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Distributed applications are realized by cooperation of a group of objects. A state of an object
depends on in what order request and response messages are delivered to the object. In this paper,
we newly define a novel precedent relation of messages based on a conflicting relation among requests.
In addition, multimedia objects are manipulated and transmitted in the group. Multimedia objects
transmitted here to satisfy quality of service (QoS) i.e. maximum delay time and message loss ratio
required by applications. We discuss causality of messages with respected to QoS.

1 Introduction

In distributed systems, a group of multiple pro-
cesses are cooperating to achieve some objectives.
Many papers [4,5,10-12) discuss how to support a
group of processes with the causally / totally or-
dered delivery of messages at a network level. In
addition, a message is required to be delivered to
all the destinations of the message, i.e. atomic de-
livery. The group protocol implies O(n?) compu-
tation and communication overheads for the num-
ber n of the processes in the group. The overheads
can be reduced if only messages required to be or-
dered by the applications have to be causally and
atomically delivered.

Processes manipulate data like files in the com-
puters. An application is composed of these pro-
cesses, i.e. process-based application. On the
other hand, an application is now being object-
based like CORBA [15], i.e. data and methods,
which are processes manipulating the data, are
encapsulated in an object. An application sends a
requesl message with a method op to an object o
in order to invoke op. The method op is performed
on the object o and a response message with the
result of op is sent back to the sender of the re-
quest. There are synchronous, asynchronous, and
one-way invocations depending on how the sender
waits for the responses [15]. Request and response
messages carry objects as parameters and results,
respectively. In addition, op may further invoke
other methods, i.e. nested invocaiton. In the
group communication, a message is sent to all the
destinations in a group. In the parallel invocation,
multiple methods are invoked at a same time and
the invoker waits for the responses. In the end
wait, all the responses are required to be received.
In the or wait, at least one response is required to
be received. Thus, messages may not be required
to be delivered to all the destinations. The result
obtained by performing a pair of conflicting

methods depends on the computation order of the
methods. Hence, if a pair of conflicting methods
op; and op; are issued to multiple objects, the re-
quest messages op; and op; have to be delivered
to the objects in the same order. Thus, we define
how messages to be delivered based on types of
invocations and conflicting relations in the object-
based system.

In distributed applications, multimedia objects
are exchanged among objects. The multimedia
objects transmitted in the request and response
messages are required to satisfy some quality of
service (QoS). Maximum delay time (A) and mes-
sage loss ratio (¢) are kinds of quality of service
(QoS) required at the network level. If it takes
a longer time to deliver a multimedia object than
A, it i8 meaningless to deliver the object to a mul-
timedia application. We discuss how to deliver
multimedia messages in a group of objects so as
to satisfy A and e.

In section 2, we discuss the object-based sys-
tem. In section 3, we discuss the object-based
ordered relation of messages. In section 4, we dis-
cuss QoS-based causality of messages.

2 Model of Object-based System
2.1 Object-based system

Objects are encapsulations of data and meth-
ods for manipulating the data. A transaction in-
vokes a method on an object by sending a request
to the object. The method is performed on the
object and the response is sent back to the trans-
action. Here, the method may invoke other meth-
ods, i.e. nested invocation.

The objects are distributed in computers inter-
connected with asynchronous networks [Figure 2].
A computer means a collection of objects, which
does not necessarily mean a physical computer. A
database server is an example of a computer where
objects are tables and records. A computer sends
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Figure 1: Group.

request and response messages issued by objects
in the computer and receives messages issued to
objects in the computer. In the traditional group
protocols [5], the computers causally deliver mes-
sages independently of what kind of data is carried
by messages. In this paper, we discuss what mes-
sages to be causally/totally delivered by taking
into account types of messages exchanged among
the objects and types of method invocations. For
example, suppose a computer receives a pair of
request increment and decrement messages my
and m, on a counter object. Since the state of the
counter object obtained by performing increment
and decrement is independent of the computation
order, the computer can deliver m; and mg in any
order even if m; and m; are causally ordered. A
group G is composed of comuters supporting ob-
jects o1, ..., on. A transaction invokes methods
on an object only in the group G. A method on
an object invokes only methods on objects in the
group G [Figure 1]. Every method does not in-
vokes any method which is not in the group G.
The objects are cooperating with each other in
the group G.

