NIVFAF 4 TREESBUE T - >3y ERRI4ELLA

Object-Based Quorum Scheme for Replicated Objects

Kyouji Hasegawa, Hiroaki Higaki, and Makoto Takizawa
Dept. of Computers and Systems Engineering, Tokyo Denki University
Email {kyo, hig, taki}@takilab.k.dendai.ac.jp

Abstract

In object-based systems, objects are replicated to
increase the performance, reliability, and availability.
We discuss a novel object-based locking (OBL) proto-
col to lock replicas of objects by eztending the quorum-
based protocol for read and write to absiract methods.
Unless two methods conflict, subsets of the replicas
locked by the methods do not intersect even if the meth-
ods change the replicas. Methods not computed on a
replica A but computed on another replica are com-
puted on A when a method conflicting with the meth-
ods are 1ssued to A in the OBL protocol. We newly
propose a version vector to identify what methods are
computed on a replica.

1 Introduction

Reliable distributed systems are composed of repli-
cas of objects. The replicas of the object have to
be mutually consistent. The two-phase locking (2PL)
protocol [1,2] locks one of the replicas for read and all
the replicas for write. The 2PL protocol is not effi-
cient for write-dominated applications because all the
replicas are locked for write. In the quorum-based
protocol (3], some numbers Q, and @, of the repli-
cas named quorum numbers are locked for read and
write, respectively. Here, a constraint “ Q, + Q, > a
” for the number a of the replicas has to be satisfied.

Distributed applications are modeled to be a col-
lection of multiple objects which are cooperating.
Object-based frameworks like CORBA [7] are widely
used to develop the distributed applications. An ob-
ject supports abstract methods like Deposit in a bank
object. The object is locked in an abstract mode cor-
responding to a method. A pair of methods op; and
op, supported by an object o conflict if the result ob-
tained by applying op; and op; to o depends on the
computation order of op; and op; [1]. In this paper, we
propose a novel locking scheme for replicated objects
named OBL (object-based locking) protocol, which is
an extension of the quorum-based protocol (3] to the
replicas of the abstract objects. Before computing a
method op; on an object o, some quorum number Q;
of the replicas of o are locked in the abstract mode for
op;. @ depends on how frequently op, is invoked.
The more frequently op; is invoked, the smaller Q;
gets. Suppose a pair of methods op; and op, are is-
sued to replicas of the object o. If op; and op, are
update methods, the quorum-based protocol requires
that “ Q; + Q. > a ” hold. If op; and op, are com-

puted on a pair of replicas o' and o%, respectively, the
states of o' and o* get different. Then, if both op; and
opy are computed on replicas o' and o%, respectively,
o' and o* get the same state if op; and op, are com-
patible. In the quorum-based protocol, there must be
at least one newest replica where all write methods is-
sued are computed. However, there can exist replicas
from which the newest version can be constructed even
if there is no newest replica. In order to do that, we
have to identify what methods are computed on each
replica. We newly propose a version vector to identify
the methods computed on each replica. In the OBL
protocol, fewer number of replicas are locked than the
quorum-based protocol and the 2PL protocol.

In section 2, we present the system model. In sec-
tion 3, we extend the quorum concepts to object-based
system. In section 4, we discuss the OBL protocol
with the version vector. In section 5, we evaluate the
OBL protocol compared with the quorum-based pro-
tocol in terms of the number of replicas to be locked.

2 Objects

A system is composed of objects o0y,...,0, (n >
1) which are cooperating by exchanging messages in
a reliable network. Each object o; supports methods
opi1, .- -,0pi; (ki > 1) for manipulating o; and is en-
capsulated so that o; can be manipulated only through
the methods supported by o;. By using the network,
o; can send messages to o; with no message loss in the
sending order.

The objects are distributed on multiple processors.
Objects are stored in server processors. If a transac-
tion in a client processor sends a request message of a
method op; to an object o; in a server, o; computes op;.
Here, op; may invoke a method op;; on another object
0ij. The methods are nested. o; sends the response of
op; back to the transaction. A transaction is an atomic
invocation sequence of methods. The transaction an
method commit only if all the methods invoked com-
mit. A method which changes the state of the object
is an update one.

