TNFAF« 7HEEBESBABRT—S 2 avT) ERIEIA

PREARYITZXy NI —=TI26 3800 BEHESAS

EEEAT RBBA! FOIHA! BH BN EE Xt

P BRERBKE REABORES, | R¥M B - 27 1 7HIER 8 RBIFHMER
{masato, haru, tobe, tamura, hzt} @ht.sfc.keio.ac.jp

L RRXTIL, TRy 749 P77 BT 2BHRBERAXTHS, "OR2” IZDWVTHNL,

RERDT Kby 24y N — 7 GRAAARNE , BERBETR L BE) ~ 7 OHRCOMEROR
BEEZTI, LL, INTIR/ —FOBE)H) /- FEOEEZBHRTE 2D, IhFvT
BOL % f&‘ﬂﬁ'\tﬁr“'c'éz:gug OR2 BR7 -y BEFIIBNTH, VY 7mBEEELCLT, /—F
DEBIEICH R RERHEET) L TRER IV F Ry TEBEBHEET 2, Mﬁmi FreeBSD
OS EitBi135 OR2 77U b ¥ A7 DEFE L, ERRICHIT ATFMERRUFARE

A Dynamic Path Shortening Scheme in Ad Hoc Networks

Yosuke Tamura? Yoshito Tobet

Hiroto Aida? Hideyuki Tokudat$

Masato Saito!

tFaculty of Policy Management, Graduate School of Media and Governance,
$Faculty of Environmental Information, Keio University

This paper presents “OR2”, an adaptive path shortening scheme for mobile ad hoc networks. In
OR2, the active path adapts dynamically to node mobility without any link failures based on the
local link quality. Most conventional routing protocols accommodate the change of network topology
only when the link fails. By introducing the notion of prozimily that indicates the nearness of two
communicating nodes, OR2 skips the neighbor upstream node in a proximity area and reduces
the hop count of an active path, and continues to shorten an active path as possible. We have
implemented OR2 as an extension to DSR on FreeBSD. The experimental results have shown that
OR2 is effective in enhancing TCP throughput and reducing end-to-end delay for all relevant flows.

1 Introduction

As popularity for mobile computing increases,
cooperative communications with wireless devices
are becoming an attractive technology. A key chal-
lenge to succeed in such communications is adapt-
ing to node mobility. A mobile ad hoc network
is a group of mobile computing devices (nodes)
which communicates with each other using multi-
hop wireless links. It does not require any station-
ary infrastructure such as base stations. Each node
in the network can act as both a host and a router
forwarding data packets to other nodes.

There are several scenarios where ad hoc net-
works are useful. One major application is a
military-use communication in a battlefield where
a centralized configuration is difficult. Another ap-
plication is emergency communication in disaster
areas. In addition to these large-sized applications,
we can use ad hoc networks when several people
have meetings with computers that are equipped
with wireless interfaces. Also, it can be interesting
research for supporting intelligent transport sys-
tems and sensor networks.

One important issue for achieving efficient net-
work resource utilization is to update route infor-
mation depending on a change of network topology
and connectivity. Since node mobility in an ad hoc
network causes frequent, unpredictable and dras-
tic changes to the network topology, it is especially
important for communicating nodes to grasp the

change of the network topology and find an efficient
route between two communicating nodes. A num-
ber of research for mobile ad hoc networks has fo-
cused on the development of their routing protocols
(e-g., DSR [1], AODV [5], LAR [3], SOAR [6]). The
key advantage behind on-demand protocols is the
reduction of routing overheads so that on-demand
routing protocols maintain only active paths to
those destinations to which data must be sent.
Minimizing the routing overhead is effective in such
a dynamic environment of ad hoc networks due to
limited available bandwidth, unpredictable nodes
mobility, battery outages, interference and high bit
error rates.

