RINVFAT 4 7RBEEHBUET -3y T FERIELILA

Group Protocol for Multiple Objects

Tomoya Enokido, Hiroaki Higaki, and Makoto Takizawa
Dept. of Computers and Systems Engineering
Tokyo Denki University
Email {eno, hig, taki}@takilab.k.dendai.ac.jp

Abstract

Distributed applications are realized by cooperation
of multiple objects. A state of the object depends on in
what order the object ezchanges request and response
messages. In this paper, we newly define a signifi-
cantly precedent order of messages based on a con-
flicting relation among requests. The objects can be
mutually consistent if the objects take messages in the
significantly precedent order. We discuss a protocol
which supports the significantly ordered delivery of re-
quest and response messages. Here, an object vector
18 newly proposed to significantly order messages.

1 Introduction

Distributed applications are realized by a group of
multiple application objects. Many papers [3,10] dis-
cussed how to support the causally ordered delivery
of messages at the network level in presence of mes-
sage loss and stop faults of the objects. Cheriton et
al. [4] point out that it is meaningless at the appli-
cation level to causally order all messages transmit-
ted in the network. Ravindran et al. [11] discuss how
to support the ordered delivery of messages based on
the message precedency explicitly specified by the ap-
plication. Agrawal et al. [8] define significant mes-
sages which change the state of the object. Raynal et

L. [1] discuss a group protocol for replicas of file where
wrlte write semantics of messages are considered. The
authors [5] discuss a group protocol for replicas where
a group 18 composed of transactions issuing read and
write requests to the replicas.

An object o is encapsulation of data and methods.
On receipt of a request message with a method op, the
object o computes op and sends back a response mes-
sage with the result of op. Here, the method op may
further invoke another method, i.e. nested invocation.
States of the objects depend on in what order methods
are computed. A conflicting relation among methods
is defined for each object based on the semantics of
the object. If a pair of methods sending and receiv-
ing messages conflict in an object, the messages have
to be received in the computation order of the meth-
ods. Thus, the significantly precedent relation among
request and response messages can be defined based
on the conflicting relation. In this paper, we present
an Object-based Group (OG) protocol which supports
the significantly ordered delivery of messages where
only messages to be ordered at the application level
are delivered to the application objects in the order.

Takizawa et al. [12] show a protocol for a group of
objects, which uses the real time clock. However, it is
not easy to synchronize real time clocks in distributed
objects. We newly propose an object vector to signifi-
cantly order messages.

In section 2, we discuss the significant precedency
among messages. In section 3, the OG protocol is
discussed. In section 4, we present the implementation
and evaluation of the OG protocol.

2 Significantly Ordered Delivery in
Object-based Systems

2.1 Object-based systems

A group G is a collection of objects o0y, ..., on
(n > 1) which are cooperating by exchanging requests
and response messages in the network. We assume
that messages sent by each object are delivered to the
destinations with message loss not in the sending order
and the delay time among objects is not bounded.

An object o; can be manipulated only through
methods supported by o;. Let op(s) denote a state
obtained by applying a method op to a state s of the
object o0;. A pair of methods opl and op, of o; are com-
patible iff op1&op,(s = op,(0p,(s)) for every state s
of 0;. op, and op, conflict iff ﬁ'xey are not compa.tl-
ble. The conflicting relation C; among the methods is
specified when o; is defined. We assume that is sym-
metric but not transitive. A pair of request messages
my of a method op; and mgy of op; conflict iff opy
and op; conflict. Suppose op, is issued to o;. If op,
conflicts with some method being computed in o;, op;
has to wait until op, completes.

Each time an object o; receives a request message
of a method op, a thread is created for op. The thread
is as an instance of op in o;, which is denoted by op'.
Only if all the actions computed in op complete suc-
cessfully, i.e. commit, the instance of op commits.
Otherwise, op aborts. op may further invoke methods
of other objects. Thus, the invocation is nested.