Multimedia objects like voice and video are
transmitted among the objects. It is critical to
discuss guality of service (QoS) supported by mul-
timedia objects, e.g. maximum delay time, mes-
sage loss ratio. Multimedia objects are required
to be delivered so as to satisfy QoS. For example,
it is meaningless to deliver multimedia objects if
it takes a longer time to deliver them than a max-
imum delivery time A required by an application.
In addition, a destination object may not require
to receive all the messages decomposed from a
multimedia object. Let ¢ be a maximum ratio
of messages lost. Even if some messages are lost
in the network, the destination object can take
the multimedia object transmitted if the loss ra-
tio is smaller than €. In this paper, we discuss how
to deliver multimedia objects in a specified delay
time under constraint of the maximum delay time
A and message loss ratio €.

A group communication is composed of two

sublayers, object communication and transport
layers [Figure 2. At the object layer, messages
are ordered based on the object concept. At the
transport layer, messages are delivered so as to
satisfy A and ¢ constraints.

computer

D ¢ transaction

O: object

network
OBGP : abject-based group pretocol

Figure 2: System model.

2.2 Invocation types

Methods are invoked in a nested manner in
object-based systems. There are synchronous,
asynchronous, and one-way invocations of a
method op with respect to how an invoker, e.g.
transaction T waits for the response of op. In the
synchronous invocation, T waits for a response of
op, i.e. a remote procedure call (RPC). In the
asynchronous one, T is performed without block-
ing while eventually receiving the response of op.
In the one-way invocation, T does not wait for the
response of op after op is invoked. T and op are
being independently performed.

There are serial and parallel invocations of
multiple methods. In the serial invocation, at
most one method is invoked at a time. On the
other hand, multiple methods can be simultane-
ously invoked in the parallel invocation. Here,
suppose op; and op; are synchronously invoked by
a transaction T. T waits for the responses from
op; and opz. There are and and or ways to wait
for the responses. In the and wait, T blocks un-
til both of the responses are received. In the or
wait, op starts to be performed only if at least one
response is received in asynchronous and one-way
invocations. In the end wait, the requests are re-
quired to be atomically delivered to op;. On the
other hand, at least one request is required to be
delivered in the or wait.

2.3 Conflicting methods

Let op; and op; be a pair of methods supported
by an object 0. According to the traditional the-
ories [4], opy conflicts with op; if the result ob-
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tained by performing op, and op; on the object
o depends on the computation order of op; and
op2. Otherwise, op, is compatible with op;. By
using the locking mechanism [4], a pair of conflict-
ing methods op; and op; are serially performed in
traditional systems like database systems. For ex-
ample, op; blocks while op, is being performed on
the object o. If every object is locked according
to the two-phase locking protocol [4], the compu-
tation of methods on every object is serializable.

Suppose that a computer p; supports a black-
board object b with a display method. A computer
p, sends a request display d, with a picture ob-
ject m, to the blackboard object b in p;. Another
computer p,, also sends a request display d,, with a
picture object m,, to b. The pictures are displayed
on the blackboard b in p,. Suppose that areas
where m, and m, are displayed on b are over-
lapped. Since m, and m, are large, it takes time
to transmit display requests to objects and the re-
sponse time is increased if m, and m,, are serially
delivered. Hence, after p; starts delivering the re-
quest d from p,, p; starts delivering d,, from p,.
On the blackboard object b, the pictures are over-
written by the succeeding pictures. Here, a pair
of the display methods are able to be concurrently
performed on b but the state of b depends on which
display method d, or d,, is started to be performed
earlier than the other. Thus, some pair of conflict-
ing methods can be concurrently performed while
it is critical to consider which method is started
and ended earlier than the other.