These above on-demand routing protocols ac-
commodate route changes only when an active path
is disconnected. They cannot adapt to the change
of network topology even if another route with
less hop count becomes available by the movement
of intermediate nodes unless any link is discon-
nected. DSR protocol [1] only has the mechanism
that shorten an active path which is not driven
by link failures but by overhearing packets by op-
erating the network interfaces in promiscuous re-
ceive mode. This promiscuous mode, however, re-
quires greater CPU cycles, power consumption ‘and
sending delay due to overheard packets. In con-
trast to the conventional protocols, we propose Op-
timized Reconfigurable Routing (OR2) algorithm
that tunes up an active path adaptive to node

—169—

mobility without any link disconnection based on
Smoothed Signal-to-Noise Ratio (SSNR) as a link
quality value indicator. OR2’s adaptation to node
mobility leads to the reduction of a hop count and
path delay which significantly improves the per-
formance of Transmission Control Protocol (TCP)
flows. Since TCP is the de facto standard for reli-
able unicast data transport in the Internet today,
its use over ad hoc networks is also a certainty.

In order to shorten an active path, we intro-
duce the notion of prozimity that represents the
“nearness” of two communicating nodes. Each
node determines to shorten an active path by us-
ing prozimily based on the local SSNR value ob-
tained from their own network interfaces. This
local SSNR value is soft state using the internal
state from their local network interfaces. Thus, we
can change the active path while preserving sta-
ble link connectivity. OR2 is particularly suitable
for our conventional situation under slow node mo-
bility (e.g., pedestrian and slow vehicle in campus
computing) or dense mobile ad hoc network. In ad-
dition, since OR2 operates only when forwarding or
receiving data packets, it does not require periodic
HELLO messages or advertisements when there are
no link connectivity changes in the data path. In
this work, we have designed OR2 as an extension
to DSR [7] which is one of the best performing on-
demand routing protocols and implemented OR2
on FreeBSD. T%e experimental results have shown
that OR2 is effective in enhancing TCP through-
put and reducing end-to-end delay for all relevant
flows. The overhead incurred with OR2 is suffi-
ciently negligible.

The rest of this paper is organized as follows.
Section 2 briefly describes some proposed proto-
cols in mobile ad hoc networks. Section 3 describes
a design and a detailed description of OR2, and
Section 4 explains the implementation of it. Then,
we present the results and analysis of several ex-
periments in Section 5. Section 6 discusses another
usage of SSNR. Finally, we present our conclusions
and discuss some future works in Section 7.

2 Related Work

This section describes conventional on-demand
routing protocols in mobile ad hoc networks and
other protocols using link-state information.

Dynamic Source Routing (DSR) [1, 7] is an
on-demand routing protocol which uses aggressive
caching and source routing headers to obtain the
topology information. A DSR node is able to learn
routes by overhearing packets not addressed to it by
operating its network interfaces in promiscuous re-
ceive mode. This scheme also automatically short-
ens the active paths as well as our OR2 scheme
while sending data packets. However, this scheme
requires an always-active transceiver mode of the
network interfaces and more CPU cycles to pro-
cess overheard packets, which may be significantly
power consuming. This is especially inefficient in
environments where battery power is a scarce re-
source. Also, because DSR does not take the link
quality into account, it possibly leads to inefficient
and frequent route change and the great degra-
dation of the link quality. Roy [6] presents the
source-tree on-demand adaptive routing protocol

(SOAR) based on link-state information. SOAR
has the mechanism to shorten the active paths, but
it achieves that by periodically exchanging the link-
state information consisting of the minimal source
trees in the paths with its neighbors while sending
data packets. These periodical messages could lead
to the collision with the data streams in wireless
networks.

~ In contrast to the above works, “OR2” does not
lead to the weak-connectivity shortened routes or
inefficient frequent routes switchingsince it is based
on local link quality, and does not need periodic
information advertisements or any overheard pack-
ets by making the network interfaces promiscuous
receiving mode. OR2 adapts effectively to node
mobility using local link quality in wireless ad hoc
networks which are scarce bandwidth and battery
environment.

3 OR2

This section describes the details of OR2. Firstly,
we explain a case in which a data path becomes re-
dundant due to the movement of nodes. Secondly,
we introduce the notion of proximity to identify
two near nodes by using link quality. Finally, we
explain the design of OR2 based on the identifica-
tion of nodes in proximity.

