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Abslract 

Leader election problem is a ルndamentalproblem in 
distributed computing. The classical leader election prob-
lem can be considered as finding the processor with the 
ma.ximum key in a distributed network in which each proces-
sor has one key and a total order is defined on the keys. In 
this paper， we define a generalized leader election problem 
which finds all the processors with the ma.ximal kのsbased 
on a partial order on the keys. We propose two distributed 
algorithms for the generalized leader election problem. The 
first algorithm solves the problem on a network using a 
spanning tree of the network. The message complaity of 
the algorithm is O(mn)， where m is the number of differ-
ent keys and n is the number of processors. The second 
algorithm solves the problem using a coterie of the n pro-
cessors. The number ofmessages目changedon the coterie 
is O(max{rn， n1.5})， where r is the numberofthe ma.ximal 
keys. 

Key words: Leader election， partial order， distributed net-
work， spanning tree， coterie and quorums， message com-
plexity. 

1 Inlroduction 

The leader election problem is a fundamental problem in 
distributed computing [11， 6， 1， 13]. The problem is tofind 
a processor in a distinguishable computational state from a 

set of initial prωessors in the same computational state in a 

distributed network. The problem can be simplified as find-
ing the maximum key from the n keys held by n processors 
in the network， each processor has one key and a total order 
is defin巴don出ekeys. The leader election problem has nu-
merous applications in many distributed control problems 
such as in token-based algorithms; when the token is lost or 
the owner has fail巴d，the remaining processors elect a lead巴r
to issue a new token. 

ln this pap巴r，we consider a generalized leader巴lection
problem. Given n processors of a network， assume that each 
processor has one k巴yand a partial order is defined on the 

n keys. The generalized leader election problem is to find 
all出巴 maximalkeys defined by the partial ord巴r.Notice 
that the previous algorithms for the classicalleader election 
problem do not work for the generalized problem defined 
by a partial order which is not linear. 

The generalization is motivated by some distributed ap-
plications in computer siIpported cooperative works and 
groupware which introd¥lce new distributed problems [3， 
18， 7， 15]. Thos巴applicationsare realized by the coopera-
tions of members/processors interconnected by a computer 
network. Each of th巴processorsmay be characterized by 
multiple parameters， on巴parameterstates e.g吋 theability 
or experience in a core specialty. The value of a parame-
ter of one processor can be compared with that of the same 
parameter of another processor but it may not be compa-
rable with the value of a di仔erentparam巴ter.Considering 
the parameters of a processor as the charact巴rvector of the 
processor， the linear order on each parameter then defines 
a partial order of the character vectors of the processors. 
Finding the maximal character vectors is an example of the 

generalized leader election problem and can be applied to 
the distributed problems such as consensus with partially 
ordered domain， group decision support systems， and so on 
[18， 15， 7]. The leader el巴ctionbased on partially ordered 
keys is also a natural generalization of th巴classicalleader 
el巴ctionproblem. 

We propose two distributed algorithms for出egeneral-

ized leader election problem. The first algorithm solves the 

problem of n pr回目sorsof a network using a spanning tree 
of the network. Th巴messagecomplexity of the algorithm 

is O(mn)， where m is the number of di仔erentkeys. The 
second algorithm solves the problem of n processors using 
a coterie of the processors. The number of messages ex-
changed on the cote巾 isO(max{rn， n1.5})， where r is the 
number of maximal keys. 

ln the rest of the paper， Section 2 givesthe preliminar-
ies. Th巴algorithmsbased on a spanning tree and a coterie 
are given in Sections 3 and 4， respectively. Some further 

research problems are discussed in the final section. 
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2 Preliminaries 

A distributed asynchronous network is a set of processors 
connected by bidirection communication channels. We con-
sider the networks with arbitrary interconnection topolo-
gies. There is no centralized controller， shared memory or 
global clock泊thenetwork. Each proc巴ssorcommunicates 
with others by exchanging messages through the commu-

