RVFATFT A TRBELHBLET -V >3y ERIELLA

Distributed Algorithms for Leader Election on Partially Ordered Keys

Zixue Cheng and Qian-Ping Gu
The University of Aizu
Aizu-Wakamatsu City, Fukushima 965-8580 Japan
email:{z-cheng,qian }@u-aizu.ac.jp

Abstract

Leader election problem is a fundamental problem in
distributed computing. The classical leader election prob-
lem can be considered as finding the processor with the
maximum key in a distributed network in which each proces-
sor has one key and a total order is defined on the keys. In
this paper, we define a generalized leader election problem
which finds all the processors with the maximal keys based
on a partial order on the keys. We propose two distributed
algorithms for the generalized leader election problem. The
first algorithm solves the problem on a network using a
spanning tree of the network. The message complexity of
the algorithm is O(mn), where my is the number of differ-
ent keys and n is the number of processors. The second
algorithm solves the problem using a coterie of the n pro-
cessors. The number of messages exchanged on the coterie
is O(max{rn,n:5}), where r is the number of the maximal
keys.

Key words: Leader election, partial order, distributed net-
work, spanning tree, coterie and quorums, message com-
plexity.

1 Introduction

The leader election problem is a fundamental problem in
distributed computing [11, 6, 1, 13]. The problem is to find
a processor in a distinguishable computational state from a
set of initial processors in the same computational state in a
distributed network. The problem can be simplified as find-
ing the maximum key from the n keys held by n processors
in the network, each processor has one key and a total order
is defined on the keys. The leader election problem has nu-
merous applications in many distributed control problems
such as in token-based algorithms; when the token is lost or
the owner has failed, the remaining processors elect a leader
to issue a new token.

In this paper, we consider a generalized leader election
problem. Given n processors of a network, assume that each
processor has one key and a partial order is defined on the

n keys. The generalized leader election problem is to find
all the maximal keys defined by the partial order. Notice
that the previous algorithms for the classical leader election
problem do not work for the generalized problem defined
by a partial order which is not linear.

The generalization is motivated by some distributed ap-
plications in computer supported cooperative works and
groupware which introduce new distributed problems [3,
18, 7, 15]. Those applications are realized by the coopera-
tions of members/processors interconnected by a computer
network. Each of the processors may be characterized by
multiple parameters, one parameter states e.g., the ability
or experience in a core specialty. The value of a parame-
ter of one processor can be compared with that of the same
parameter of another processor but it may not be compa-
rable with the value of a different parameter. Considering
the parameters of a processor as the character vector of the
processor, the linear order on each parameter then defines
a partial order of the character vectors of the processors.
Finding the maximal character vectors is an example of the
generalized leader election problem and can be applied to
the distributed problems such as consensus with partially
ordered domain, group decision support systems, and so on
[18, 15, 7]. The leader election based on partially ordered
keys is also a natural generalization of the classical leader
election problem.

We propose two distributed algorithms for the general-
ized leader election problem. The first algorithm solves the
problem of n processors of a network using a spanning tree
of the network. The message complexity of the algorithm
is O(mmn), where m is the number of different keys. The
second algorithm solves the problem of n processors using
a coterie of the processors. The number of messages ex-
changed on the coterie is O(max{rn,n'-°}), where r is the
number of maximal keys. :

In the rest of the paper, Section 2 gives the preliminar-
ies. The algorithms based on a spanning tree and a coterie
are given in Sections 3 and 4, respectively. Some further
research problems are discussed in the final section.



2 Preliminaries

A distributed asynchronous network is a set of processors
connected by bidirection communication channels. We con-
sider the networks with arbitrary interconnection topolo-
gies. There is no centralized controller, shared memory or
global clock in the network. Each processor communicates
with others by exchanging messages through the commu-
nication channels. Messages can be transmitted indepen-
dently in both directions on a communication channel and
arrive after an unpredictable but finite time delay, without
error, and in the FIFO manner. The message complexity of
an algorithm is measured in terms of total number of mes-
sages that are sent. We assume that the size of a message
is O(logn) bits. We denote the network by an undirected
graph G(V, E), where V. = {p1,Dp2,...,Dn} is the set of
processors (called nodes) in the network and E is the set
of communication channels (called edges) between the pro-
cessors. Each node p; € V has one key denoted as k;.