Let op(s) denote a state obtained by applying a
method op to a state s of an object 0;. A method op;;
is compatible with another method op; iff op;; o opir
(si) = opir o op;j (a,? for every state s; of o;. opjj
con flicts with op;; unless op;; is compatible with op;.
The conflicting relation C; among the methods is not
transitive. We assume Cj is symmetric. C; is assumed
to be specified on definition of the object o;. The




interleaved and parallel computation of methods has
to be serializable [1].

On receipt of a request of a method op;, an object o;
is locked in a lock mode p(op;) in order to make the
computation serializable. If op; is compatible with
opz, the mode p(op,) is compatible with p(op;). Oth-
erwise, the mode p(op;) conflicts with u(opa). After
computing op;, the lock of the mode p(op;) on the ob-
ject o; is released. Let M;(m) be a set of lock modes
with which a lock mode m conflicts in o;.

3 Object Quorums

3.1 Quorum constraint

Let R(o;) be a cluster of an object o;, i.e. a set
of replicas o}, ..., of* of 0; (a; > 1). We extend the

quorum-based protocol [3] to lock the replicas in the
object-based systems. Let N;; be a subset of replicas
to be locked by a method op;;, named a quorum set
of opit (Nit C R(o;)). Let Q;: be the quorum num-
ber of the replicas in N;;. The quorum numbers have
to satisfy the following object-based locking (OBL)

constraint.
[OBL constraint]

o If p(op;;) conflicts with p(opiy), Qit + Qiu > ai.

Let o(opit) be usage frequency of a method op;,
i.e. how frequently op;; is issued to o;. Here, ¢(op;1)
+ ... + p(opit;) = 1. Qi1, ..., Qi are obtained so
as to minimize the average number p(op;1)Qi1 + ...
+ @(opir;)Qi1; of the replicas locked. This means, the
more frequently op;; is invoked, the fewer number of
the replicas are locked by op;:.

A transaction T locks the replicas o},...,0;" as fol-
lows before manipulating the replicas by op;;. First,
a quorum set N;; is fixed for op;; in the cluster R(o,-{.
Every replica in N;; is locked in a mode p(op;;). If all
the replicas in N;; are locked, the replicas in N;; are
manipulated by op;;. When T' commits, the locks on
the replicas in N;; are released.

According to the quorum-based protocol, Q;; + Q.
> a; if op;; and op;, are update methods. Here, a; is
the number of the replicas of an object o;. In the
OBL protocol, Q;; + Q:y > a; only if op;; conflicts
with op;,. In another word, Q;; + Q;, > a; can hold
even if op;; or op;, is an update method. The OBL
protocol satisfies the following properties.

[Properties] For every pair of conflicting methods
op;: and op;, of an object o;:
1 At least Q;; + Qiu — a; replicas compute both of
the methods op;; and op;,,.
2 If a pair of replicas o} and of compute both op;;
and op;,, o and of compute op;; and op;, in the
same order. O

3.2 Precedency among replicas

[Example 1] Each of replicas B!, B?, B*, and B*
of the bank object B supports four methods Deposit
(D), Withdraw (W), Check (C), and Audit &/}) The
method D is compatible with the method W. C is
compatible with A. D and W conflict with C and A.

D, W, and A are update ones but C is not. Figure
1 indicates a graph showing the conflicting relation
among the methods. Here, a node shows a method and
an edge between the nodes indicates that the nodes
conflict. Each replica B* has a version number V*
whose initial value is 0. Let the quorum number Qp
of D be 3 and Qw of W be 2. Here, Qp + Qw >
4. D is issued to three replicas, say B!, B?, and B®
and V! = V2 = V3 = 1. Then, W is issued to B!
and B*. Since V!(= 1) > V*%(= 0), W is computed
on B! and V! = 2. B* is updated by taking the
state from B!. Here, V! = V% = 2 and V? = V3
= 1. If the quorum number is decided based on the
conflicting relation, we can reduce the quorum number
but cannot decide which replica is the newest by using
the version numbers. Here, Q:: + Qi > a; if a pair of
methods op;; and op;, conflict. For example, Qp, Qw,
Qc, and Q4 can be 2, 2, 3, and 3, respectively. First,
suppose D is issued to B! and B? and W is issued to
B® and B* since Qp = Qw = 2. Here, the version
numbers of the replicas are changed to 1,i.e. V! = V?
= V3 = V* = 1. Then, C is issued to B?, B?, and B®
since Q¢ = 3. Here, B® is different from B! and B?
although they have the same version number 1. Since
D and W are compatible, the instance of D computed
on B! and B? is also computed on B? and B* and the
instance of W computed on B® and B* is computed on
B! and B?. Then, C can be computed on one of the
replicas, say B'. Thus, the replicas can be the newest
by computing methods which are not computed on the
replicas but computed on the others if these methods
are compatible. Problem is that the states of B! and
B? cannot be recognized to be different from B® and
B* by using the version numbers because the version
numbers of B!, B?, B2, and B* are 1 after D and W