3.1 Path Inefficiency

In a mobile ad hoc network, due to node mobil-
ity, we encounter a situation shown in Figure 1. In
this case, we pay attention to node mobility with-
out link disconnection. For such node mobility, we
possibly find the less hop route (i.e., direct hop
route shown in Figure 1) than the current route in
use.

- s N NE ” ~ . . Vs 25N / .
4 :/ ;,\ \s \s ,‘/ /3. ‘}\‘ \\ \\
! A 3 3 / YN
; HP o H)] i 1
5 1.\ . i /3 \\ 1 2; /;)
\ N N . ~ N \ /\ , L,

,,,,,,,,,,,,,,,,,

Figure 1: Node 1 sends packets to Node 3 through
Node 2. At the next step Node 3 moves into the
cell of Node 1 without link failures. Although Node
1 can directly send packets to Node 3, Node 1 still
sends packets to Node 3 through Node 2.

-~

Cg’ A . C

(b) F

Figure 2: Node A sends packets to Node F in
a multi-hop network. By using OR2’s algorithm,
Node D and E can shorten the path currently in
use preserving the consistency of the active path.

This scenario in particular is likely to occur fre-
quently in the realistic environment with pedes-
trian or slow vehicle speed in our daily life. How-
ever, the most of the previous routing protocols

—170—

cannot accommodate the change of network topol-
ogy without any link failures. Thus, there exists the
path inefficiency in respect to the hop count, net-
work capacity and power consumption while com-
municating with other nodes in an ad hoc network.
We eliminate the inefficiency by using local link in-
formation and the concept of prozimity in the next
section. On the other hand, OR2 also finely ac-
commodates large-scale and dense networks since
it is decentralized algorithm using local link qual-
ity information. Figure 2 shows a more complicated
scenario in which OR2 is tuning up the active path
adapting to node mobility. In the figure, some less
hop routes are available in the active path from
source to destination. If each neighbor node si-
multaneously shortens the active path (in Figure 2
D—B and E—C), it leads to the isolated routes
and deadlocking. As a result, the active path from
source to destination is failed and the sender node
must re-initiate a new route discovery. We describe
how to overcome this problem later.

3.2 Link Quality

It is desirable for a node on a path to de-
termine whether or not it can shorten the path
based on some indicators of the quality of the
link between the node and its neighbors on the
path. For such an indicator, we use the Signal-
to-Noise Ratio (SNR) of the link associated with
receiving packets. By definition, SNR represents
a channel condition and is expressed as the ra-
tio of signal to noise in electrical power. When
the value of SNR becomes higher, the link com-
munication quality will also be relatively higher.
However, it should be noted that the SNR could
change dynamically with a high frequency due to
electro-magnetic effects. From the point of view
of measuring the link quality, we rather obtain a
smoothed value of SNR in a time domain. This
value, Smoothed SNR (SSNR), can be computed
using a weighted moving average technique as
follows: ssnr = (1 — a) * old_ssnr + « * cur_snr,
where cur_snr and old_ssnr represent the value of
SNR on receipt of a packet and the previously com-
puted SSNR, respectively. The constant value of «
is a filtering factor and is set to 7/8 in this paper.
It is because we could adapt to the large fluctua-
tion of SNR and use a shift operation in our im-
plementation. In OR2, the filter calculates SSNR
whenever a node receives the frames.

Let consider the situation which two nodes ap-
proach each other. If the distance between two
nodes is associated with the SSNR of the link be-
tween the two nodes, one of the pair can determine
whether the other one is near the own position. In
order to investigate this assumption (1.e., the re-
lationship between distance and SSNR), we trans-
mitted a constant rate UDP stream at 1 Mbps be-
tween two wireless nodes with IEEE 802.11b NIC
and changed the location of the receiver. As seen
in the Fig.3, the value of SSNR rises considerably
as the distance becomes smaller (< 10m). This
experiment was performed in our flat rectangular
ground (300m x 300m) with no obstacles or walls.
By deciding some optimal threshold value of receiv-
ing SSNR, it is possible to define the nearness of the
other node. In addition, we found that the values

of SSNR larger than some particular value f.g.,
10 dB) were highly stable in terms of throughput
as shown in Fig.3 of the second experiment result
with WaveLAN NICs [9]. Thus we possibly assume
that some highly receiving SSNR value indicates
the nearness of the two nodes or the good condi-
tion of the link. OR2 assumes that transmission
power can not be varied and all nodes in an ad hoc
network have the same network interfaces.