A partial order < on the set S = {ki, ..., k, } is defined
so that (1) k; < ki, (2) ki < kj and k; < k; imply k; = k;,
and (3) k; < k; < ki implies k; < ki. For ki, k; € S,
if k; < kj or k; < k; then we say k; and k; comparable,
otherwise uncomparable (denoted as k; <> k;). A key
ki € S is called maximal if Vk; € S with k; # ki, ki £ k;.
For ki, k; € S, if ki < k; and k; # k; then k; < k;.
In what follows, we also say k; is covered by k; or k; is
smaller than k; if k; < k;. For ki, k; € S with k; = k; and
4 # J, ki and k; are considered as the same key. We use m
to denote the number of different keys of S (m < n).

The generalized leader election problem considered in
this paper is to find all the maximal keys defined by the par-
tial order < on S. We propose two algorithms for this prob-
lem. The first one uses a spanning tree of the network to ex-
change messages. The spanning tree has been used for con-
structing efficient algorithms for many problems in a dis-
tributed systems [19, 16, 14]. A spanning tree of G(V, E)
can be found, e.g., by the algorithm in [5] in message com-
plexity O(nlogn + |E|). We assume that a spanning tree
of G(V, E) has been established and each node knows its
neighbors in the spanning tree.

The second algorithm solves the problem on a coterie
of the processors in the network. A coterie is a class
C = {Q:|Q: C V} of subsets of nodes that satisfies the
following properties: For any Q; and Q; with ¢ # 7,
QiNQ; # 0and Q; Z Q;. The subsets Q; are called
quorums. Coteries are a logical structure for achieving co-
ordination among processors and have been used in many
distributed problems such as mutual exclusion, replica con-
trol, and distributed consensus (including leader election)
[12, 9, 10]. The construction of a coterie can be found, for
example, at [12, 2]. We assume that a coterie of V' has
been established and each node knows the other nodes in
the same quorums.

In both algorithms, initially each node knows only its
own key. A set of arbitrary nodes start the algorithms. On
the termination of the algorithms, each node knows all the
maximal keys. The algorithms are described by the tem-
plate introduced in [4].

3 Algorithm on spanning tree

Assume that a spanning tree of G(V, E) has been estab-
lished and each node knows its neighbors in the spanning
tree. The algorithm follows a broadcasting strategy to solve
the problem: Every node p; broadcasts its key k; over the
spanning tree. Node p; finds the maximal keys from the
keys it received. To reduce the message complexity, when a
key k; is known to be covered at some node of the tree, that
node stops the broadcasting of k; to its descendants in the
tree.

Now, we give a more detailed outline of the algorithm.
Each node p; € V broadcasts its key k; over the spanning
tree. Each node which received k; sends a message to p;
to acknowledge the receipt of k;. More specifically, each
node sends its key to its neighbors to start the broadcast-
ing. For each p; € V, when p; receives a key k; from its
neighbor p;j, p; compares k; with the keys that p; has re-
ceived. If k; is not covered by any other received key and p;
is not the leaf of the spanning tree then p; records (ki, p;)
and sends k; to all its neighbors except p; from which &;
is received. Otherwise (either k; is covered by some re-
ceived key or p; is a leaf), p; stops the broadcasting of k;
to p;’s descendants and sends a message (ki,ack) to p;.
For each recorded (ki, p;), when p; receives (ki, ack) from
all neighbors except p;, p; forwards (k;, ack) to p;. When
p; receives (k;, ack) from all neighbors, p; knows that the
broadcasting of its key has been completed. We assume that
the information which identifies the index 7 of key k; is sent
with k; in the broadcasting.