2.2 Significant precedence

A method instance op} precedes another one oph
(op} =>i op}) iff op} is started to be computed after
op'1 completes in o;. op} precedea op; (op} = opé) iff
0py =i op} for j =1, opl invokes op}, or opi = op}
= op for some opa op; and op; are concurrent (op}
|| op}) iff neither op} = op) nor op) = opi.

A message m causally precedes another one m; if
the sending event of m; precedes my [3,7]. Suppose
an object o; sends a message m; to ob_]ects o; and
ok, and o; sends m; to o after receiving m;. Here,
my causajly precedes m;. Hence, o has to receive
m; before m;. We define a significantly precedent
relation “—” among messages m; and my, which is
significant for applications in the object-based system.
There are the following cases :

S. An object o; sends m; after m; [Figure 1].
S1. m; and m, are sent by op‘1
S2. m, is sent by op} and m; is sent by oph:
S2.1. op} precedes op} (op} = op}).
S2.2. op} and op} are concurrent (op} || op}).
R. o; sends my after receiving m; [Figure 2].
R1. m, and m; are received and sent by op!.
R2. m, is received by op} and m; is sent by op}:
R2.1. op} = opy. R2.2. op} || opb.
We discuss how messages are significantly preceded
for each of the cases. First, let us consider the case
S [Figure 1] where an ob_]ect o; sends a message m,

before my. In S1, m; significantly precedes my (m; —
mg) since m; and m, are sent by the same instance
op. In S2, m; and m; are sent by different instances
op} and op} in o;. In S2. 1, op1 precedes op2 (op1
opy). Unless op} and op2 conflict, there is no rela-
tion between opj and opj. Hence, neither my — m;
nor my — m;. Here, m; and my are significantly
concurrent (my || mz). Suppose op) and op} con-
flict. The output data carried by the messages my
and m; in “oph = opi” may be different from “ opl =
op2 because the state obtained by applying op} and
op, depends on the computation order of op} and op,
Thus, if op} and op}, conflict, the messages sent by op1
have to be received before the messages sent by op3,
i.e. my — my. In S2.2, op} || op}. Since op} and op}
are not related, m, || my.

In the case R [Figure 2], o; sends m; after receiving
my. In Rl, my — mj since m; is received and m;
is sent by op}. Here, m; is the request of op} or a
response of a method invoked by opi. m; is the re-
sponse of op} or a request of a method invoked by op}.
The output of op; may be the input of m;. In R2, m;
is received by op} and mj is sent by op} (# op}). In
R2.1, opy = op}. If opj and oph conflict, m; — my.
Unless op} and op} conflict, m; || mz. In R2.2, m, ||
ma.

[Definition] A message m; significantly precedes an-
other message m; (my — m;) iff one of the following
conditions holds:
1. m; is sent before my by an object o; and
a. my and my are sent by a same method in-
stance, or
b. a method sending m; conflicts with a
method sending m; in o;.
2. m; is received before sending my by o; and

a. m; and m; are received and sent by a same
method instance, or

b. a method receiving m; conflicts with a
method sending m;.

3. my — m3 — m; for some message mz. O

0g 04 04
- o o
my my 0p2
my
ma)
ap§ ma
m2
timeY timeY timeY
(s1) (s2.1) (52.2)
Figure 1: Send-send precedence
0; 0 05
PSR e ST IR SOPT V4T 0B :
~3 ~ 0Py
m2
01’2 ma
ma
time time timeY
(R1) (R2.1) (R2.2)

Figure 2: Receive-send precedence

[Proposition] A message m; causally precedes a mes-
sage my if m; significantly precedes m; (my — my).
A message m is significantly preceded by only mes-
sages related with m.
2.3 Ordered delivery

Suppose an object o; sends a message m; to two
objects o; and oj, and o, sends m3 to o, 0;, and o;
[Figure 3]. There are the following cases :
C1. m; and m; are requests.
C2. One of m; and m; is a request and the other is a

response.

C3. m; and m; are responses.

