INFAT 4 TBEEHBUET -V 37 ERI0E1LA

Role-Based Access Control for Distributed Objects

Masashi Yasuda, Tsunetake Ishida, Hiroaki Higaki, and Makoto Takizawa
Dept. of Computers and Systems Engineering
Tokyo Denki University
Email {masa, tsune, hig, taki} @takilab.k.dendai.ac.jp

Abstract

Various kinds of distributed applications have been devel-
oped by using object-oriented technologies. Object-oriented
technologies are used to realize the interoperability of the
applications. Object-oriented systems are composed of mul-
tiple objects which cooperate to achieve some objectives by
passing messages. In addition to realizing the interoper-
ability, it is essential to make the system secure. The secure
system is required to not only protect objects from illegally
manipulated but also preventillegal information flow among
objects. In this paper, we discuss role-based access control
model in the object-oriented systems and how to resolve
illegal information flow.

1. Introduction

By using object-oriented technologies, various kinds of
object-oriented systems like object-oriented database man-
agement systems [2] and languages like JAVA [9] have been
developed. Object-oriented systems are composed of mul-
tiple objects which cooperate to achieve some objectives by
passing messages. An object is an encapsulation of data and
methods for manipulating the data. The Common Object
Request Broker Architecture (CORBA) [12] is now get-
ting a standard framework for realizing the interoperability
among various kinds of distributed applications. In addition
to realizing the interoperability, secure system is required to
not only protect objects from illegally manipulated but also
prevent illegal information flow [4, 6, 13] among objects in
the system.

In the basic access control model [10], an access rule is
specified in a form (s, o, t) which means that a subject s
can manipulate an object o in a type t of access. A pair (o,
t) is an access right granted to s. Only the access request
which satisfies the access rules specified by the authorizer
is accepted to be computed. However, the access control
model implies the confinement problem [11], i.e. illegal
information flow may occur among subjects and objects. In

order to make every information flow legal in the system,
the mandatory access control model [1, 4, 13] is proposed.
The legal information flow is given by classifying objects
and subjects and defining the can-flow relation [4] between
classes of objects and subjects. In the mandatory model, the
access rules are specified by the authorizer so that only the
legal information flow occurs. For example, if a subject s
reads an object o, information in o flows to s. Hence, s can
read o only if a can-flow relation from o to s is specified. In
the discretionary model [3,5, 6], the access rules are defined
in a distributed manner while the mandatory access rules are
specified only by the authorizer in a centralized manner. For
example, the access rules can be granted to other subjects
in the relational database Sybase [15]. In the role-based
model (7, 14, 17], a role is defined to be a collection of
access rights, i.e. pairs of access types and objects which
show a job function in the enterprise. The access rule is
specified by granting subjects the roles while each subject
is granted an access right in the access control model.

The traditional models discuss what object can be ma-
nipulated by what subject in what access type. The au-
thors [16, 18] newly propose a purpose-oriented model
which takes into account a purpose concept why each sub-
ject manipulates objects in the object-based system. The
purpose is modeled to be a method which invokes another
method in the object-based system. In the object-based sys-
tem, methods are invoked in a nested manner. It is critical to
discuss how to specify access rules in the nested invocation
of methods. One way is that a method op, of an object o,
can invoke a method op, of an object o, if a subject which
invokes op; is granted an access right (0,, op;). Sybase [15]
adopts the ownership chain mechanism where op; can in-
voke op; if the owner of o, is the same as o, even if s is not
granted an access right (o, op;). Itis not easy, possibly im-
possible to specify access rules for huge number of objects
and subjects. Another way is that op; can invoke op, only if
o1 has an access right (o, op;). We take this approach, i.e.
object pairwise approach. In addition, we discuss how to in-
corporate the role concepts into the purpose-oriented model
in an object-oriented system where methods are invoked in

the nested manner. Then, we discuss information flow to
occur among the roles through the nested invocations.

In section 2, we present the model in the object-oriented
systems. In section 3, we discuss access rules. In section 4,
we discuss information flow.

2. System Model
2.1. Object-oriented system

Object-oriented systems are composed of objects. Ob-
jects are encapsulations of data and methods for manipu-
lating the data. Each object is associated with a unique
identifier in the system. For each object, a set of artributes
that specify the object structure, a set of values that specify
the object state, and a set of methods that specify the object
behavior are defined. An object o is defined as follows : 1)
unique object identifier (OID), 2) set of attributes (ay, ...,
an), 3) set of values (vy, ..., v,) where each v; is a value
of a;, and 4) set of methods (¢y, ..., t,). A class is an ab-
straction mechanism, which defines a set of similar objects
sharing the same structure and behavior, which is given a
set of attributes and methods. Each object in the system is
an instance of some class [Figure 1]. A method of an ob-
ject is invoked by sending a request message to the object.
On receipt of the message, the object starts to compute the
method specified by the message. On completion of the
computation of the method, the object sends the response
back to the sender object of the message.