For each leaf node p; of the spanning tree, when the
broadcasting for p; is completed, p; starts to check if the
broadcasting for every node of V' has been completed. If
so, then each node of V finds the maximal keys from the
received keys and terminates its computation.

The algorithm for each node p; € V is given in Figure 1.
An arbitrary subset Vy of nodes initiate the computation.
We assume that each node p; has the following states:

e idle, the node has not started the computation.

e active, the key of the node is broadcasting over the
spanning tree.

e wait-terminate, the broadcasting of the key has been
completed and the node is waiting for the global ter-
minate message.

e terminated, the whole computation has been com-
pleted.



For each node p;, let N; be the set of neighbors of p; in
the spanning tree and S; be set of keys that p; has received.
Initially, each node p; is in idle state and S; = {k:}.

Theorem 1 The algorithm given in Figure 1 solves the gen-
eralized leader election problem on a network with an ar-
bitrary interconnection topology in O(mn) message com-
plexity, where m is the number of different keys and n is the
number of processors.

Proof: First, it is noticed that the broadcasting for every
node is completed in a finite time. Assume that p; is a node
with key k; maximal. Then for any key k; with k; # ki,
either k; < k; or ky <> k;. If ky # k; for all l # < then the
broadcasting for k; is completed (the state of p; becomes
wait-terminate) only after p; has received (k, ack) from all
the leaf nodes of the spanning tree that implies every node
in the tree has received k;. Assume that k; = k; for some
[ # 1. Let V; = {pi|ki = ki}. Then the states of all the
nodes of V; become wait-terminate only after every node in
the tree has received k;. It is also easy to check that message
terminate is broadcasted only after the states of all the nodes
in the tree have become wait-terminate. Therefore, when
a node receives the message terminate, it has received all
the maximal keys. Thus, the algorithm solves the problem
correctly.

The message complexity for broadcasting a key k; which
is different from any other key is O(n). For the keys k; =
k; @ # 1), let E; and E; be the sets of edges of the tree
on which k; and k; have traveled during the broadcasting,
respectively. Then |E; N E;| < 1 (see Figure 2). From
this, the message complexity for broadcasting the key of
the nodes in V; = {m|ki = ki} is O(n). The message
complexity for broadcasting check-terminate and terminate
is O(n). Thus, the message complexity of the algorithm is
O(mmn), where m is the number of different keys. O

In some applications, it may need to identify a unique
node which holds a particular maximal key. If m = n,
i.e., all the keys of S are different then the problem can be
solved from the algorithm of Figure 1. However, if there
are k;, k; € S with k; = k; maximal and ¢ # [ then further
work is needed, because some nodes know that the maximal
key comes from node p; while some others know that from
pi. Let k; be a maximal key and V; = {pi|k; = ki}. We
can use the following approach to identify a unique node of
V;. A total order < is defined on V; such that p; < p; if
and only if ¢ < j. Based on the total order, the classical
leader election problem on V; can be defined. On the ter-
mination of the algorithm of Figure 1, the nodes of V; with
k; maximal identify a unique node by an algorithm for the
classical leader election problem on the set V;. The mes-
sage complexity of identifying a unique node of V; is O(n)
on the spanning tree. Therefore, the message complexity of