€ 60 \\
\

\
20 M
10 D

0 10 20 50 60 70

30 40
Distance {m)

Figure 3: SSNR vs. Distance

1000

e

T

T 7501 T I

§ [

5

a 5001

s TI

)

£ 20 |

ol
0 5 10 15

SSNR

Figure 4: SSNR vs. throughput

3.3 Proximity

To argue the “nearness” of two nodes more for-
mally, we introduce the notion of proximity based
on the observation of the relationship between the
distance and the SSNR between two nodes. Let us
define the following symbols.

e Scap): The SSNR value observed at Node B for

recelved data packets from Node A.
® S;naz: A threshold value of SSNR.

e P4): The proximity of Node A.
e Ry(A): The upper-stream adjacent node of

Node A for flow f.
® R4 (A): The downstream adjacent node of Node

A for flow f.

We hypothesize that S(4p) = S(pa). This is not
impractical since homogeneous nodes are assumed
in many mobile ad hoc networks. We will discuss a
case in which this assumption does not hold in the
future. If Siap) > Smaz, Node B is said to be in
the proximity of Node A, or B € P(4). Based on
the above hypothesis, if B € P4), then A € Pp).

Let assume that a flow traverses Node A, B,
and C in this order. This can be written as A =
Ruj(B) = Rus(Ruy(C)) = RE,(C). If C € Aa),
there is a possibility that the path of the flow can be

—171—

changed: A = Ry;(C). As shown in Figure 5, each
node is associa.teé with its own proximity. When
Node C moves to the proximity of Node B, Node A
can directly send data packets to C. This motivates
us to design our scheme described in the next sec-
tion. In practice, we need a hysteresis mechanism
around the threshold value to avoid oscillation.

Proximity of Node A

Figure 5: Proximity of node

3.4 Design of OR2

We set two design goals to OR2: reducing the
hop count of a path, and minimizing the number of
additional control packets. The first goal is obvious
in the context of the problem aforementioned. In
addition to the first goal, we aim at a scheme that
does not produce many control packets. In partic-
ular, we do not allow transmission of control pack-
ets when active flows do not exist. This is an im-
portant consideration for an ad hoc network since
nodes in the network need to reduce their power
consumption. We design a scheme in which control
packets are transmitted only when a node deter-
mines that a path should be changed based on the
proximity. We call this scheme OR2. In designing
OR2, we made an assumption that each node in ad
hoc networks has the original routing information
concerning upstream two-hop-away nodes. Since
a node attempts to transmit the control packet to
the upstream two-hop-away node, the node needs
to retain the route information of its upstream two-
hop-away nodes of the active flows as well as its
neighbors. In this work, we confine ourselves to ap-
ply OR2 to a source-routing protocol such as DSR.
In the following, we describe the details of OR2.

.time
A OR2_REQ
Sea2 S OR2_REP
OR'Z—RREQ | Shorten rou a
—a ® P
C flow B A
[ORZ_REQ R:q\;cﬂ to Rur(k) asa packet io probe direct route

[OR2_REP__ [Reply tu RI{K) via Retk) for OR2_REQ (pigeyhacked)
| OR2_RREQ |Rediseci Request to Rir(k) via Rer{k) to shorten route

Figure 6: Three OR2 control packets

Let us now explain the fundamental messages
passed among three nodes. OR2 uses three kinds of
messages: OR2.REQ, OR2_REP, and OR2_.RREQ;
they are shown in Figure 6. OR2.REQ and
OR2_.RREQ are newly defined control packets,

while OR2_REP is piggybacked on a data packet
as a DSR-header option. Let us assume that
A= Ry (B) and B = Ry(C) for flow f as shown
in Figure 6.