We define reliable objects as follows :

[Definition] An object o is reliable if and only if (iff) the
following conditions are specified :
1. o can be manipulated only through methods supported
by o, and
2. no methods malfunction. O
We assume that every object is reliable in the system.

A class can be defined as a specialization of one or
more classes. Inheritance provides means for building new
classes from the existing classes. A class c defined as a spe-
cialization of a class ¢’ is called a subclass of ¢’ and inherits
attributes and methods from ¢’. In turn, c is referred to as
a supperclass of ¢. An is-a relation is defined between a
pair of superclass and subclass. A subclass may override the
definition of attributes and methods from the supperclass. In
Figure 2, classes Clock and Alarm are superclasses of a class
AlarmClock. AlarmClock inherits attributes time and setA-
larm from Clock and Alarm, respectively. AlarmClock also
inherits methods show from Clock and the other methods set
and ring from Alarm.

In the object-oriented system, a subject shows a user or
an application program. A subject is an active entity in
the system, which can issue access request to objects. The

invocation

invocation

invocation

instantiation

set of attributes

set of methods

set of attributes

set of methods

Figure 1. System model.

superclass

time : integer

show

inheritak

superclass

setAlarm : boolean

J set

ring

subclass ‘4en‘tance

time : integer

setAlarm : boolean

show

set

ring

Figure 2. Class hierarchy.

subject manipulates objects by invoking their methods. On
the other hand, an object is a passive entity. An object
activates a method only if the method is invoked on receipt
of the message. The method invoked may invoke further
methods of other objects. Thus, the invocation is nested.

2.2. Roles

Each subject plays some role in an organization, like a
designer and clerk. A role represents a job function that de-
scribes the authority and responsibility in the organization.
In the role-based model (7, 14, 17], a role is modeled in a
set of access rights. An access right means an approval of
a particular mode of access, i.e. methods to an object in the
system. That is, arole means what method can be performed
on which object.

[Definition] A role 7 is a collection of access rights {(o,
op)} € O x M where O and M show sets of objects and
methods in the system, respectively. O

Let R be a set of roles in the system. A pair (o, op) of an
object o and a method op of o is a access right. In the role-
based model, a subject s is granted roles while s is granted
access rights in the access control model. Here a subject s
is referred to as bound with the role 7. Here, s is referred
to as belong to r. This means that s can perform a method
op on an object o if (o, op) € r. For example, a role chief is
{{book, read), (book, enter)} and clerk is {(book, read) } in
Figure 3. A person A who works as a chief in the company
is granted the role chief in the organization. A clerk B is
granted a role clerk. Thus, it is easy to grant access rights
to persons.

chief:

object | permission object | permission
oL read book read
enter

Figure 3. Roles.

Some roles are hierarchically structured to show struc-
tural authorizations in the system. A role hierarchy repre-
sents organization’s logical authority and responsibility. If
a role r; includes all of access rights of another role r;, r;
is higher than r; (r; < r;). <X is transitive. In Figure 3,
clerk < chief since chief takes a higher position than clerk.
Figure 4 shows an example of the role-hierarchy. Here, spe-
cialist = doctor, doctor > consultant, and doctor > intern.
consultant and intern are not related on <.

specialist specialist
doctor
doctor
consultant intern
consultant intern

(1) Role hierarchy (2) Inclusion relation of permissions

Figure 4. Role hierarchy and inclusion rela-
tion.

3. Access Control

In a role-based model, each subject s can manipulate an
object o by a method op of o only if s is granted a role
including an access right (o, op). The object activates the
method on receipt of the request message. If a subject s
would like to exercise the authority of a role » which s
belongs to, the subject s establishes sessions to the role .
[Access condition] A subject s can manipulate an object o
by invoking a method op of o if

1. the owner of o assigns an access right op to a role r,
2. s belongs to a role 7, and
3. sis establishing a session to 7. O

For example, in Figure 5, a subject s can perform write on
an object o while a session between s and a role chief is
established. Even if s belongs to both roles chief and clerk,
s cannot perform write on the object o if a session between
s and chief is not established. The authority of a role r can
be exercised only while a subject s establishes a session to

¥
. permission
assignment _, read
-
! role—i " Iy
session ; ;
| clerk interaction

— -
—-—-=| chief |#¥

subject

object

Figure 5. Role-based access.