O 

nication channels. Messages can be transmitted indepen-
dent1y in both directions on a communication channel and 
arrive after an unpredictable but finite time delay， without 
error， and in the FIFO manner. The message complexity of 
an algorithm is measured in terms of total numb巴rof mes-
sages that are sent. We assume that the size of a message 
is O(1ogn) bits. We denote山 networkby an undirec凶
graph G(V，E)， where V = {PltP2ぃ O，Pn}is the set of 
processors (called nodes) in the network and E is the set 
of communication channels (ca11ed edges) b巴tweenthe pro-
cessorso Each node PiεV has one key denoted as ki 0 
Apa口ialorder壬onth巴setS = {k1，…， kn} is defined 
so that (1) ki壬ki，(2) ki壬kjand kj :$ ki imply ki = kj， 
and (3) ki三kj壬kkimplies ki三kk・Forki， kjεS， 
if ki壬kjor kj三kithen we say ki and kj comparable， 
otherwise uncomparable (denoted as ki <> kj). A key 
hε S is called maximal ifVkjεS with kj i= ki， ki壬kj.
For ki， kjεS， if ki壬kjand kiヲikj then ki < kj・
In what follows， we also say ki is covered by kj or ki is 

smaller than kj if ki < kj. For ki， kj εS with ki = kj and 
i i= j， ki and kj are consid巴redas the same key. We use m 
to d巴notethe number of di仔Oerentkeys of S (m壬n).
The generalized leader election problem considered in 
this paper is to find a11 the maximal keys defined by出epar-
tialord町三onS. We propose two algorithms for this prob-
lem. The first one uses a spanning tree ofthe network to ex-
change messages. The spanning tr田 hasbeen used for con-
structing efficient algorithms for many problems in a dis-
tributed systems [19， 16， 14]. A spanning紅白ofG(V， E) 
can be found， e.g.， by the algorithm in [5] in messag巴com-
plexity O(nlogn + IEI). We assum巴thata spanning町田
of G(V， E) has been establish巴dand each node knows its 
neighbors in the spanning tr，回.
The second algorithm solves the problem on a coterie 

of th巴pro回ssorsin the network. A coterie is a class 

C = {QilQi c V} of subs巴tsof nodes that satisfies由e
following properties: For叩 YQi and Qj with i i= j， 
Qi n Qjヲi;o and Qi ~ Qj・Thesubsets Qi are call吋
quorums. Coteries are a logical structure for achieving co-
ordination among processors and have been used in many 
distributed problems such as mutua 

In both algorithms， initially each node knows only iω 
own key. A set of arbitrary nodes start the algorithmso On 
the termination of the algorithms， each node knows a11 the 
maxirnal keys. The algorithms are described by出巴 tem-
plate in佐oduced加 [4].

3 Algorithm on spanning tree 

Assume that a spanning紅白 ofG (V， E) has been estab-
lished and each node knows its neighbors in the spanning 
tree. Th巴algorithmfollows a broadcasting strategy to solve 
the problem: Every node Pi broadcasts its key ki over出巴

spanning trl田. Node Pi finds the maxirnal keys from the 
keys it received. To reduce the message complexity， when a 
key ki is known to be covered at some node of the tree， that 
node stops the broadcasting of k‘to its descendants in the 
釘ee.
Now， we give a more detailed outline of the algorithm. 
Each node Piξ V broadcasts its key ki over the spanning 
tree. Each node which received ki sends a message to Pi 
to acknowledge the receipt of ki・Mor巴specifically，each 
node sends its key to its neighbors to start the broadcast-
ing. For each PiεV， when Pi receives a key kl from its 
neighbor Pj・Picompares kl with the keys that Pi has re-
ceived. If kl is not covered by any other received key and Pi 
is not the leaf of the spanning釘回出巴n仇 records(kl，pj) 
and sends kl to all its neighbors except Pj合omwhich kl 
is received. Otherwise (eith巴rkl is covered by some re-

ceived key or Pi is a leaf)， Pi stops the broadcasting of kl 
to Pi 's descendants and s巴ndsa message (kl，αck) to町-
For each recorded (kl， Pj )， when Pi receives (kl，αck)合om
all neighbors except町，Pi forwards (kl，αck)ω町・ When
Pi rec巴ives(ki， ack)合oma11 neighbors， Pi knows白紙出巴
broadcasting of its key has been completed. wi巴assumethat 
the information which identifies th巴indexi of key ki is sent 
with ki in the broadcasting. 
For each leaf node Pi of出巴 spanning汀白， when白巴
broadcasting for Pi is∞mpleted， Pi starts to ch巴ckif the 
broadcasting for every node of V has been completed. If 
so， then each node of V finds the maximal keys from the 
received keys and terminates its computation. 
The algorithm for each node PiεV is given in Figure 1. 
An arbi旧rysubs尻町 ofnodes initiate the computation. 
w巴assume白ateach node Pi has the following states: 

• idle， the node has not started the computation. 

• active， the key of the node is broadcasting over the 
spannmg tree. 