Algorithm Leader_Election_on_Tree:
> Variables: state; = idle; term; = 0; S; = {ki};
for1 < j < n, parent’ = nil, ack = 0.
> Input: msg; = nil.
Action if p; € Vg:
state; :=active; send k; to all u € N;.
> Input: msg; = k; from p; € N;.
Action:
if state; = idle then
{state; := active; send k; to all u € N;;};
if Vkm € Si, km < ki or by <> ki then
{S.' i S {kz}:
if | N;| = 1 then send (k:, ack) to p;
else {send ks toallu € (N; \ {p; });
parent! := pj;}};
else send (ki, ack) to p;.
o Input: msg: = (ki,ack) from p; € N;.
Action:
ack! ;= ack! + 1;
if | = i and ack} = |N;| then
state; :=wait-terminate;
if | # i and ack! = |N;| — 1 then
send (ki, ack) to parent..
> Input: msg; = nil.
Action when state; =wait-terminate and |N;| = 1:
send check-terminate to u € N;.
> Input: msg; =check-terminate from p; € Nj.
Action:
term; := term; + 1;
if term; = |N;| — 1 and state; =wait-terminate then
send check-terminate to the node of N;
from which check-terminate is not received;
if term; = |N;| and state; =wait-terminate then
{send terminate to all uw € Nj; find all the
maximal keys from those of .S; based on <;
state; := terminated;}.
o Input: msg; = terminate from p; € N;.
Action when state; # terminated:
send terminate to all w € N; \ {p;}; find all
the maximal keys from those of S; based on <;
state; := terminated.

Figure 1. The algorithm for leader election on
a spanning tree.

Figure 2. Broadcasting k; and k,; (k; = k).



identifying a unique node for every maximal key is O(rn),
where r is the number of maximal keys. Notice that r < m.

4 Algorithm on coterie

Assume that a coterie C = {Q1, ..., @;} of n nodes has been
established. For each node p;, let I; = {j|p; € Q;} and
C; = Ujer; Q. Assume that each node p; knows the nodes
of C;. An outline of the algorithm is as follows. Each node
pi € V sends its key k; to the nodes of C;. (We assume
that the information which identifies the index 2 of key k;
is sent with k; to the nodes of C;.) For each node p;, when
pi receives the keys from all the nodes of C;, p; finds the
maximal keys from the received keys. For each received
key k;, if k; is maximal then p; sends message uncovered
to p;; otherwise, p; sends message covered to p;. When
p; receives covered from some node of C;, p; knows that
its key k; is not maximal and p; enters the wait-terminate
state. When p; receives uncovered from all the nodes of
C;, pi knows that its key k; is maximal and broadcasts k;
to all nodes of V' via the coterie. Each node of V' sends p;
a message via the coterie to acknowledge the receipt of k;.
When p; receives the acknowledgements from all the nodes
of V, p; enters the wait-terminate state.

If there are k;,k; € S with k; = k; maximal and j # [
then the maximal key k; may be broadcasted by nodes p;
and p;. This is not efficient in the sense of message com-
plexity. We use the following approach to reduce the num-
ber of messages. For each node p; € V and each key k;
received by p;, define Vi; = {pi|p: € Ci, ki = k;}. When
node p; finds k; is maximal among the received keys, p;
selects only one node of V;; for broadcasting k;. More pre-
cisely, p; sends uncovered to the node of V;; with the largest
index and covered to all the other nodes of V;;.

For each node p; € V, when p; enters the wait-terminate
state, p; starts to check if all the nodes of V' are in the wait-
terminate state. If so, p; terminates its computation.

Figure 3 gives the algorithm for each node p;. To sim-
plify the description of the algorithm, when we say node p;
sends a message to all nodes of C;, we mean that the mes-
sage is sent to all the nodes, including p; itself, of C;. An
arbitrary subset Vj of nodes initiate the computation. We
assume that each node p; have the following states:

e idle, the node has not started the computation.
e active, the node is finding the maximal keys.

e wait-terminate, the node is waiting for the global ter-
minate message.

e terminated, the whole computation has been com-
pleted.

Algorithm Leader_Election_on_Coterie:

> Variables: state; = idle; S; = {k:}; Maz; = 0;
maz; = 0; term1;; term2; = 0; ackl; = 0;
for1 < j < |Ci], ack2! = 0.

> Input: msg; = nil.