A pair of methods op; and op; on an object o
are related with respect to the following points:

1. opy and op; cannot be concurrently per-
formed, i.e. mutually ezclusive.
2. op; and op; can be concurrently performed.
a. op; and op; can be started in any order.
b. it is critical to consider which method
op, or op; is started and ended before
the other.

Now, we define new types of conflicting and
compatible relations as follows:
[Definition] Let op, and op; be a pair of methods
supported by an object o.

1. op, conflicts with op, iff the result obtained
by performing op; and op; on the object o
depends on the computation order of op; and
opz. Otherwise, op; is compatible with op,.

2. op, strongly conflicts with ops iff op; conflicts
with ops and op; is mutually exclusive with
op2.

3. opy weakly conflicts with op; iff op; conflicts
with op; and op; is not mutually exclusive
with op,.

4. op; is strongly compatible with opy iff op; is

compatible with op; and op; is not mutually
exclusive with op,.

5. op; is weakly compatible with op, iff op, is
compatible with op; and op; is mutually ex-
clusive with op;. O

For example, the method increment is weakly
compatible with the method decrement on the
counter object because the methods cannot be
concurrently performed. A pair of show methods
are strongly compatible on the counter object c.
A pair of display method weakly conflict on the
blackboard object b. We assume every type of con-
flicting relation is symmetric but not transitive.

We define a significantly precedent relation
among methods performed in p;.

e op; significantly precedes op; (opy=>opy) iff
op; conflicts with op; and op; is started be-
fore op,.

op; and op; are significantly concurrent (op, ||
op3) if neither op, => op; nor op; => op;.

3 Delivery of Messages in Objects
3.1 Ordered delivery

In the object-based system, request and re-
sponse messages are exchanged among the com-
puters. A message m; causally precedes another
message my if the sending event of m, happens
before the sending event of m; [5,8]. A message
m, totally precedes another message m; iff every
pair of common destinations of m; and my de-
liver m; and my in the same order. In addition,
m, totally precedes m; if m, causally precedes
m,. Suppose a computer p, sends a message m;
to a pair of computers p; and p,, and p; sends
m, to p, after receiving m;. Since m; causally
precedes mg, p, has to receive m, before m; ac-
cording to the traditional causality theory. For ex-
ample, suppose a computer p, sends a request m;
to other computers p; and p,. The method m; is
performed on objects p; and p,. In the computer
pt, suppose a method mg3 sends a request m;, to
pu. If m1 and mg are compatible, the computer p,,
can deliver m; and m; in any order. However, the
computer p, is required to deliver m; before m;
if m, conflicts with m3. Next, suppose p, sends a
message m; to p; and p, and p, sends m; to p,
and p;. In the totally precedent relation, m; and
mgy are delivered to p; and p, in a same order. If
m, and m; are conflicting requests on objects in
pe and p,, m; and my are required to be deliv-
ered in the same order. Otherwise, m; and m;
can be delivered in any order. Thus, applications
do not require all the messages transmitted in the
network be causally and totally delivered.

We define a significantly precedent relation

“—” among a pair of messages m; and ma.
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cations.

is meaningful for object-based appli-

[Definition] A message m; significantly precedes
another message m; (m; — mg) iff one of the
following conditions holds:
1. a same method instance sends m; before m;.
2, Let op; and op; be method instances which
sends messages m; and mgy, respectively. op;
significantly precedes op; (op; = opa).
3. a same instance receives m; before m;.
4, Let op; and op; be instances which receive
m; and send mg, respectively. op; = ops.
5. my — m3 — mg for some message mgz. O

[Theorem 1] A message m, causally precedes an-
other message my if m; — m,. O

Suppose an instance op; of an object o; invokes
a method op;; on a replica o; in a computer p; and
o in p,, respectively. Suppose op; of o; invokes
ops;y on o; and og. If opy; strongly conflicts with
opa1, the methods from op; and op; are required
to be delivered to o; and o, in the same order.
This is the serializability [4]. In addition to the
significant precedency of messages, some messages
are required to be totally preceded in the object-
based system.