• wait-terminate， the broadcasting of th巴keyhas been 
completed and the node is waiting for the global ter-

mma飽 message.

• terminated， the whole computation has b巴encom-
pleted. 
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For each node Pi， let Ni be the set of neighbors of Pi in 
the spanning汀回andSi be set of keys that Pi has received. 

Initially， each node Pi is in idle state and Si = {ki}. 

Theorem 1 The algorithm given in Figure 1 solves the gen-

eralized leader election problem on a network with an ar-

bitrary interconnection topology in O(mn) message com-

plexity， where m is the number of different keys and n is the 
number ofprocessors. 

Proof: First， it is noticed that the broadcasting for every 
node is completed in a finite time. Assume that Pi is a node 
with key ki maximal. Then for any key kl with kl :f:. ki， 
巴itherんくん orkl <> ki. If kl :f:.ム foral1 l :f:. i then the 
broadcasting for ki is complet巴d(白estat巴ofPi becomes 
wait-terminate) only after Pi has r巴ceived(ki，αck)合omall
the leaf nodes of the spanning tree that implies ev巴rynode 

in th巴treehas receiv巴dki. Assume that kl = ki for some 
l :f:. i. Let vi = {pdkl =ん}.Then the states of all the 
nodes of vi become wait-terminate only after ev巴rynode in 
the tree has received ki. It is also easy to check白紙message
terminate is broadcasted only after the states of all the nodes 
in the tr<田 haveb巴comewait-terminate. Therefore， when 
a nod巴receivesthe message terminate， it has rec巴ivedall 
the maximal keys. Thus， the algorithm solves the problem 
correctly. 

The message complexity for broadcasting a key ki which 
is di仔"erentfrom any other key is O(n). For th巴keyski = 
kl (i :f:. l)， let Ei and El be the sets of edges of the甘e巴
on which ki and kl have traveled during the broadcasting， 

resp巴ctively.Then IE‘nE11壬1(see Figure 2). From 
this， the message complexity for broadcasting th巴keyof 

the nodes in vi = {pd kl ん}is O(n). The message 
complexity for broadcasting check-terminate and terminate 
is O(n). Thus， the m巴ssagecomplexity of the algorithm is 。(mn)，where m is th巴nur巾巴rof different keys. 0 
In some applications， it may need to identify a unique 
node which holds a particular maximal key. If mη， 
i.e.， al1 the keys of S are different then the problem can be 

solved from the algorithm of Figure 1. Howev巴r，if there 
are ki， kl εS with ki = kl maximal and iヂlthen further 
work is needed， because som巴nodesknow that the maximal 

key comes from node Pi while som巴othersknow that from 

Pl. Let ki be a maximal key and vi = {pdkl =ん}.We 
can use the fol1owing approach to identify a unique node of 

Vi. A total ord町三 isdefined on Vi such that Pi壬Pjif 
and only if i壬3・Bas巴don the total order， the classical 
leader election problem on vi can be defined. On the ter-
mination of the algorithm of Figure 1， the nodes of vi with 
ki maximal identify a unique node by an algorithm for the 
c1assical leader巴lectionproblem on the set Vi. The mes-
sage complexity of identifying a unique node of只isO(n) 
on the spanning tre巴.Therefore， th巴messagecompl巴xityof 

Algorithm Leader -Eleclion..1Jn]ree: 
t> Variables: stαtei = idle; termi = 0; Si = {k;}; 
for 1壬j三n，pαrenti= nil，αcki = O. 

t> Input: msgi = nil. 
Action ifp‘ε同:
state‘:=Qclive; s巴ndk;to all u εNi・

t> Input: msg‘= kl fromPiεNi. 
Action: 
if statei = idle then 
{stαtei・=active; send k‘to a11 u ε爪;};
ifV'kmε Si. km < kl or km く>kl then 
{Si :=ふ U{k1}; 
if IN;j = 1 then send (kl， ack) to Pi 
else {send k1 to all u ε(爪¥{Pi}); 
pαrend := Pi;}}; 

else send (kl， ack) to Pi. 
t> Input: msg‘= (kr， ack) from PiεNド
Action: 
ackl := ackl + 1; 
if l = i and acki = I N;j then 
stαtei:=wail-Ierminale; 

ir l 1= i and ackl = IN，芭|ー 1then 
send (k1，αck) to Pαrend. 