are computed. O
F—©
Figure 1: Conflicting graph.

A replica of‘ is considered to be newer than another
replica of if every method instance computed on of is
computed on o}

" .
[Definition] A replica o} precedes another replica of

(o — of) iff every update method computed on of is

computed on of. O

“ o — of ™ means that of is obsolete since some
h

update methods computed on o} are not computed
on of. of is mazimal iff there is no replica of such
that o} — of in the cluster R(o;). o} is mazimum iff
of — o} for every replica of in R(o;). The quorum-
based protocol requires that every quorum set include
at least one maximum replica o?. That is, if a pair of




update methods op;; and op;, are issued, at least one
replica o} computes both op;; and op;,. In the OBL
protocol, no replica may compute both of op;; and op;,,
if op;; and op;, are compatible even if op;; and op;,
are update ones. Hence, there may be no maximum
replica but may exist multiple maximal replicas. R(o;)
is complete iff there is a maximum replica in R(o;).
R(o;) may be incomplete in the OBL protocol.

[Definition] A pair of maximal replicas o} and of
are unifiable iff o} and of get the same state if every

update method not computed on one of o} and of is
computed on the other replica. O

Suppose there are two replicas o} and of. Let (oph1,

..., opx1, ) be a sequence ) of update methods com-

puted on a replica o? but not on of. Let (op1, ...,

opki,) be a sequence mp of update methods computed
on of but not on of*. If every pair of methods opy,, and
Opy, are compatible foru =1, ...,lpandv =1, ...,
I, a state obtained by applying 74; to of is the same
as a state obtained by applying m;s to o}. The state
obtained here is a least upper bound of o} and of ( o}
U of ) with respect to “—”. For example, suppose B!
and B? compute D and B? and B* compute W in Ex-
ample 1. Here, w13 = w23 = (W) and 731 = 741 = (D).
The unifiable relation “=” is equivalent. Let U(o}*) be
an equivalent set { of | of = o in R(0;) } for a maxi-
mal replica of'. A cluster R(o;) is consistent iff U (o))
= U(of) for some pair of maximal replicas o} and of
in R(o;). Here, U(ol) is referred to as unifiable set
U(o;) of R(o;). A least upper bound of the replicas in
a consistent cluster R(o;) shows a possible maximum
replica to be obtained from the replicas in R(o;). In
the quorum-based protocol, there exists a maximum
replica. If R(o;) is inconsistent, the replicas cannot be
consistent.

Incomplete methods are update ones computed on
some replicas but not on every replica in a unifiable
set U(o;) of R(0;). Every pair of incomplete methods
not computed on a same replica are computed not on
every replica. Complete methods are update methods
computed on every replica in U(o;).

Let us consider how op;; is computed on the repli-
cas. op;; can be computed on a replica o® in the quo-
rum set Nj, if every incomplete method which conflicts
with op;; is computed on o?. However, there might not
exist such a replica o} in R(o;). Hence, op;; is com-
puted as follows.

1 Incomplete methods on each maximal replica are

computed on the other maximal replicas in N;; as

presented before. Here, every maximal replica is

the newest one.

Then, op;: is computed on the maximal replicas.