The purpose-oriented model [16, 18] newly introduces a
purpose concept to the access control model. A purpose
shows why each subject s manipulates an object o by invok-
ing a method op of o. In the object-based system, methods
are invoked in the nested manner. Suppose that a subject s

invokes a method op; of an object o, and then op, invokes a
method op; of an object 0,. In the purpose-oriented model,
the purpose is modeled to be the method op; invoking op, of
o0, while the access control model specifies whether or not
o1 can manipulate o, by op,. For example, let us consider
a person s withdraws money from a bank. In the access
control model, s can withdraw money from bank if an ac-
cess rule (s, bank, withdraw) is authorized independently
of for what s spends the money. On the other hand, s can
get money from bank for purpose of house-keeping but not
for drinking. An access rule (s : house-keeping, bank :
withdraw) is specified where a method house-keeping of s
shows the purpose.

A role is specified in a collection of access rights in
the role-based model [7, 14, 17]. We would like to extend
the purpose-oriented access control model to the role-based
model. In the object-based system, methods are invoked in
a nested manner. Here, suppose that a subject s invokes a
method op; on an object 0, and then op; invokes another
method op; on an object o,. Here, suppose s is granted an
access right (o;, op;). In one way, only if s is granted an
access right {0y, 0p,), op; can invoke op,. However, it is
cumbersome for each object o; to specify which subject can
manipulate o;. In the relational database management sys-
tem Sybase [15], the ownership chain method is adopted.
Here, if 0, has the same owner as 0, and s is granted an
access right (0, 0p;), op; can invoke op; even if s is not
granted an access right (0;, op,). Otherwise, op; is allowed
to invoke op; only if s is granted an access right (o;, op,).
Suppose the response of op, carries some data stored in the
object 0;. On receipt of the response, the object o, may
store the data carried by the response in the storage while
0, continues to compute op; by using the response. This
means, information in o; flows to o; through the invoca-
tion. The data may be brought to other objects by further
invocation. By using the ownership chain method, illegal
information flow may occur. In this paper, we assume that
the system is composed of multiple autonomous objects,
that is, objects have different owners. Furthermore, it is
difficult, maybe impossible for each autonomous object to
grant access rights to other objects. In this paper, we take
an object pairwise approach where access rules are specified
for a pair of autonomous objects o; and o;.

Each method op; of an object o; is granted a role r; =
{(0i1,0pi1), - - ., (Oin,, 0pin,) }. This means, op; can invoke
a method op;; of an object o;; (for j = 1, ..., h;). In
turn, op;; may be granted a role 7;; = {(0i;1,0pij1), - - -
(0ijhi; ,0Pijhi;)} opij can invoke a method op;ji of o0y
if op,; is granted the role r;;. An access rule has to show
in what role the method op; of the object o; is bound to the
role 7;.

[Purpose-oriented role-based access (POR) rule] (r : o; :
op;, T;) means that a method op; of an object o; is invoked

in arole 7 and op; can invoke methods specified in a role r;.
The object-oriented system is composed of classes and
objects, i.e. instances of the classes. There are two kinds of
roles, i.e. class roles and instance roles. A class role r is
defined in terms of methods and classes, i.e. r = {(c, op)
where c is a class and op is a method of ¢}. On the other
hand, an instance role 7’ is defined in terms of methods and
objects, i.e. 7' = {(o, op) where c is an object and op is a
method of o}. 7’ is instantiated from the class role .

class role r
class €
instance-of [

instance role r’

Figure 6. class role and instance role.

4. Information Flow Control

In the role-based access control model presented in the
previous section, it is assured that subjects manipulate ob-
jects based on roles to which the subjects belong. However,
illegal information flow among objects may occur. Because
legal and illegal information flow among the objects are not
discussed. For example, in Figure 7, suppose that a subject
s; invokes write on an object o; after invoking read on o;
by the authority of a role r;. This means that s; may write
data obtained from o; to 0;. s; can read data in o; even if
read access right is not authorize to a role r;. This is the
confinement problem pointed out in the basic access control
model. In addition, a subject can have multiple roles in the
role-based model even if they can play only one role at the
same time. In Figure 3, suppose that a person A belongs to
two roles chief and clerk. A person A obtains some infor-
mation from book as a clerk and then stores the data derived
from the information into book as a chief.

We classify methods of objects with respect to the fol-
lowing points:

1. whether or not a value v; of attribute a; from an object
o0; is output.