t> Input: msgi = nil. 
Action when stαtei =wail-Ierminate and INd = 1: 
send check-terminate to u εNi・

t> Input: msgi =check-terminate from Piε爪.
Action: 
term‘:= termi + 1; 
iftermi = I爪I-1 and state， =wait-terminate then 
se目dcheck-terminate to the node of Ni 
from which check-terminate is not receiy巴d;
if terr向=IN; I and state‘=wait-terminate then 
{send terminateωa1luε 爪;find a11出巴
maxima1 keys合omthose of S， based on壬;
statei:= terminated;}. 

t> Input: msgi = terminate from PiεNi・
Action when state; ヲ~ terminated: 

send terminate to a11 u εN‘¥{Pi };品目da11 
the maxima1 keys from those of S; based on三;
stαtei:= terminated. 

Figure 1. The algorithm for leader election on 

a spanning tr偶.

Figure 2. Broadcasting ki and kl (ki = kl)' 
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identifying a unique node for肝巴rymaximal key is O(rn)， 
where r is the number of maximal keys. Notice that r壬m.

4 Algorithm 00 coterie 

Assume that a coteri巴C= {QI，…， Ql} of n nodes t鳩山田n
巴stablished.For each node Pi， let Ii = {jIPiε Qj} and 
Ci = UjEI;Qj・Assumethat each node Pi knows the nodes 
ofCi・Anoutline of the algorithm is as fo11ows. Each node 
PiεV sends its key ki to the nodes of Ci. (We assum巴
that the information which identifies the index i of key k‘ 
is sent with ki to the nodes of Ci.) For each node P;， when 
Pi receives出ekeys合oma11 the nodes of Ci， Pi finds the 
maximal keys合omthe received k，巴ys.For each received 
k巴ykj， if kj is maximal then Pi sends message uncovered 
to Pj; otherwise， Pi sends m巴ssagecovered to Pj・When
Pi receiv巴scovered from some node of Ci， Pi knows that 
its key ki is not maximal and P‘enters the wait-terminate 
state. When Pi receives uncovered from a11 th巴nodesof 
Ci， Pi knows that its key ki is maximal and broadcasts ki 
to a11 nodes of V via the coterie. Each node of V sends Pi 
a message via the coterie to acknowledge the receipt of ki. 
Whenpi r巴ceivesthe acknowledgements合oma11 the nodes 
of V， Pi enters the wait働terminatestate. 

If there are kj， klεS with kj = kl maximal and j =1 l 
then the maximal key kj may be broadcasted by nodes Pj 
and Pl. This is not efficient in the sense of message com-
plexity. We use the foUowing approach to reduce the num-

ber of messages. For each node Piε V and each key kj 
received by Pi， define 1I;j = {Pt!PIε Ci，kl = kj}. When 
node Pi finds kj is maximal among the rec巴iv巴dkeys， Pi 
sel巴ctsonly one node of 1I;j for broadcasting kj・Morepre-
cisely， Pi sends uncovered to the node of 1I;j with出elargest 
index and covered to a11 the other nod巴sof 1I;j・

For each node PiεV， when Pi enters the wait-terminate 
state， Pi starts to check if a11 the nodes of V are in the wait-
terminate state. If so， Pi terminates its computation. 
Figure 3 gives the algorithm for each node P‘. To sim-
plify the description of the algorithm， when we say node Pi 
sends a message to a11 nodes of Ci， we mean that the mes-
sage is sent to a11 th巴nodes，including P‘itself， of Ci・An
arbitrary subset 九 ofnodes initiate the computation. We 
assume that each node Pi have the fo11owing states: 

• idle， the node has not 山口.edth巴computation.

• aClive， the node is命ldingthe maximal keys. 

• wai/-terminate， the nod巴iswaiting for the global ter-
mmate message. 

• lerminated， the whole computation has been com-
pleted. 

Algorithm Leader ..ElectionJJn_Coterie: 
1> Variables: state‘= idle; Si = {ki}; Ma山=骨;
maxi = 0; term1i; term2i = 0; ack1i = 0; 
for 1壬j壬ICil，αck2t= O. 
。Input:msg‘=nil. 
Action ifp‘ε1仏:
statei:=active; send ki to all u εCト

1> Input: msgi = kj from PjεCi・
Action: 
Si:= Si U {kj}; 
if statei = idle then 
{stαtei:=αctive; send kiω副 U εCi;}; 
iflSil = ICd then 
{find the maximal keys合omSi; 'VkjεSi， 
if kj is maximal and j = max{llplε V;j} then 
send pj uncovered 
else send Pj covered;}. 