Oh 0; 0j Ok

opil m

op2

time Y Y

Figure 3: Receive-receive precedence

In the case C1, suppose m; and m; are requests of
methods op; and op;, respectively, and op; conflicts
with op; in the objects o; and o;. If m, || m3, m; and
m; may be delivered in o; and o; in different orders.
However, the state of o; obtained by computing op;

and op; may be inconsistent with o; because op; and
op; conflict in o; and o;. In order to keep o; and o;
mutually consistent, m; and m; have to be delivered
to 0; and o; in the same order. Thus, a pair of requests
m, and my have to be delivered in every pair o; and
o; of common destinations in the same order if the
requests m, and my conflict in o; and o;. In C2 and
C3, m; and m; can be delivered in any order.

Suppose o; receives messages m; and ma. First,
suppose m; || ma. If m; and m; are requests sent
to one object o;, o; can receive m; and m; in any or-
der. Otherwise, the cases C1, C2, and C3 are adopted.
Next, suppose m; significantly precedes mz (m; —
m;y). There are the following cases :

T. o; receives my before my [Figure 4].
T1. m; and m; are received by an instance op}.
T2, op‘1 receives m; and op‘, receives mg.
T2.1. op} precedes op} (oph = op}).
T2.2. op} and opj are concurrent.

0y o5 04
wa PP 5 oimspe NPT oy R 1
~] op3
- . my
55 my op;
timeY time timeY
(T1) (T2.1) (T2.2)

Figure 4: Receive-receive precedence

In T1, m, has to be delivered to the object o; before
m; since m; significantly precedes m; (m; — my). In
T2, m, and m; are received by different instances opj
and op}. If op} and op} are concurrent (op} || op}) in
T2.2, m; and m; can be independently delivered to
op} and opy. In T2.1, first suppose op} and op} con-
flict. If m; or my is a request, m; has to be delivered
before m; since m; — m,. Next, suppose m; and m,
are responses. Unless m; is delivered before m;, op}
waits for m, and opj is not computed since op} does
not complete. That is, deadlock among op} and op}
occurs. Suppose mg is sent to op} and my4 to op) and
mg — ma. Even if op‘1 = op’, and m, is delivered
before mgy, deadlock occurs because mqy — mg3. Thus,
messages destined to different instances cannot be de-
livered to o; in the order “—” unless at least one of
the messages is a request. Unless op) and opj conflict,
m, and my can be delivered in any order.
[Significantly ordered delivery (SO)] A message
m; 1s delivered before another message m; in a com-
mon destination o; of m; and m; if the following con-
dition holds :

o if my — my,

¢ a same instance receives m; and m;, or

e a method instance op] receiving m; conflicts
with op} receiving m; in o; and one of m,
and m; is a request,

e if m; and m, are conflicting requests and m; ||
my, m; is delivered before m; in another common
destination of m; and my. O

[Theorem] No communication deadlock occurs if ev-
ery message is delivered by the SO rule. O

The system is consistent if every message is deliv-
ered by the SO rule.

3 Object-Based Group Protocol

3.1 Object vector

The vector clock [9] V = (V4, ..., V,) is widely used
to causally order messages in most group protocols.
Each object o; manipulates a vector clock V = (Vj,

.4 Vu) (3 =1, ..., n). Each element V; is initially 0.
o; increments V; by one each time o; sends a message
m. m carries the vector clock m.V (= V). On receipt
of a message m/, o; changes V as V; := max(V;, m'.V;)
for j =1, ..., nand j # i. A message m; causa.liy
precedes another message m; iff m;.V < my.V.

The significant precedency of messages is defined in
context of instances invoked and in nested invocations
while the causality is defined for messages sent and
received by “objects”. Hence, a group is considered to
be composed of method instances, not objects. In the
vector clock, the group has to be frequently resynchro-
nized [3,4,7-9,12] each time instances are initiated and
terminated. In this paper, we newly propose an object
vector to causally order only the significant messages.