[Definition] A message m; object-based precedes
(OB-precedes) another message m; (m; < my) iff
1. if m, significantly precedes my (m; — mj),
e m; and my are conflicting requests, or

e m; or my is not a request.

2. if my||m2, my and m; are conflicting requests
and m; < mgy in every other common desti-
nation of m; and m,.0

A distributed system supports the object-based
ordered (OBO) delivery of messages iff every mes-
sage m; is delivered before m; in every common
destination of m; and m; if my < may.
[Theorem 2] A message m, totally precedes an-
other message my if my X my. O

In the OBO delivery, only messages to be or-
dered in the object-based system are delivered in
the OB-precedent order <. On the other hand,
every message transmitted in the network is de-
livered in the causally / totally precedent order.
Hence, a message m can be delivered without
waiting for every message causally preceding m.
The delay time of each message can be reduced.

Figure 3 shows three computers p;, p2, and ps
exchanging messages m;, m; and ma. According
to the traditional causality theory, m; causally
precedes m; and mg; causally precedes mgz. The
computer p3 is required to deliver m;, ma, and
mga in this order. A method instance op; in the
computer p; issues a message m; to pz and ps.
Here, method instances opz and ops are invoked
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Figure 3: Message ordering.

in the computer p; and ps, respectively. Then,
ops invokes ops by sending a request m; to ps.
Another instance op; in p; invoke op; in p3. Here,
m; significantly precedes my (m; — my), ie. my
< my. If opy and op3 are strongly compatible, ma
is independent of m; and m;. Hence, m; || ma.
If op, and ops are compatible, m; || ma Suppose
that ops is invoked by m, and ops is invoked by
ma. If ops and opg conflict, m; is required to be
delivered before mg, i.e. my — mj. Otherwise,
my || ma. This example shows that m; /4 my
even if m; cusally precedes m;,
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Figure 4: Message ordering,.

In Figure 4, three computers p;,, p;, and p,, are
exchanging messages m,, my, and m3. According
to the traditional causality theory, m; causally
precedes mg because m; causally precedes my in
(1). However, m; and mga are causally concur-
rent while m; causally precedes my in (2). De-
pending on the implementation, a message may
be required to be serially sent to multiple destina-
tions in order to multicast the message. Here, m,
and my should have been sent at a same time and
my and my causally precede mz. It depends on
the sending order of m; and m; whether or not
my causally precedes ms. This example shows m;
does not causally precede m; even if m; causally
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precede my not application level. Here, suppose
that a same object o, sends m; and my. Accord-
ing to the definition of the significant precedent
relation, m; — mga since m; and m; are sent by
the same object and my; — mg. Thus, Theorem 1
holds if a message to be multicast is sent at a time.
In the OBO delivery, messages to be causally or-
dered from the application point of view can be
causally ordered even if messages cannot be sent
at a time. Here, suppose that an object o in a
computer p; sends a pair of messages m; and ma.
If the object o does not receive any message after
sending m, before my, m; and m; are referred to
as in ¢ same transmission in p;. This same trans-
mission relation is transitive. In the OBO delivery,
If m; and mg are in a same transmission, m; and
mq are considered to be transmitted at a time. If
m; and m; are sent by methods which are com-
patible or on different objects in the computer p,,
m; does not causally precede mz in Figure 4(2).