1> Input: msgi =∞vered台ompjεCi.
Action when statei = active: 
statei:=wait-tenninate; 
send check-terminate to all '1.1εCi; 

1> Input:γnsg‘= 'I.Incovered台。mpjεCi.
Acti佃 whenstatei = act初e:
maぬ :=maxi+ 1; 
ifma仇=ICil then send (ki， max) to all u εCi・

1> Input: msg‘= (kj，max)frompjεCi・
Action: 
send (kj，mαx，f)toallu εCi・

1> Input: msg・=(k" max， f) from PjεCi・
Action: 
Max‘:=Max‘U {k，}; send (kr，ack) 10 pj. 

1> Input: msgi = (k" ack) from pjεc‘・
Acti佃:
αck2l := ack2l + 1; 
ifack2l = 10‘1 then send αck to Pl. 

1> Input: msgi = ack合ompjεCi.
Action: 
ack1i := ack1i + 1; 
if ack1i = ICil then 
{ statei:=wait-terminate; 
send check-terminate to all '1.1 εCi;}. 

1> Input: msgi =check-terminate台。mpjεCi・
Action: 
ter1T山:=term1i + 1; 
if term1i = 10，‘1 then send terminate to all uε Ci; 

1> Input: msgi = terminate合ompjεCi・
Action: 
term2i := term2i + 1; 
irterm2i = ICd then 
{ statei:= terminated; 
tenninates the computation;}. 

Figure 3. The algorithm for leader election on 
a coterie. 

4
4皐
nぺ
U



Theorem 2 The algorithm of Figure 3 solves the general-
ized leader election problem. The number of messαges ex-
changed on the coterie is O(m邸 {rn，nl.S})， where r is the 
number ofmaximal keys. 

Proof: We first show the correctness of the algorithm. Let 

Pi and Pj be any two nodes of V. The definition of the 
coterie guarantees that Ci and Cj has a common node Pk. 

Since both P‘and Pj s巴ndtheir keys ki and kj to Pk.曲目e
two keys are compared there. Ther，巴fore.the key ki is com-
par巴dwith a11 the other keys. After this， if ki is not covered 
by any key then it is maximal otherwise it is not. Let kj 
be a maximal key. If for a11 kl with 1 =f:. j， kl =f:. kj then 
node町 rec巴ivesonly uncovered and kj is broadcast巴dto 
a11 nodes of V. If there are keys kj" ..•. kj， with kji = kj 
and ji =f:. j (1 ::; i三l)then one node (the node with the 
largest index) of Pj and Pj， ，…，Pj， receives only uncovered 
and kj is broadcasted to a11 nodes of V. Obviously， all the 
maximal keys are found and broadcast巴dto every node of 
V in a finite time. 
For each node Pi with key ki maximal， Pi ent巴rsstate 
wait-terminate only after a11 the nodes of V have received 
ki.仇 sendsmessage terminate only after a11 the nodes of C‘ 
have been in state wait-terminate. Therefore. Pi terminates 
only after all nodes of V have received all the maximal k巴ys.
Obviously， the algorithm terminates in a finite time. 
The number of messages for determining if ki is maxi-

mal for all PiεV is O(ε~=1 ICil). The number of mes-
sages for broadcasting one maximal key ki is O(IC;j + 
Ep;EC，ICjlり).Ass印u山叩me
Then the number of m巴s凶sa棺ge白sfor broadcasting all the max-

imalk恥.ey戸sare O(~乞=~=l (ICilい+~ε.Jp列jE切c. ICjl)). The number 
of messages for termination is O(乞~=l IC;I). 
To show the number of messages of the theorem， we 
use the coterie introduced by Agrawal and Jalote [2]. 
Th巴coterieis construct巴das fo11ows. Assume that n 
m(m -1)/2 for some integer m. Create a complete graph 
Km with vertices {1，2，…，m} and n edges {(i，j)li，jε 
{1，2，…， m}， i =f:. j}. Do a one to one mapping from the set 
of n nodes of V to the n edges of Km. For each vertex i of 
Km，letE色bethe set of edges incident to i. A quorum Qi is 
defined as the set of nodes which are mapped to the edges in 

Ei・Thecoteri巴isdefined as C = {Qili is a vertex of Km}. 
For example. let V = {Pl， P2， ...， P6}. The one to one map-
ping between V and the set of巴dgesof K4 is 

(P1， (1， 2))， (P2， (2，3))， (P3， (3，4))， 

(P4， (4， 1))， (Ps， (1，3))， (P6， (2， 4)). 

