails during the check-
pointing procedure is given 1 — (1 — f)™. The expected
total processing time ETs to take the checkpoints is

BEA-A)"2H301- (1= +4(1-(1- ") +...) =
nL 1
T+ =)

In the hybrid checkpointing protocol, each mobile
station M; asynchronously takes the checkpoint. If
M; fails to take the checkpoint, M; restarts the check-
pointing procedure from the beginning. Even if M;
fails, the other stations do not have to restart the
checkpointing procedure. The expected processing
time for M; to take the checkpoint is £(1 — f)(2 +
3f +4f%+...). Hence, the expected total processing
time ETy is 32(1+ (l—if-;)

6 Concluding Remarks

It is significant to discuss how to make the mobile
systems more reliable and available. In order to real-
ize the reliable mobile computation, we have discussed
how to take the checkpoints and restart the compu-
tation in the mobile stations and the fixed ones. In
this paper, we have proposed the recovery protocol
for the hybrid checkpointing protocol where the mo-
bile stations asynchronously take the local checkpoints
and the fixed ones synchronously take the local check-
points. We will evaluate the proposed protocols in a
simulation and an implementation of a prototype sys-
tem.

References

[1] Acharya, A. and Badrinath, B.R., “Checkpoint-
ing Distributed Applications on Mobile Comput-
ers,” Proc. of the 3rd International Conference
on Parallel and Distributed Information Systems,

pp. 73-80 (1994).
[2] Alivm, L., Hoppe, B., and Marzullo, K., “Non-

blocking a.nd Orphan—Free Message Loggmg Pro-
tocols,” Proc. of the 23rd International Sympo-
sium on Fault-Tolerant Computing, pp. 145-154

(3] gagrodlu, R., Chu, W.W., Klienrock, L., and
Popel, G., “Vlslm, Issues, and Archxtccture for
Nomadic Computmg, IEEE Personal Commu-

nication, Vol. 2, No. 6 $1985)
[4] Barbara, D. and Imielinski, T., “Sleepers and

Workaholics: Caching Strategies in Mobile En-
vironments,” Proc. of ACM SIGMOD, pp. 1-12

9994).

[5] Bhargava, B. and Lian, S.R., “Independent
Checkpointing and Concurrent Rollback for Re-
covery in Distributed Systems,” Proc. of the 7th
International Symposium on Reliable Disiributed
Systems, pp. 3—-12 (1988).

[6] Chandy, K.M. and Lamport L., “Distributed
Snapshots: Determining Global States of Dis-
tributed Systems,” ACM Trans. on Computer
Systems, Vol 3, No. 1, pp. 63-75 (1985).

(7] Dromos, R., “Dynamic ﬁost Con guratlon Pro-
tocol,” RFC 1541 1993).

[8] Higaki, H., una, , Tanaka, K., Tachikawa, T
and Takuawa, “Checkpomt and Rollback in
Asynchronous Dmtnbuted Systems,” Proc. of the
16th IEEE INFOCOM, pp. 1000—10076199?3

[9] Huang, Y., Sistla, P.,'and Wolfson, ata
Rephca.tlon for Moblle Computers,” Prac of

ACM SIGMOD, pp. 13-24 (1995)
[10] Juang, T.T.Y. and Venkatesan “Efficient Al-

gorithms for Crash Recovery in Dlstnbuted Sys-
tems,” Proc. of the 10th Conference on Foun-
dations of Software Technology and Theoretical

Computer Science (LNCS), pp. 349-361 (1990).
[11] Kistler, J.J. and Satyanaranyanan, M., “Discon-

nected Operation in the Coda File System,” ACM
Trans. on Database Systems, Vol. 10, No. 1, pp.
2-25 (1992). cor

[12] Koo, R. and Toueg, S., “Checkpointing and
Rollback-Recovery for Distributed Systems,”
IEEE Trans. on Software Engineering, Vol. SE-
13, No. 1, pp. 23-31 (1987) '

[13] Neves, N. and Fuchs, W “Adaptxve Recov-
ery for Mobile Envnronments Communications

the ACM, Vol 40, No. 1, pg) 69-74 (1997).
[14] erklns C., “IP Mobility Support,” Internet

draft-ietf-mobiles rotocol-12 tzt (1995).
[15] Pragthan,ﬂ]J Krish npa,P P.P. and V axd(ya.

“Recovery in Mobile Wireless Environment: De-

sign and Trade-off Analysis,” Proc. of the 26th In-

ternational Symposium on Faull-Tolerant Com-
uting, pp. 16-25 1996)l

[16] %‘ra.kash R. and Singhal, M., “Low-Cost Check-

pomtmg and Failure Recovery in Mobile Comput-
ing Systems,” IEEE Trans. on Parallel and Dis-
tributed Systems, Vol. 7, No. 10, pp. 1035-1048

&1‘396).
(17] Randell, B., “System Structure for Software Fault
Tolerance,” IEEE Trans. on Software Engineer-

ing, Vol. SE- 1, No. 2, pp. 220-232 (1975).
[18] Tanaka, R. and Tsu oto, M., “A CLNP-

based Protocol for Mobile End Systems within an

Area,” Proc. of IEEE ICNP-93, pp. 64-71 (1993)
[19] Teraoka, F., Uehara, K., Suna.flara H., and Mu-

rai, J., “VIP A Protocol Provxdmg Host Mo-
bility,” Comm. ACM, Vol. 37, No. 8, pp. 67-75

1994).

(20] (I‘ong,)Z., Kain, R.Y., and Tsai, W.T., “Rollback
Recovery in Distributed Systems Using Loosely
Synchronized Clocks,” IEEE Trans. on Parallel
and Distributed Systems, Vol. 3, No. 2, pp. 246-

251 (1992). . _
[21] Venkatesh, K., Radhakrishnan, T., and Li, H.F.,

“Optimal Checkpointing and Local Recording for
Domino-Free Rollback Recovery,” Information

Processin Letters Vol. 25, pp. 295-303 (19872
[22] Wood, W. A Decentralized Recovery Pro

col,” Proc. of the 11th International Symposium
on Fault Tolerant Computing Systems, pp. 159—
164 (1981).

=12~