3 If op;s is an update method, the states of the repli-
cas in N;; have to be changed. The non-maximal
replicas in R(o;) compute every update method
computed on the maximal ones but not computed
on the replicas. In another way, one of the maxi-

(V]

mal replicas sends the state to the other replicas.

Here, every replica in Nj; is the newest one, i.e. max-
imum replica in R(0;).
3.3 Version vector

We newly introduce a wversion wvector to iden-

tify what methods are computed on each replica.
Each replica o! manipulates a bitmap vector BM} =
(BM};, ..., BM};) and a counter vector U} = (U},

iz, Uﬁ‘). Each element BM!: is in a bitmap form
(BME, ..., BM]*). The kth bit BMA* is 1 if of
knows that op;; is issued to of, otherwise 0 (k = 1,
...y @;). Each element U} is a version number of
the replica o} with respect to op;;. U} is incremented
by one each time op;; is computed on o} and op;; is
an update method. For example, BM} and Uy of a
replica B* are (BMp,, BMgy, BMy, BMy,) and
(Usp» Upw: Ukc, Up,), respectively, in Example 1
[Figure2]. Here, let V:* denote (U,-';)BM‘.».‘. For exam-
ple, V2, = 31101 shows BM2, = 1101 and U3, =3.
V} is a version vector (V}, ..., V} ). of manipulates
the version vector V;* which includes both information
on BM} and U}
[Example 2] Initially, each replica B’ has the version
vector V} = (00000, 0oooo; Ooooo, Ooooo) for j =1, ...,
4 in Example 1. Suppose D is issued to B! and B?
since Qp = 2. V} = V2 = (11100, 00000, 00000, 00000)-
Then, W is issued to B3 and B* since Qw = 2. V3 =
VB4 = (00000, 10011, 00000, 00000). Then, C is issued to
B!, B?, and B® since Q¢ = 3. Vj = V3 # V3. Since
VB}D — VBZD — 117100 and ng = 10011, Bl and B2
know that D is issued to B! and B2, and B® knows
that W is issued to B® and B*. Here, no replica is
maximum because every replica has computed either
D or W. One replica, say B!, is selected. The instance
of W computed on B2 is computed on B?. Vaw is
cha.nged to be 1loo11, i.e. Vgl = (11100, 100115 Ooooo,
0oooo). Then, C is computed on B!. Since C is not
an update one, V3. is not changed. D is issued to
B® and B*. V3 = V& = (loo11, loo11, 00000, 00000)-
Then, the method A is issued to three replicas B?,
B3, and B* since Q4 =3. Since V2, = 11100 and
V3p = looi1, B? and B2 compute different instances
D; and D; of D, respectively. B? and B® exchange
the instances of Dy and D;. In addition, Vi), = 0000
and V3, = 1g011. Here, the instances of D and W
computed on B® have to be computed on B? to obtain
the least upper bound version of B? and B3. Since D
is compatible with W, D and W can be computed on
B? in any order. Now, the method A is computed on
B? after D and W are computed. Here, B? computes a
sequence D;WD;A and B? computes WD, D; A. Vg
= (21111, loo11, Ooooo, lo111) and A updates B2 If
the state of B? is sent to B2 and B*, B® and B* are




B! B2 B3 e
<00000, 00000 00000 Oooos>  <0Ooooo. Ooooo 00ooo Ooood>  <Ooooo. Ooooo Ooooa Ooood>  <0oooo. Ooooa 000oa Oooos>

D, 1<11100 90000 Oogoo_Vogog? <1100, Gooeo Dooud Dogod=: <0000, 000 oo Oooos> <0000, 00000 0000 Coons>
D, D,

W <1100, 0000 00000 Goous>  <11100. 0000 o000 ooos> R e
D, D, 1L lacadk w
D,W W

€ [<!1100 10011 00000 Gooor] '<.1.'i°9.0.09".°.0."9°.°.0.0‘.’°9>. 'E-".;"Z-OP.-I."Q’.‘.O."Q".“.".OQ"K <00000. 1001+ 00000 Oooo>
A gay o0 bod W30 oo o bStudinds Wit boitiorty

Dy <1100, 10011 0000 Oooos> <1100, 00000 Oooon Oooos>  +<log11 o011 Qooon Gooos <lour To01s Oaon ogos:
D, WwC 1 WD, WD,