The coterie C is: 

{{P1，P4，P5}， {P1，P2，P6}， {P2，p3，p5}，{P3，P4，p6}}' 

For the nodes of V = {P1， P2，P3，P4，P5，P6}， 

C1 = {P1，P4，P6，P2，PS}，C2 = {P2，P6，P3，P1，P5}， 

C3 = {P3，P6，P2，P5，P4}， C4 = {P4，P5，P3，Pl，Ps}， 
C5 = {PS，P1，P2，P3，P4}，C6 = {p6，P2，P3，p1，p4}' 

Using the coterie of [2]， ICi I = 0(';石)for 1壬t壬
n. From this， the number of messages for termination and 
det巴rminingif ki is maximal for a11 PiεV is 

O(乞ICil)= O(n1.5) 

The number of messages for broadcasting r maximal keys 
are 

O(乞(ICil+乞 ICjl))= O(rn) 
i=l PjECi 

Thus， the number of messages of the algorithm on the co-
t巴巾is O(max{rn， nl.S})， where r is the nu叩)(町帥I
malk巴ys.ロ
Now，w巴givean example on the above algorithm. For 
V = {P1 ，P2，P3，P4，PS，Ps}， 1巴tC be the Agrawal-Jalote's 
coterie on V. and Ci = UjEJiQj (1 ::; i ::; 6)， as defined 
in the proof of Th巴orem2. The keys of processors of V are 
given in Figure 4. Initially， P3 starts the computation. After 
each Pi has received a11 the keys from the processors in Ci， 

Sl = {(2，3)，(1，O)， (1， 1)，(1，4)，(2，3)}， 
S2 = {(1，4)，(1，1)，(2，2)，(2，3)，(2，3)}， 
S3 = {(2，2)， (1， 1)， (1，4)， (2，3)， (l，O)}， 
S4 = {(1，O)，(2，3)，(2，2)，(2，3)，(1，1)}， 
S5 = {(2，3)，(2，3)，(1，4)，(2，2)，(1，O)}， 
S6 = {(1， 1)， (1，4)， (2，2)， (2，3)， (1， O)}. 

Processor Pl sends uncovered to P2， Ps and covered to 
P1 ， P4， P6; processor P2 sends uncovered to P2， P5 and cov-
ered to P1，P3，P6; processor P3 sends uncovered to P2，Ps 
and covered to P3，P4，P6; proc回sorP4 sends uncovered to 
Ps and covered to P1， P3， P4， P6; processor Ps sends uncov-
ered to P2，PS and covered to P1，P3，P4; and processor P6 
sends uncovered to P1，P2 and covered to P3，P4，P6・Af-
ter this， P2 and P5 receive only uncovered and each of 
P1，P3，P4，P6 r巴ceivesat least one covered. Finally. key 
(1， 4) of P2 and key (2， 3) of P5 are broadcasted to a11 pro-
cessors. 

5 Concluding remarks 

In this paper. we propos巴da g巴neralizedleader election 

problem based pa口ia11yordered keys. We showed that this 

problem can be solved efficiently on a distribut巴dnetwork 

either using a spanning tre巴ofthe network or a cot巴rieof 

the processors. For the cJassical leader election problem 

based on tota11y ordered k巴ys，the problem can be solved in 
message complexity O(nlogn) on a complet巴connected
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Figure 4. The keys in the coterie. 

network [8] or a logical structure call巴dk-dimensional ar-

rays ofth巴nodes[17]. The transitive property of the lin巴ar

order is critical to achieve the message complexity bound 

of O(n log n). For the pa目ialorder三，two keys may be un・
comparable and furthermore the uncomparable relationく>

is not transitive (for example， we do not know the relation 
between ki and kl if we do not compare them， even though 
the information ki <> kj and kj <> kl are known). Due 
to the property of th巴relation< >， the algorithms of [8， 17] 
do not work on the generalized leader election problem. Let 

r be the number of the maximal keys and m be白enum-

ber of different keys of the n processors in a network. If 
r m 白enthe message compl口 ityO(mn) of our first 
algorithm is optimal. However， whether O(mn) can be re-
duced further is open for r < m. For solving the problem 
on a logical structure of n processors such as the coterie or 
k-dimensional array， when r ~ nO•5, the number of mes-
sages O(max{rn， n1.5}) of our second algorithm is opti-
mal. Whether O(n1.5) can be reduced further for r < nO.5 

is op巴nas well. 
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