Each instance op} is given a unique identifier id(op})
satisfying the following properties :

I1. If opj starts after op}, starts in an object o;, id(op})
> id(op),).
I2. Ifo; initiates op} after receiving a request op; from
opl, id(op) > id(op]).
The object o; manipulates a variable oid, initially 0,
showing the linear clock (7] as follows :
e 0id := oid + 1 if an instance op} is initiated in o;.
e On receipt of a message from opl,, oid := max(oid,
oid(op),).
When an instance op; is initiated in the object o;,

the instance identifier id(op}) is given a concatenation
of oid and the object number ono(o;) of o;. Here,
let oid(op;) show oid of id(op;). id(op;) > id(op)
if 1) oid(opi) > oid(op]) or 2) oid(opt) = oid(op})
and ono(o;) > ono(o;). It is clear that the instance
identifiers satisfy I1 and I2.

Each action e in opj is given an event number no(e).
o; manipulates a variable no; for each action e, 1.e.
no(e) := no; in o; as follows :

e Initially, no; := 0.

e no; :=no; + 1 if e is a sending action.

Each action e in opi is given a global event number
tno(e) as the concatenation of id(op}) and no(e).

An object o; manipulates a vector V* = (Vf, il
Va). Each element V7 is initially 0. Each time an
instance op} is initiated on o;, op} is given Vi = (V};,

.oy Vi) where Waast Vji for j =1, ..., n. Each
element V;' is manipulated for op} as follows :

o [op; sends a message m| no; := no; + 1, Vas
(id(op;), noi); m carries the vector V' as m.V
where m.V; := Vi (j = 1, ..., n).

° [op; receives a message m frfam .oj] Vt; = m.Vj;

o [op} commits] V} := max(V}, V%) (4 = 1, ..., n);

e [op} aborts] V* is not changed.

0; 0,
<0,0 > <0,0>
i
opl E:
<0,0 > opg
(\ <0,0>
<1i0, 0 >)
< 1i0, 0 >
time|

Figure 5: Object vector

In Figure 5, the vectors V* and V7 are initially (0,
0). An instance op} is initiated in o; where V§ = (0,
0). After sending a message m to opé, eg misa
request of op; to o, V7 is changed to (1i0, 0) where
120 is the global event number of the sending action
of m. m carries V(= (1i0, 0)) to op}. On receipt of
m, opy changes V] to (10, 0). After op} commits, V;
of o; is changed to be (1i0, 0).

3.2 Message transmission and receipt
A message m includes the following fields:
m.src = sender object of m.
m.dst = set of destination objects.
m.type = message type, i.e. request, responce,
commit, and abort.
m.op = method. m.d = data.
m.tno = global event number S}n.id, m.no).
m.V = object vector (V, ..., V).
m.SQ = vector of sequence numbers (sq, ..., 3g,).
If m is a request message, m.tno is a global event
number of the sending action of m. m.id shows the
instance identifier and m.no indicates the event num-
ber in the instance. If m is a response message of a
request m/, m.tno = m/.tno and m.op = m’.op.

An object o; manipulates variables sqy, ..., sg, to
detect a message gap, i.e. messages lost or unexpect-
edly delayed. Each time o; sends a message to another
object o;, sg; is incremented by one. Then, o; sends a
message m to every destination object in m.dst. The
object o0; can detect a gap between messages received
from o; by checking the sequence number. o; manipu-
lates variables rsqy, ..., 73g, to receive messages. rsq;
shows a sequence number of message which o; expects
to receive next from o;. On receipt of m from o;,
there is no gap if m.sq; = rsq;. If m.sq; > rsq;, there
is a gap message m’ where m.sq; > m'.sq; > rsq;.

That is, o; has not yet received m’ which is sent by
0;. 0j correctly receives m if o; receives every message
m' where m/.sq; < m.sq;. That is, o; receives every
message which o; sends to o; before m. The selective
retransmission to recover from the message loss is used
in the protocol. If o; does not receive a gap message
m in some time units after the gap is detected, o; re-
quires o; to send m again. o; enqueues m in a receipt
queue RQ); even if a gap is éetected on receipt of m.