3.2 Atomic delivery

Suppose multiple methods op;, ..., op, are in-
voked on objects o, ..., o,, respectively, by a
method op on an object o in parallel. The re-
quest messages of op;, ..., op, are required to
be delivered to all the objects 01, ..., 0n. In the
and wait, the object o has to wait for all the re-
sponses. That is, the request message is required
to be atomically delivered. For example, if o; fails
to receive op;, op has to retransmit op; to 0;. On
the other hand, in the or-wait, op does not wait
for all the responses. If op receives at least one re-
sponse, op finishes the invocation of opy, ..., opn.
Even if some object o; faults to receive a request
op;, op does not retransmit op; to o;. Hence, the
atomic delivery is not required to be supported in
the or-wait parallel invocation.

[Object-based delivery]Let m be a request
message op to multiple objects.
o If opis invoked in the and wait, m is required
to be delivered to all the objects.
e If op is invoked in the or wait, m is required
to be delivered to at least one destination. O

4 QoS-Causalities

In realtime multimedia applications, messages
have to be delivered to the destinations by some
deadline A specified for the messages. It is mean-
ingless to deliver a message after the deadline A.
Thus, a computer p; has to receive a message m
in A time units after p; sends m [1,3,14]. Here,
let ts(m) be time when m is sent. Let tr;(m) be
time when p; receives m. Suppose that p; sends a
message m to p;. m is referred to as received in
A by p; iff ts(m) + A > trj(m). The causality
based on A [1] is defined as follows.
[A-causality] A message m; A-causally precedes

another message mg iff m; causally precedes my
and ts(my) + A > ts(my). O

In the A-causality, the delay time between ev-
ery pair of objects is assumed to be the same.
However, delay time and message loss ratio are
different for every pairs of computers. The maxi-
mum delay time A;; and maximum loss ratio Ej;
are specified for every pair of o; and o; by the
application. A;; can be obtained based on the
statistics of delay time and message loss ratio be-
tween p; and p;. Here, let A* be aset { Ay |4,
=1, ..., n } of the delay requirements.
[A*-causality] [12] Let m, and m; be messages
sent by computers p; and p;, respectively. my A®-

a® .
causally precedes my (my; — my) iff m; causally
precedes mg and ts(my) + Ay > ts(mz). O
That is, my is sent in A;; time units after m, is
sent while my — ma.

In Figure 5, a computer p; sends a message m,
to p2 and ps, and p; sends m; to p3 after receiv-
ing m;. Suppose m; — mj3. Since p3 receives
mg in Asa, p3 delivers ma. Then, ps receives m;.
Since p3 receives m; in Ag;, ps can deliver m;.

However, since m; is already delivered and m; 4,
mg, p3 cannot deliver m;. If m; is delivered, m;
cannot be delivered because m; is obligated to be
delivered after ts(m3) + Asg. There is inconsis-
tency among A;; and A,3. This example shows
that p; may not deliver m even if m is received
in A;y;. Thus, A* may be inconsistent if each A;;
is independently decided. The A*-causally prece-

dent relation 2 is consistent iff ts(my) + Ay <
ts(mg) + Ag;j and m, causally precedes m; for ev-
ery pair of messages m; and m; sent by objects o;
and o;, respectively. The paper [11,12] discusses
how to decide consistent A®.

1
A2] mI
l L)
\{:‘ﬁz 831
timed J, +

Figure 5: A*-causality.

Due to congestions and network faults, some
part of a message may be lost in the network. Let
Qij(m) show a loss ratio of a message m between
a pair of computer p; and p;. The causality based
on the loss ratio is defined as follows:

[¢*-causality] A message m; €*-causality precedes
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my iff m; causally precedes m; and Q;j(my) < €5,
Qjr(m2) < €k, and Qu(my) < €. O

5 Concluding Remarks

In this paper, we discussed how to support the
object-based ordered (OBO) and A*e* delivery of
messages. While all messages transmitted in a
network are causally or totally ordered in most
group protocols, only messages to be causally or-
dered at the application level are ordered to re-
duce the delay time. Based on the conflicting
relation among methods, we defined the object-
based (OB) precedent relation among request and
response Imessages.
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