A <l1100, 10014 O000a Oooos> -<Ioou 10011 00000 O0000>} -<loou 10014 00000 Opooc>,

D wWcC

<2111, Toors Ooooo‘fip___/
D, WD,

<11100. 10014 00000 Opoos>  <0oooo, 10015 Ooooa lo11r> <00000. 10011 Qoooa lo11r>  <0oooo, 10014 Ooooo o117
D,WC D,wu WD,D, A ‘ff/WD'ZDIA

Figure 2: Version vectors.

updated with the state of B2. V2 = V3 = V3. Here,
VB} = VB?D = VgD = VgD (: 21111) is initialized
o ge Opooo since the same instances of D are surely
computed on every replica. In stead of sending the
states, B®> and B* can compute A. Then, B? can
send a sequence of the instances computed on B? to
the other replicas. O

Let BM! and BM} be bitmaps for o} and of, re-
spectively. BM} is included in BM} (BM} C BM})
iff BMY =1 if BM} =1for j =1, ..., a;. BM}
U BMF shows (BM?, ..., BM%) where BM? =1 if
BM} = BMY =1, otherw1se OFfel 25T, )5, &,

o Vit < Vi iff U} < Uf and BMJ; C BM;’@-
o VM < VFiff V} < Vi for every method opis.

A pair of version elements V}* and V}* are not
comparable iff neither V* < V* nor V* > V. If BM}
N BME # ¢, V* and V! are not comparable even if
UL < UE or Uk < UR. For example, suppose V3
= (11100, 00000, 00000, Ooooo) and V3 = (21110, Ooooo,
00000, Ooooo). Here, VB! S Vg Here, if Vg = (20011,
00000, 00000 Ooo0o), Va p and V2, are not comparable.
In a subset N C R(o;), Vi* is mazimal iff there is no
replica of in N where V;* > V;* for o in N.

We define a least upper bound “U” for a pair of
version elements V;* and V¥ on op;; as follows :

TY O CovVa,
Vi if vh S V-"

;=
(U + UL,

Viuvk =
SIS BME U BM}E)
otherwise.

L Vh U Vk (‘/;,i U thii 3 o 44 V;t U "i?‘>

For example, V2 = (10011, 00000; 00000; Ooooo) U V3
= (L1100, loo11, Ooooos Oooco) = (21111, loo11, Ooooo,
00000) -
[ Definition ] A version vector V;* is equivalent with
another one V¥ (V} = V¥) iff V" = Vi for every up-
date method op;, conﬁlctmg w1t every pair of com-
patible methods op;; and op;,,.
For example, D and W are compatible with one an-
other and conflict with A. Hence, V3 = (11100, 80000,
00000, 20101) is equivalent with ‘/2 = <00000, 10011,
Ooooo, 20101) since VBA = VBA = 20101 If Vh == Vk
o} and of can get the same state by computing com-

patible methods which are not yet computed on the
replicas.

4 Object-based Locking Protocol

We discuss a locking protocol by using the version
vector. Suppose a method op;; is issued to an object
0;. A replica o} of o; has a method log I} for storing
a sequence of method instances computed on of. Let
I% be a subsequence of instances of op;; in the log
I*. Each instance op has a bitmap op.BM showing
replica.s to which op is issued. That i is, op. BM* = 1if
op is issued to of. The counter U} gives the number
of it Al ikl B 1%
[ Locking protocol ] An object o, sends a method
op;: to every replica in the quorum set N;; of op;;.

1 All the replicas in N;; are locked in a mode

1(op;t). Unless succeeded in locking the replicas,

op;; aborts. Each replica o in N;; sends back



a response with the version vector V* and the
method log I* to o,.

2 On receipt of the responses from all the replicas
in Ny, oy obtains V, = U { V;* |-of € N;; }. Let
Py (op;:) denote a set { opiy | omu conflicts with
opit, opiu.BM # (1... ), and o} computes opi,
}. o, finds a rephca o in N;; whlch is maximal
with respect to methods conflicting with op;;.