Suppose an instance op} in an object o; invokes a
method op. Here, op may be sent to multiple objects.
o; constructs a message m for op as follows and sends
m to the destination objects :

m.src := o;; m.dst := set of destinations;
m.type := request; m.op := op;

m.tno = (m.id, m.no) := (id(op}), no;));

sqn := sqp + 1 for every o, in m.dst;

m.V; :=V;; and m.sg; :=sg; for j =1,...,n;

3.3 Message delivery

Let us consider three objects o;, 0;, and o, [Figure
6]. An instance op} in o; sends a message m; to o,
and 0. op; is interleaved with op] in o;, i.e. op}
and opj are concurrent in o; (op} || op}). op; sends
ma to og. opg sends my to o after receiving m;.
Here, m, significantly precedes my; (my — m3). o
has to receive m; before m;. However, m; || m3 since
op} || oph. Similarly m; || ma. However, since op} is
initiated after receiving m; from op} and op} || op},
my.V = m3.V. Hence, my.V > m3.V. Although o;
can receive m; and mg3 in any order since my J[ma,
“m, precedes m3” by the object vector. In order to
resolve this problem, an additional receipt vector RV
= (RVy, ..., RV,) is given to each message m received
from o;. m.RV shows RV in m. m.RV is the same as
m.V except that m.RV, shows the global event number
of the sending event of m for an object o; which sends
m. m.RV is manipulated as follows :

e m.RV; := m.ino;
e m.RVy :=m.V, for h=1,...,n (h#1i);

In Figure 6, id(op}) < id(oph) because op} starts
after op}. Hence, m;.RV < m3.RV as shown in Table
1. The instance op} sends a message m; to objects
o; and o, where m.tno = 1i0 and m.V = (0, 0, 0).
On receipt of m;, o; enqueues m; into a receipt queue
RQ);. Here, o; gives RV to m;, i.e. m;.RV = (110, 0,
0) while m,.V is still (0, 0, 0). Table 1 shows values of
tno, V,and RV. m;.V < my.V and m;.RV < m,.RV.
On the other hand, m;.V > m3.V but my.RV and
m3.RV are not comparable.

Following this example, a pair of messages m, and
my are ordered by the following rule.

[Ordering rule] A message m; precedes another one
my (my = my) if the following one holds :
if my.V < m,.V and m;.RV < my.RV,

® m;.op = my.0p or m;.op conflicts with m;.op.
else my.type = my.type = request, m,.op conflicts
with mg.op, and m;.tno < my.tno. O

In Figure 6, m; = m; since m;.V < m,.V and
m1.RV < my.RV. On the other hand, m;.V = m3.V
but m;.RV < m3.RV. Accordingly, m;.op and mz.op
are checked. Since op} and op}, are compatible, m, and
mg are not ordered in the precedent relation “=".

Table 1: Object vectors

m m.tno | m.V m.RV

my 120 0, 0, 0) (120, 0, 0)

™Mo 250 110, 0, 0) 110, 250, 0)

ms3 210 0, 0, 0) 2:0, 0, 0)
o 9 O

i
op
1

E

time

Figure 6: Receipt vector.

[Theorem] A message m, significantly precedes an-
other message mj (my — my) iff my = my. O

The messages in RQ; are ordered in the precedent
order =>. Messages not ordered in => are stored in
RQ; in the receipt order.
[Stable message| A message m which an object o;
sends to o; and is stored in the receipt queue RQ); is
stable iff one of the following conditions holds :

1. There exists such a message m; in RQ; that
my.8q; = m.sq; + 1 and m, is sent by o;.

2. o; receives at least one message m; from every
O'Lject, where m — m,. O

The top message m in RQ; can be delivered if m is
stable, because every message significantly preceding
m is surely delivered in RQ;. A message m in RQ,
is ready in an object o; if no method conflicting wit{n
the method m.op is being computed in o0;. O