Action if p; € Vo:
state; :=active; send k; to all u € C;.
> Input: msg; = k; from p; € Ci.
Action:
Siv=50 {kj};
if state; = idle then
{state; := active; send k; to all u € C;;};
iflS.'I = |C.’| then
{find the maximal keys from S;; Vk; € S;,
if k; is maximal and j = max{l|p; € V;;} then
send p; uncovered
else send p; covered;}.
> Input: msg; = covered from p; € C..
Action when state; = active:
state; :=wait-terminate;
send check-terminate to all u € C;;
> Input: msg; = uncovered from p,; € C;.
Action when state; = active:
mazx; ;= mazx; + 1;
if maz; = |C;| then send (k:, maz) toall u € C;.
> Input: msg; = (k;, maz) from p; € C;.
Action:
send (k;j, maz, f) toall u € C;.

> Input: msg; = (ki, maz, f) from p; € C;.
Action:

Maz; := Maz; U {ki}; send (ki,ack) to p;.

> Input: msg; = (ki, ack) from p; € C;.

Action:
ack2! ;= ack2! + 1;
if ack2! = |C;| then send ack to p;.
> Input: msg; = ack from p; € Ci.
Action:
ackl; == ackl; + 1;
if ackl; = |C;| then
{state; :=wait-terminate;
send check-terminate to all u € C;;}.
> Input: msg; =check-terminate from p; € C;.
Action:
terml; := terml; 4+ 1;
if term1; = |C;| then send terminate to all u € C;;
> Input: msg; = terminate fromp; € C;.
Action:
term?2; := term?2; + 1;
if term2; = |C;| then
{state; := terminated,;
terminates the computation; }.

Figure 3. The algorithm for leader election on
a coterie.




Theorem 2 The algorithm of Figure 3 solves the general-
ized leader election problem. The number of messages ex-
changed on the coterie is O(max{rn,n'-%}), where r is the
number of maximal keys.

Proof: We first show the correctness of the algorithm. Let
pi and p; be any two nodes of V. The definition of the
coterie guarantees that C; and C; has a common node py.
Since both p; and p; send their keys k; and k; to py, these
two keys are compared there. Therefore, the key k; is com-
pared with all the other keys. After this, if k; is not covered
by any key then it is maximal otherwise it is not. Let k;
be a maximal key. If for all k; with | # j, k; # k; then
node p; receives only uncovered and k; is broadcasted to
all nodes of V. If there are keys k;,, ..., k;, with k;, = k;
and j; # j (1 <7 <) then one node (the node with the
largest index) of p; and p;, , ..., p;, receives only uncovered
and k; is broadcasted to all nodes of V. Obviously, all the
maximal keys are found and broadcasted to every node of
V in a finite time.

For each node p; with key k; maximal, p; enters state
wait-terminate only after all the nodes of V' have received
ki. p; sends message terminate only after all the nodes of C;
have been in state wait-terminate. Therefore, p; terminates
only after all nodes of V' have received all the maximal keys.
Obviously, the algorithm terminates in a finite time.

The number of messages for determining if k; is maxi-
mal for all p; € V is O(3_/-; |Ci|). The number of mes-
sages for broadcasting one maximal key k; is O(|C;| +
ij ec, |C;|). Assume that k;, ..., k. are the maximal keys.
Then the number of messages for broadcasting all the max-
imal keys are O(}_._, (|Ci| + > »,ec, |Cil)). The number
of messages for termination is O(}_7_; |Cil).

To show the number of messages of the theorem, we
use the coterie introduced by Agrawal and Jalote [2].
The coterie is constructed as follows. Assume that n =
m(m — 1)/2 for some integer m. Create a complete graph
K,, with vertices {1,2,...,m} and n edges {(¢,7)|¢,j €
{1,2,...,m},i # j}. Do a one to one mapping from the set
of n nodes of V' to the n edges of K,,,. For each vertex i of
K., let E; be the set of edges incident to i. A quorum Q); is
defined as the set of nodes which are mapped to the edges in
E;. The coterie is defined as C = {Q;|i is a vertex of K, }.
For example, let V = {p1, p2, ..., s }. The one to one map-
ping between V' and the set of edges of K is