3 If a replica of‘ is found, o, requires o? to compute

opit. of-‘ computes op;;.

a If op;; is not an update method, o? sends a
response to o,.

b Otherwise, o sends the set P,(op;:) to one
replica of in N;;. of computes every op;, in
Py (opi¢) unless of had computed op;. For
every op;y in Py (opit), opiy.BM := op;y.BM
V opit.BM. of sends a response back to o,.

4 Unless o:‘ is found, o, selects one maximal replica

" in the quorum set N;;. Let P(op;:) be a set {

op;u | opiy conflicts with op;; and is computed on
some replica of in Ny, }.

a If op;, is an update, o, sends P(op;;) to every

replica in Nj;. Each replica o} computes ev-

ery update op;, computed in N;; which is not

computed on o} and then computes op;;. For

every opiy in P(op;t), opiu.BM := op;y.BM

V op.BM in o}. o} sends a response back to

o;.
b If op;; is not an update o, selects one max-
imal replica o in N;;. o, sends P(op;:) to

o!. o} computes every op;, in P(op;,) if o}
had not computed op;,,. Then, of* computes

opi:. o} sends a response to o,. O

Methods stored in the method log I* have to be
eventually removed to reduce the log size in of. The
bitmap op;;.BM attached to op;; in the log l,f‘ shows
that o} knows that op;, is computed on of if BM* =1.
If op;;.BM = (1...1), o} knows that op;, is computed
on every replica. However, o'l cannot remove op;; from

I* because another replica of may not yet know that
every replica has computed op;;. Hence, a following

instance op;y, in the log I} is removed :

® 0p;y.BM = op;,.BM = (1...1) for every method
opiy in I! which conflicts with op;, and is com-
puted before op;,,.

The counter U} and the bitmap BM}; are initial-
ized again, i.e. U} := 0 and BM} := (0...0) if BM},
gets (1...1). If BM} = (1...1) in some replica o, op;;
is computed on every replica o} in the quorum set N;;.
Thus, U} shows how many instances of op;; are com-
puted on of. If BM: n BM} = ¢ and (UL > 0 or
Ut >0) for an update method op;:, a sequence s*

of mstances of op;: computed on o! is different from
sk of of. s" and s* include U} and U} mstances of
op;¢, respectively. In the OBL protocol s* and s" are
required to be computed on o} and of, respectively.
Then, BM} := BME := BM} n BME and U} := UE
=UR + Uk + 1.

[Theorem] For every update method ops, if BM} C
BMY and UL < Uk, every instance of op;; computed
on B} is also computed on Bf. O

[Theorem] If V* < V%, every pair of conflicting in-
stances op;; and op;, computed on a replica o} are

computed on another replica of in the same order. O

[Theorem] Every pair of maximal replicas o} and of
are unifiable to one unique replica. O

[Theorem] All the replicas are unifiable to one unique
replica in the OBL protocol. O

5 Evaluation

We evaluate the OBL protocol by comparing with
the quorum-based protocol in terms of the number of
the replicas locked. An object o; supports methods
OPi1, - -+, oPir; (ki > 1). In the quorum-based protocol,
an update op;; is considered to be write. Otherwise,
op;; is read. Quorum sets N;; and N, for a pair of
methods op;; and op;, are decided so that N;; N Ny #
¢ if op;; or op;, is an update. On the other hand, N;;,
..., Ny, are obtained based on the conflicting relation.
N;; N N;, # ¢ only if op;; conflicts with op;,,. That is,
N;;: N N;, = ¢ if op;; is compatible with op;, even if
Op;¢ OT Op;y is an update one in the OBL protocol. Let
¢(op;:) denote a usage frequency of op;; where @(op;1)
+ ... 4+ p(opi;) = 1. For various values of the usage
frequency ¢, the minimum quorum numbers Qf, and

Qg to be locked in the O BL protocol and the quorum-
based protocol, respectively, are calculated. In the
evaluation, an object is assumed to support two types
of methods op; and op;. Figure 3 shows conflicting
graphs for three cases.

case I :
o

Figure 3: Conflicting relations.