2. whether or not a value of a; in o; with input parameter
is changed,

The methods are classified into four types in 1) mpg, 2) mw,
3) mrw, and 4) my. mpg means that the method outputs a
value but does not change o;. mw means that the method
does not output but changes o;. The method m zpw outputs

/

permissio 0',
read

-~
role F;
»
! % assignment
o session
—-—role I; %
Jo3
p: %, % permissions.
J =, Y write
: read

Figure 7. lllegal information flow.

a value and changes o,. The method my neither outputs a
value nor changes o;. For example, a method count-up is
classified to be m because count-up changes the state of
the object but does not need input parameter. count-up does
not bring information into an object.

[Example 1] Let us consider a simple example about infor-
mation flow between a pair of objects o; and o; in shown
Figure 8. A subject s is now in a session with a role r;.
Here, s can invoke methods classified into mpr on o; and
mpgw on o; by the authority of r;, respectively. If s obtains
information from o; through mg, s can invoke mgw on 0;
after the invocation of mp on o;. Because a set of roles
on o; which is authorized to execute methods classified into
mp is a subset of roles on o, which is authorized to perform
methods classified into mp. O

Access control list

/rimR

Mpy

Access control list
T |l Mgy

Figure 8. Information flow control.

5. Concluding Remarks

This paper has presented an access control model for dis-
tributed object-oriented systems with role concepts. Roles
are higher level representation of access control models. We
have defined a role to mean what method can be performed
on which object. Furthermore, we have discussed how to
control information flow to occur through roles.

References

[1] Bell, D.E. and LaPadula, L. J., “Secure Computer Sys-
tems: Mathematical Foundations and Model,” Mitre
Corp. Report, No. M74-244, Bedford, Mass., 1975.

[2] Bertino, E. and Martino, L., “Object-Oriented
Database Management Systems : Concepts and Is-
sues,” IEEE Computer, Vol. 24, No. 4, 1991, pp.
33-47. '

[3] Castano, S., Fugini, M., Matella, G., and Samarati, P.,
“Database Security,” Addison-Wesley, 1995.

[4] Denning, D. E., “A Lattice Model of Secure Informa-
tion Flow,” Communications of the ACM, Vol. 19, No.
5, 1976, pp. 236-243.

[5] Denning, D. E. and Denning, P. J., Cryptography and
Data Security, Addison-Wesley, 1982.

[6] Ferrai, E., Samarati, P., Bertino, E., and Jajodia, S.,
“Providing Flexibility in Information Flow Control for
Object-Oriented Systems,” Proc. of 1997 IEEE Symp.
on Security and Privacy, 1997, pp. 130-140.

[7] Ferraiolo, D. and Kuhn, R., “Role-Based Access Con-
trols,” Proc. of 15th NIST-NCSC Nat’l Computer Se-
curity Conf., 1992, pp. 554-563.

[8] Harrison, M. A., Ruzzo, W. L., and Ullman, J. D.,
“Protection in Operating Systems,” Communication of
the ACM, Vol. 19, No. 8, 1976, pp. 461-471.

[9] Gosling, J. and McGilton, H., “The Java Language
Environment,” Sun Microsystems, Inc, 1996.

[10] Lampson, B. W., “Protection,” Proc. of 5th Princeton
Symp. on Information Sciences and Systems, 1971,
pp. 437-443. (also in ACM Operating Systems Review,
Vol. 8, No. 1, 1974, pp. 18-24.)

[11] Lampson, B. W., “A Note on the Confinement Prob-
lem,” Communication of the ACM, Vol. 16, No. 10,
1973, pp. 613-615.

[12] Object Management Group Inc., *“ The Common Ob-
ject Request Broker : Architecture and Specification,”
Rev. 2.1, 1997.

[13] Sandhu, R. S., “Lattice-Based Access Control Mod-
els,” IEEE Computer, Vol. 26, No. 11, 1993, pp. 9-19.

[14] Sandhu, R. S., Coyne, E. J., Feinstein, H. L., and
Youman, C. E., “Role-Based Access Control Models,”
IEEE Computer, Vol. 29, No. 2, 1996, pp. 38—47.

[15] Sybase, Inc., “Sybase Adaptive Server Enterprise Se-
curity Administration,” 1997.

[16] Tachikawa, T., Yasuda, M., and Takizawa, M., “A
Purpose-oriented Access Control Model in Object-
based Systems,” Trans. of IPSJ, Vol. 38, No. 11, 1997,
pp- 2362-2369.

[17] Tari, Z. and Chan, S. W., “A Role-Based Access Con-
trol for Intranet Security,” IEEE Internet Computing,
Vol. 1, No. 5, 1997, pp. 24-34.

[18] Yasuda, M., Higaki, H., and Takizawa, M., “A
Purpose-Oriented Access Control Model for Informa-
tion Flow Management,” Proceeding of 14th IFIP Int’l
Information Security Conf. (SEC’98), 1998, pp. 230—
239.