In addition, only significant messages in RQ; are
delivered by the following procedure in order to reduce
time for delivering messages.
[Delivery procedure| While each top message m in
RQ); is stable and ready, m is delivered from RQ;. O
[Theorem] The OG protocol delivers a message m,
before ma if m; — my. O

If an object o; sends no message to another object
oj, messages in RQ; cannot be stable. In order to re-
solve this problem, o; sends o; a message without data
if o; had sent no data to o; for some predetermined §
time units. o; considers that o; loses a message from
o; if o; receives no message from o; for é or o; detects
a message gap. o; also considers that o; loses a mes-
sage m unless o; receives the receipt conérmation of m
from o; in 26 after o; sends m to o;. Here, o; resends
m.

4 Implementation and Evaluation

4.1 Implementation

An OG protocol module is implemented as a pro-
cess of Solaris 2.6 in the Sun workstation. Each pro-
cessor has one OG protocol module and objects. The
OG modules exchange messages by using UDP [15].
The OG module in each processor delivers messages
to the objects in the significantly precedent order. A
transaction in a client processor issues request mes-
sages to objects in server processors. Each OG proto-
col module in a processor p; includes two threads, Rec
for receiving messages and Snd for sending messages
[Figure 7]. These threads share the variables showing
the sequence numbers sg, rsq, the object vector V,
the event number no, and the instance identifier id in
the shared memory. The Rec and Snd threads mutu-
ally exclusively manipulate the variables by using the
semaphore. The OG module delivers messages in the
delivery queue D@ of each object in the significantly
precedent order by the ordering rule.

Each object o; is realized by one process. The ob-
ject o; takes a top message in the delivery queue DQ.
On taking a request op; from D@, o; is locked in a
mode p(op;). If o; could be locked, a thread for op;
is created. Otherwise, op; blocks in a block queue of
0;. In this implementation, unless an object could be
locked by a transaction in a fixed time after the lock
request is issued, the transaction aborts. In this imple-
mentation, the semi-open locking scheme is adopted
to release objects locked. Suppose that the method
op; of o; invokes methods op:, ..., opin, on objects
0i1, ..+ Oin, (Rt > 1). Before computing op;y, the ob-
ject oy, is locked. If op; commits, the objects o;, ...,
o;h, are released while o; is still being locked. If op:
aborts, not only o3, ..., 0;x, but also o; are released.
The object o; is released if the method invoking op;
completes or op; aborts. -

object
% o

Network

Figure 7: Implementation of OG protocol.

4.2 Evaluation

In the evaluation, each processor is implemented in
one Ultra Sparc CPU in a Cray Super Server 6400 with
10 CPUs. Three objects z, y, and z are distributed
in the processors. Each of z and y supports three
types of methods and z supports two types of meth-
ods. Each method invokes one or two methods in other
objects. Each processor has one object. First, eight
transactions are sequentially initiated in each proces-

sor. Each transaction invokes one methods randomly
selected from eight methods supported by the objects
z, y, and 2. A method invoked by the transaction
furthermore invokes other methods. Each transaction
randomly invokes one method in the system. Then,
the method invokes other methods. In the evaluation,
each transaction invokes methods in a nested manner
at a fixed number of levels. Table 2 shows number of
transactions issued for each nesting level. We measure
the total response time of the transactions in the OG
protocol and the message-based protocol. The average
response time is calculated from the response time ob-
tained by computing four times the evaluation. Figure
8 shows the average response time of the transactions
for the level of nested invocation. The dotted line
shows the response time of the message-based proto-
col. The straight line indicates the OG protocol. The
figure shows the transactions can finish earlier than
the message-based one because insignificant request
messages are computed without waiting for messages
causally preceding in the OG protocol.