Figures 4, 5, and 6 show the quorum number for
usage frequency of op, in case that the number a; of
the replicas is 10. In the quorum-based protocol, the
quorum number of op; depends on whether or not op;
is an update. We assume that op; is an update if op;
conflicts with itself. We also assume that one of op;
and op; is an update if op; conflicts with op;. For ex-
ample, at least one of op; and op; must be an update
in case 1 because op; conflicts with op;. Hence, opy




==w=e= OBL protocol

----- o quorum-based minimum
- 10 quorum-based maximum
AW ie ==+==r=_quorum-based average
6.0 t mep—"
-
L7 N
o
W 30 ,I / *d \.\
S & / b‘ N,
§ w0 i  —
S Lr* . ~
§ .
£ 30 3
S
20 3
.
“
10
0 0.5 10

Frequency of op,
Figure 4: Evaluation of OBL protocol (case 1).

== wwe OBLprotocol

------- e quorum-based minimum
e quorum-based maximum
a; =10 ===+~ quorum-based average
6.0 et
.,'.__-0"=h
A/
5.0 s
S o
23 & /
§ 4.0 td g
= L
a
Ql
2.0
L0
0 05 1.0

Frequency of op,

Figure 5: Evaluation of OBL protocol (case 2).

and op, are considered to be one of write and write,
write and read, and read and write. There are three
cases depending on whether or not the methods are
update ones. Hence, there are three combinations of
update and non-update methods in case 1, two in case
2, and four in case 3. We obtain the minimum, max-
imum, and average quorum numbers for the quorum-
based protocol through the computation. The quorum
number of the OBL protocol is also calculated so that
the OBL constraint are satisfied. Figures 4, 5, and 6
show that the fewer number of replicas are locked in
the OBL protocol than the quorum-based protocol.
Even if op; and op; are update methods, op; may be
compatible with op;. For example, the method D is
compatible with W in Example 1.

6 Concluding Remarks

This paper has discussed the object-based locking
(OBL) protocol for the replicas of the objects. The

=wwem OBL protocol

e qUOrum-based minimum
10 e quorum-based maximum
g = m—sm=s= quorum-based average
6.0
5 5.0
< o[y -
£ w0 7 et 18
£ o N~
5 3.0
S
S -
Q
2.0
L0
0 0.5 Lo

Frequency of op,

Figure 6: Evaluation of OBL protocol (case 3).

object supports a more abstract level of method than
read and write. The version vector has been proposed
to maintain the mutual consistency of the replicas.
The replicas are not required to compute every update
instance which has been computed on the other repli-
cas if the instance is compatible with the instances
computed. Through the evaluation, we have shown
that fewer number of replicas are locked in the OBL
protocol than the quorum-based protocol.

References

(1] Bernstein, P. A., Hadzilacos, V., and Good-
man, N.; “Concurrency Control and Recovery in
Database Systems,” Addison- Wesley, 1987.

[2] Carey, J. M. and Livny, M., “Conflict Detec-
tion Tradeoffs for Replicated Data,” ACM TODS,
Vol.16, No.4, 1991, pp. 703-746.

[3] Garcia-Molina, H. and Barbara, D., “How to As-
sign Votes in a Distributed System,” Journal of
ACM, Vol 32, No.4, 1985, pp. 841-860.

[4] Hasegawa, K. and Takizawa, M., “Optimistic
Concurrency Control for Replicated Objects”,
Proc. of the Int’l Symp. on Communications (IS-
COM’97), 1997, pp. 149-152.

[5] Jing, J., Bukhres, O., and Elmagarmid, A., “Dis-
tributed Lock Management for Mobile Transac-
tions,” Proc. of IEEE ICDCS-15, 1995, pp. 118-
125.

(6] Korth, H. F., “Locking Primitives in a Database
System,” JACM, Vol. 30, No. 1, 1983, pp. 55-79.

[7] Silvano, M. and Douglas, C. S., “Construct-
ing Reliable Distributed Communication Systems
with CORBA,” IEEE Communications Maga-
zine, Vol.35, No.2, 1997, pp.56-60.

[8] Yoshida, T. and Takizawa, M., “Model of Mobile
Objects,” Proc. of the 7th DEXA (Lecture Notes
in Computer Science, No 1134, Springer-Verlag),
1996, pp. 623-632.