When Node C determines that it has moved
into the proximity of Node B, it sends OR2_.REQ
to Node A. The intent is to observe whether or
not a packet can be directly exchanged between
Node A and C. Upon receipt of OR2_REQ, Node
A sends OR2_REP to Node C. Unlike OR2_REQ,
OR2.REP is not sent as a single control packet.
Rather, Node A inserts it as a DSR option
header into the data packet of flow f. There-
fore OR2_REP reaches Node A via Node B. By
receiving OR2_REP, Node C knows that Node A
can send packets directly to Node C; Node C
sends OR2_RREQ to Node A to initiate a change
of route. The extra packets of OR2_REQ and
OR2_RREQ may temporarily interfere with data
packets. However, the overhead incurred with the
packets is still negligibly small compared with an
alternative scheme using HELLO messages.

There is concern about a race condition; simulta-
neous attempts by each adjacent nodes to shorten
the same path may occur as shown in Figure 2.
We solve this problem in a way similar to TCP’s
three-way handshake but in a more delicate way
to handle mutual exclusion. Considering the above
problem, let us describe the protocol of OR2. The
state transition at node X of flow f is shown in
Figure 7 and the handling of the race condition is
shown in the following Figure 8.

S

OR2_REQ_SENT OR2_RREQ_SENT,

Received OR2_RE] fK) vig Ruf(K
Send OR2_RREQ to Rix(K) via Ru(K)

Figure 7: OR2 state transition diagram at node K

node A :
Received OR2_.REQ, OR2_REP or OR2.RREQ

if (timeout
goto OR2_LISTEN

else if (or2.state(g)&condition(q))
exec action(q)
else drop the message

Figure 8: OR2 solution of race condition

Let us assume that A = Rys(B), B = Ry(C),
and C = Ry (D) for flow f. When Sipc) > Smar,

—172—

Node C sends OR2.REQ to Node RZ(C) (i.e.,
Node A) to locate the direct hop route. As
long as S(pcy > Smaz, Node C continues to send
OR2_REQ every time OR2’s timer expires until
Node C receives OR2_REP. Upon successful receipt
of OR2_REP, Node C sends OR2_RREQ to Node
A to ask for the redirection of the path of flow f.
Upon success in the above process, Node A can
directly send data packets to Node C.

Let us consider a case in which Node D is also at-
tempting to make a short cut between Nodes B and
D. Node D sends OR2_REQ to Node B. When Node
B receives OR2_REQ), the state of flow f at Node B
moves to OR2_REP_SENT. If there is an OR2_REP
message from Node A to C, it traverses Node B.
When this OR2_REP message reaches Node B and
the state is OR2_REP_SENT, the message is dis-
carded since the short cut between Nodes B and C
is on-going. Thus the short cut from Node B to C
is prioritized. In contrast, if an OR2_REP message
from A to C reaches Node B ahead of an OR2.REQ
message from B to D, the state of B changes to
OR2_REP_FWD and suppresses the short cut from
Node B to C.

The pseudo-code summarizing the salient feature
of our algorithm is shown in Figure 9. This fig-
ure mainly depicts the action of the initiator which
starts OR2’s procedures.

\
OR2 Notations:

is_reply() : Is this DR2_REP?

probe : Flag indicating probing now.

Smax : SSHR max threshold of Proximity.
Smin ¢ SSMR min threshold for hysteresis.
conform() ¢ Send OR2_RREQ for shorting route.

probe_route() : Send OR2_REQ.
Shortening path:
Each packet arrives
reply.flag = is_reply();
if (!reply_flag &% probe)
return;

SSNR = calc_SSNRQ);

if (roply.flag &t SSHR > Smin)
conform() ;

else if (SSNR > Smax)

probe_route();