(pls (lv 2))’ (p2a (2v 3)), (p37 (314))1
(P4a (47 1))1 (Ps, (la 3))1 (pﬁr (21 4))

The coterie C is:

{{p1, P4, 5}, {P1, P2, s}, {P2, P3,P5}, {P3, P4, Pe }}.
For the nodes of V' = {p1, p2,P3,p4,P5,D6},
Ci = {p1,Pa,P6,P2,P5}, C2 = {p2,P6,P3,P1,P5 },

C3 = {ps3,ps, P2, Ps,Pa}, Ca = {Pa,Ps5,P3,P1,P6},
Cs = {ps,p1,P2,P3,P1}, Cs = {Ps, P2, P3,P1,P4}.

Using the coterie of (2], |C;| = O(y/n) for 1 < 1 <
n. From this, the number of messages for termination and
determining if k; is maximal for all p; € V' is

o()_|ci|) = O(n**).

i=1

The number of messages for broadcasting r maximal keys
are

Oy _(Ci + 3 1€;D) = O(rn).

p; €C;

Thus, the number of messages of the algorithm on the co-
terie is O(max{rn,n!->}), where r is the number of maxi-
mal keys. O

Now, we give an example on the above algorithm. For
V. = {p1,p2,p3,Ps,P5,P6}, let C be the Agrawal-Jalote’s
coterie on V, and C; = Ujer, Q; (1 < i < 6), as defined
in the proof of Theorem 2. The keys of processors of V' are
given in Figure 4. Initially, p; starts the computation. After
each p; has received all the keys from the processors in C;,

51 =1{(2,3),(1,0),(1,1),(1,4),(2,3)},
Sz = {(1,4),(1,1),(2,2),(2,3),(2,3)},
S ={(2,2),(1,1),(1,4),(2,3), (1,00},
Ss ={(1,0),(2,3),(2,2),(2,3),(1,1)},
Ss ={(2,3),(2,3),(1,4),(2,2),(1,0)},
Se ={(1,1),(1,4),(2,2),(2,3),(1,0)}.

b]

Processor p; sends uncovered to ps,ps and covered to
D1, D4, Pe; processor py sends uncovered to pa, ps and cov-
ered to pi1,p3,Pe; processor ps sends uncovered to pa, ps
and covered to p3, p4, pe; processor p4 sends uncovered to
ps and covered to py, p3, P4, Pe; processor ps sends uncov-
ered 1o pa, ps and covered to p;,p3,ps; and processor pg
sends uncovered to p;,p; and covered to ps,ps,ps. Af-
ter this, p, and ps receive only uncovered and each of
P1,P3,Pa,Pe Teceives at least one covered. Finally, key
(1,4) of p; and key (2, 3) of ps are broadcasted to all pro-
Cessors.

5 Concluding remarks

In this paper, we proposed a generalized leader election
problem based partially ordered keys. We showed that this
problem can be solved efficiently on a distributed network
either using a spanning tree of the network or a coterie of
the processors. For the classical leader election problem
based on totally ordered keys, the problem can be solved in
message complexity O(nlogn) on a complete connected




Figure 4. The keys in the coterie.

network [8] or a logical structure called k-dimensional ar-
rays of the nodes [17]. The transitive property of the linear
order is critical to achieve the message complexity bound
of O(nlogn). For the partial order <, two keys may be un-
comparable and furthermore the uncomparable relation <>
is not transitive (for example, we do not know the relation
between k; and k; if we do not compare them, even though
the information k; <> k; and k; <> k; are known). Due
to the property of the relation <>, the algorithms of [8, 17]
do not work on the generalized leader election problem. Let
r be the number of the maximal keys and m be the num-
ber of different keys of the n processors in a network. If
r = m then the message complexity O(mn) of our first
algorithm is optimal. However, whether O(mn) can be re-
duced further is open for r < m. For solving the problem
on a logical structure of n processors such as the coterie or
k-dimensional array, when r > n%3, the number of mes-
sages O(max{rn,n'*}) of our second algorithm is opti-
mal. Whether O(n'-®) can be reduced further for r < n%%
is open as well.