Table 2: Number of transactions
Nesting level 1 JZEQC_S

Number of transactions | 8 | 14 | 25 | 39 | 42

------- Message-based protocol
[x10 Sm] 0OG protocol
450
A
4.00 /
T
o ’I
3.5 o3
- Y
o 3.00 7
(7]]
C 250 4
° 14
a v
0 2.00 pa
(] ,1'
o« 1.50 * S
7 4
1.00 Ly /
SAN
050 L
P /
0.00
1 2 3 4 5

Maximum nesting level
Figure 8: Evaluation.

The computation overhead of the OG protocol
module is almost the same as the message-based pro-
tocol.

5 Concluding Remarks

In this paper, we have discussed how to support
the significantly ordered delivery of messages. While
network messages are causally ordered in most group
protocols, only messages to be causally ordered at the
application level are ordered. The system is modeled
to be a collection of objects. Based on the conflicting
relation among methods, we have defined the signifi-
cantly precedent relation among request and response
messages. We have discussed the object vector to sig-
nificantly order messages in the object-based systems.

The size of the object vector depends on the number
of objects, not the number of method instances. We
have presented the implementation of the OG protocol
and how the OG protocol reduces the response time
of the transactions through the evaluation.

References

[1] Ahamad, M., Raynal, M., and Thia-Kime,
G., “An Adaptive Protocol for Implementing
Causally Consistent Distributed Services,” Proc.
of IEEE ICDCS-18, 1998, pp.86-93.

[2] Bernstein, P. A., Hadzilacos, V., Goodman, N.,
“Concurrency Control and Recovery in Database
Systems,” Addison- Wesley, 1987.

(3] Birman, K., Schiper, A., and Stephenson, P.,
“Lightweight Causal and Atomic Group Multi-
cast,” ACM Trans. Computer Systems, Vol.9,
No.3, 1991, pp.272-314.

(4] Cheriton, D. R. and Skeen, D., “Understanding
the Limitations of Causally and Totally Ordered
Communication,” Proc. of ACM SIGOPS’93,
1993, pp.44-57.

(5] Enokido, T., Higaki, H., and Takizawa, M.,
“Group Protocol for Distributed Replicated Ob-
jects,” Proc. of ICPP’98, 1998, pp.570-577.

[6] Enokido, T., Higaki, H., and Takizawa, M., “Pro-
tocol for Group of Objects,” Proc. of DEXA’98,
1998, pp.470-479.

[7] Lamport, L., “Time, Clocks, and the Ordering of
Events in a Distributed System,” CACM, Vol.21,
No.7, 1978, pp.558-565.

[8] Leong, H. V. and Agrawal, D., “Using Message
Semantics to Reduce Rollback in Optimistic Mes-
sage Logging Recovery Schemes,” Proc. of IEEE
ICDCS-14, 1994, pp.227-234.

[9] Mattern, F., “Virtual Time and Global States of
Distributed Systems,” Parallel and Distributed
Algorithms (Cosnard, M. and Quinton, P. eds.),
North-Holland, 1989, pp.215-226.

[10] Nakamura, A. and Takizawa, M., “Causally
Ordering Broadcast Protocol,” Proc. of IEEE
ICDCS-14, 1994, pp.48-55.

[11] Ravindran, K. and Shah, K., “Causal Broadcast-
ing and Consistency of Distributed Shared Data,”
Proc. of IEEE ICDCS-14, 1994, pp.40-47.

[12] Tachikawa, T., Higaki, H., and Takizawa, M.,
“Significantly Ordered Delivery of Messages in
Group Communication,” Computer Communica-
tions Journal, Vol. 20, No.9, 1997, pp. 724-731.

[13] Tachikawa, T., Higaki, H., and Takizawa, M.,
“Group Communication Protocol for Realtime
Applications,” Proc. of IEEE ICDCS-18, 1998,
pp-40-47.

[14] Tanaka, K., Higaki, H., and Takizawa, M.,
“Object-Based Checkpoints in Distributed Sys-
tems,” Journal of Computer Systems Science and
Engineering, Vol. 13, No.3, 1998, pp.125-131.

[15] }Js;r Datagram Protocol, RFC 0768, 1980, pp.