VRENAOSWN =

\ probe++; J

Figure 9: Pseudo-code of OR2

4 Implementation

OR2 scheme is built on ofl-the-shelf wireless
LAN technology. We have implemented OR2 as
an extension to DSR. developed by the Monarch
project [7]. Since the implementation of DSR
1s for FreeBSD 3.3-RELEASE and mainly Wave-
LAN [9] cards, in our implementation, DSR is
ported to FreeBSD 4.2-RELEASE and modified to
retrieve the SSNR values from IEEE 802.11b [2]
wireless LAN cards. In addition, we extended “wi”
driver: /sys/i386/isa/if-wi.c to obtain the pair of
the source IP address and the SSNR which is sup-
plied by the register on IEEE 802.11b cards when
a frame arrives. Since the SSNR value is retrieved
every time a frame arrives, the SSNR value accu-
rately reflects up-to-date link quality. We compare
the SSNR with S,,,.z n times to initiate path short-
ening. This n parameter is currently set to 10. In-

terestingly, the n parameter is relatively adaptive
to the data send rate.

In addition, as control packets to initiate changes
to the active path, we added OR2_REQ, OR2_REP,
and OR2_RREQ header options as one of DSR
header option types: /sys/dsr/ip6_opis.[h,c].
OR2_.REP is always piggybacked on a data
packet. Additionally, we added some routines
which send and receive OR2_REQ, OR2_REP,
and OR2_.RREQ in /sys/dsr/dsr_outpul.c and
/sys/dsr/dsr_input.c. Specifically, the DSR option
header is inserted following DSR header after IP
header, followed by headers such as a transport
layer header.

5 Experiments

In this section, we show some experimental
results. In our experiments, mobile nodes are
Pentium-based laptop computers running FreeBSD
4.2 and equipped with a MELCO IEEE 802.11b
wireless network card. We installed DSR and
OR2 in these nodes and conducted two prelimi-
nary experiments: measurement of the latency in
re-routing paths, and quantification of improving
TCP throughput by reducing the number of hops.

5.1 Latency

To observe the overhead associated with path
shortening, we conducted five trials of path short-
ening among three nodes, Nodes A, B, and C. Node
A sends UDP packets continuously to Node C via
Node B. For comparison, we measured the round-
trip time (RTT) from C to A. The result of measur-
ing the RTT is shown as “Ping” in Figure 10. To
create the situation of path shortening, we moved
Node C close to Node B. We measured the dura-
tion from the time at which Node C sent the first
OR2_REQ message to the time at which Node C
received data packets directly from Node A. As ob-
served in Figure 10, the overhead incurred with the
exchange of OR2’s messages is sufficiently small; it
is less than 5 ms.

Ping OR2

Figure 10: Network delay (ping) and latency time
of OR2 to shorten an active path over two-hop
route

5.2 TCP Throughput vs. Number of Hops

We also examined the relationship between TCP
throughput and the number of hops. We used net-
perf [4] to send TCP flows. Figure 11 shows the
obtained results. As seen in the figure, the TCP
throughput dramatically decreases as the number
of hops increases from 1 to 2. It is also ob-
served that TCP throughput decreases monotoni-
cally with the number of hops. Therefore reducing

—173—

the number of hops performed by OR2 will leads
to significant improvement in TCP throughput.

07
06
— 05

=
a

204
%03
3 02

£
o1

0

Figure 11: TCP throughput vs. number of hops

6 Discussion

Although we use SSNR as a metric of proximity
in this work, SSNR also can be used as another
metric. By monitoring the differential values of
SSNR and rate of received packets, we can deter-
mine whether or not two nodes are moving apart.
If these differential values decrease, we can know
that the distance between these nodes is increasing.
These values can be obtained even with TCP ACK
packets from a downstream. When we hypothe-
sis S(Ru!(K)K) = S(KRuJ(K))l we can estimate the
downstream link quality of the route sending TCP
data packets by the SSNR of TCP ACK packets
from Rdf(k)

For a reliable transport protocol like TCP, it is
smarter to control the data transmission rate adap-
tively to the degradation of link quality and the
possibility of link disconnection. Thus, by usin
the history of SSNR, we presumably identify ang
estimate the decrease of link quality and link dis-
connection to avoid making the link wastefully con-
gested and prevent numerous packet loss. Addi-
tionally, we could switch to a more stable route in
advance. However, to extract the information on
such link quality, an extra overhead of processing
is posed at each node. Evaluating this overhead
remains our future work.