References

[1] Y. Afek, and E. Gafni, “Time and message bounds for elec-
tion in synchronous and asynchronous complete networks,”
SIAM J. Computing, Vol. 20, No. 2, pp. 376-394, 1991.

(2] G. Agrawal and P. Jalote. An efficient protocol for voting in
distributed systems. In Proc. of the 12th IEEE International
Conference on Distributed Computing Systems, pages 640
647, 1992.

[3] M. Barborak, M. Malek, and A. Dahbura, “The consensus
problem in fault-tolerant computing,” ACM Computing Sur-
veys, Vol. 25, No. 2, 1993.

[4] V.C. Barbosa, An Introduction to Distributed Algorithms,
The MIT Press, 1996

[5]

[6]

71

(8]

9]

[10]

[11]

[12]

[13]

[14]

(15]

(16]

[17]

(18]

[19]

R.G. Gallager, P.A. Humblet, and P.M. Spira, “A distributed
algorithm for minimum-weight spanning trees,” ACM Trans.
on Programming Language Systems, Vol.5 pp. 66-77, 1983.

G. Singh, “Leader election in the presence of link failures,”
IEEE Trans. on Parallel and Distributed Systems, Vol 7.
No.3, pp. 231-236, 1996.

T. Ito and T. Shintani, “On a persuasion mechanism among
agents for group choice design support systems,” [EICE
Trans. D-II, Vol. J80-D-II, No. 9, pp. 1-9, 1997.

E. Korach, S. Moran, and S. Zaks, “Tight lower and upper
bounds for some distributed algorithms for a complete net-
work of processors,” Proc. of ACM-PODC’ 84, pp. 199-207,
1984.

A. Kumar, “Hierarchical quorum consensus: a new method
for managing replicated data,” /EEE trans. on Computers,
Vol. 40, no. 9, pp. 996-1104, 1991.

T.V. Lakshman and A.K. Agrawala, “Efficient decentralized
consensus protocols,” IEEE Trans. Softw. Eng., Vol. SE-12,
no. 5, pp. 600-607, 1986.

N.A. Lynch. Distributed Algorithms. Morgan Kaufmann,
1996.

M. Maekawa, “A /N algorithm for mutual exclusion in de-
centralized systems,” ACM Trans. Comput. Syst., Vol. 3, no.
2, pp- 145-159, 1995. :

T. Masuzawa, N. Nishikawa, K. Hagihara, and N. Tokura,
*“Optimal fault-tolerant distributed algorithms for election in
complete networks with a global sense of direction,” Proc.
Third Int’ | Workshop on Distributed Algorithms, 1989.

K. Raymond, “A tree-based algorithm for distributed mutual
exclusion,” ACM Trans. on Computer Systems, Vol. 7, No. 1,
1989, pages 61-77, 1989.

I. Shimojo, T. Tachikawa, and M. Takizawa, “Distributed
consensus protocols with partially ordered domain,” Tech-
nical Report of IEICE, 97-DPS-83-7, pp. 37-42, 1997.

M.M. Wu and M.C. Loui, “An efficient distributed algorithm
for maximum matching in general graphs,” Algorithmica 5
pp. 383-406, 1990.

S. Yuan and A K. Agrawala, “A class of optimal decen-
tralized commit protocols,” Proc. of the 8th International
Conference on Distributed Computing Systems, pp. 234-241,
1988.

C. Yahata and M. Takizawa, “General protocols for consen-
sus in distributed systems,” Proc. of DEXA (Lecture Notes in
Computer Science, No. 978, Springer-verlag), pp. 227-236,
1995.

S. Zaks, “Optimal distributed algorithms for sorting and
ranking,” IEEE Trans. Computers, Vol. C-34, pp. 376-379,
1985.