7 Conclusion and Future Work

We have proposed OR2, an adaptive path tun-
ing algorithm for mobile ad hoc networks. Since
most conventional routing protocols accommodate
topology changes only when an active path is dis-
connected, it is not suitable for node mobility.
Our approach is more adaptive to our conventional
node mobility (e.g., pedestrian and slow vehicle in
campus computing) using the wireless link quality
value: SSNR. OR2 shortens an active path adap-
tive to node mobility by using the notion of proz-
tmily. This scheme achieves a significant reduction
of a path delay while the links are still active. As a
result, it is highly effective for overall network ca-
pacity and power consumption in limited resource
environments such as multi-hop wireless networks.
Also, reducing path delays is especially important
for TCP flows. In OR2, each node monitors local
link quality only when receiving packets and makes
local decisions in a decentralized manner. There is
no need to exchange periodic control information
such as HELLO messages.

We have designed OR2 as an extension to DSR
and implemented it on FreeBSD. The experimental
results have shown that OR2 is effective in enhanc-
ing TCP throughput and reducing end-to-end delay
for all relevant flows. Also, since the latency time
of shortening an active path is on the order of tens
of milliseconds, our scheme is appropriate for slow
node mobility in our daily life.

The work presented in this paper is the prelim-
inary phase. The experimental results are shown
only for three nodes network, and so we need to
verify the application of OR2 for large scale net-
works. Currently we are implementing our scheme
OR2 using the ns-2 [8] network simulator to inves-
tigate how OR2 performs in environments varying
in network load, mobility and network size, par-
ticularly in a large-scale ad hoc network environ-
ment. This simulation results will enable us to
compare it with our current experimental results.
And also we still need to analyze the decision of
the SSNR threshold S,,,» value and the compar-
ing frequency because these factors have important
impact on the effectiveness of OR2. We also will
be re-designing our OR2 not to be dependent on
a source-routing protocol model like DSR and for
node K to know the IP address of node RZ,(K).

Finally, while OR2 targets the “one-hop path short-
ening” between nodes that are adjacent with a sin-
gle intermediate node, we also need to consider how
OR2 can be extended to cases where path shorten-
ing is not necessarily restricted to three adjacent
nodes (i.e., “N-hop path shortening”). The limited
promiscuous listening approach might be effectively
introduced to the next OR2.

References

{1] BrocH, J., JoHNsON, D. and MaLTz, D. The
Dynamic Source Routing Protocol for Mobile
Ad Hoc Netoworks, IETF Internet-Draft [Work
in Progress] (Mar. 2001).

[2] IEEE 802.11 STANDARD (IEEE COMPUTER
SociETy LAN MAN STANDARDS COMMIT-
TEE), Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifica-
tions (June 1999).

[3] Ko, Y. and VaIDYA, N. Location-Aided Rout-
ing (LAR) in Mobile Ad Hoc Networks, Pro-
ceedings of ACM MOBICOM’98 (June 1998).

{4 Netperf, http://www.netperf.org/.

5] PERKINS, C., ROYER, E. and Das, S. Ad Hoc
On Demand Distance Vector (AODV) Routing,
IETI;‘ Internet-Draft [Work in Progress] (Mar.
2001).

[6] Roy, S. and GARC1A-LUNA-ACEVES, J. Using
Minimal Source Trees for On-Demand Routing
in Ad Hoc Networks, Proceedings of IEEE IN-
FOCOM'01 (Aug. 2001).

[7] The MONARCH Project at Carnegie Mellon
University, http://www.monarch.cs.cmu.edu/.

[8] The VINT Project,
http://www-mash.cs.berkeley.edu/ns ns-2 net-
work sitmulator (ver 2).

[9] The WaveLAN Home
http://www.wavelan.com (1998).

Page,

—174—

