RINF AT+ 7TRIELFBABT—r v av T ERIZER

Optimization of Compensation in Object-Based Multimedia
Systems

Motokazu Yokoyama, Katsuya Tanaka, and Makoto Takizawa

Tokyo Denki University
E-mail {moto, katsu, taki}@takilab.k.dendai.ac.jp

In distributed applications, QoS of a multimedia object is manipulated in addition to the state.
While objects are manipulated through methods, the manipulations on the objects have to be undone
in designing multimedia systems and recovering from the system fault. In this paper, we discuss how
methods performed are compensated by other methods. Novel types of compensating methods are defined
to obtain a state and QoS of the object which satisfy requirements. We discuss how to find a cheaper

way to compensate a sequence of methods.

1 Introduction

Distributed applications are composed of multi-
media objects. Here, quality of service (QoS) of
a multimedia object is manipulated as well as the
state. The authors [7,8] define novel types of con-
flicting relations among methods with respect to
QoS while the traditional definition is based on
states of objects. The paper (8] discusses novel
types of serializability based on QoS and concur-
rency control mechanism on multimedia objects.
In manipulating a multimedia object, an appli-
cation might like to undo the manipulation, for ex-
ample, for interactively designing and implement-
ing an application. In another example, an ob-
ject is rolled back due to the fault of the object.
Suppose that an application changes a colored
movie object to a monochrome one by a method
grayscale after adding a red car by a method
add-car. Here, the movie object is monochrome.
Next, suppose the application would like to undo
the manipulation done here. According to the tra-
ditional ways, the movie object is rolled back to
the previous one saved at a checkpoint [2], i.e. col-
ored object without the car object. Another way
is to compensate a computation sequence of add-
car and grayscale by other methods. del-car is a
method where a car is removed. color is a method
where a scene object is changed to be colored. If
color is performed after del-car, the object is re-
covered to the previous state. Here, del-car and
color are referred to as compensating methods of
add-car and grayscale, respectively. If the appli-
cation is not interested in how colorful the movie
object is, only the car object can be removed with-
out changing the color. That is, the sequence of
methods add-car and grayscale can be just com-
pensated by one method del-car with respect to
QoS required by the application. In the paper [9],
the authors discussed a novel way to compensate
methods performed on a multimedia object where

QoS and the state of the object are changed so
as to satisfy the user’s requirements. A sequence
of add-car and grayscale is compensated by a se-
quence of compensating methods color and del-car
as presented here. Here, the previous state can be
also obtained by performing color after del-car.
The latter compensating sequence is cheaper than
the former because the car object is not colored
in the latter one. We discuss how to find a better
sequence of compensating methods.

In section 2, we discuss relations among meth-
ods. In section 3, we discuss compensating meth-
ods. In section 4, we discuss how to compensate
a sequence of methods.

2 QoS-based Relations of
Methods

An object-based system is composed of classes
and objects [6]. A class cis composed of attributes
A, .., An (m > 0) and methods. An object o
is created from the class ¢ by giving values to at-
tributes. A collection {vi, ..., vy) of values is a
state of the object o where each v; is a value taken
by A; i =1, ..., m).

A class ¢ can be composed of component classes
C1, -+ . Cn in a part-of relation. Let ¢;(s) denote a
projection of a state s of the class ¢ to a subclass
¢i. A state of an object is changed by performing
a method op. Let op(s) and [op(s)] denote a state
and response obtained by performing a method op
on a state s of an object o, respectively. “op;ocops”
shows a serial computation of op; and ops.

Applications obtain service of an object o
through methods. Each service is characterized
by quality of service (QoS). A QoS wvalue is a
tuple of values (v1, ..., v,) where each v; is a
value of parameter like frame rate. A QoS wvalue
g1 dominates another QoS value g2 (q1 = g2) iff

g1 shows a better level of QoS than go. For ex-
ample, (160 x 120[pixels], 1024[colors], 15[fps]) >
(120 x 100, 512, 15). q1 U g2 and g N g2 show least
upper bound and greatest lower bound of g, and
g2 on =, respectively. Let Q(s) be a QoS value of
a state s of an object 0. Q(op(s)) and Q([op(s)])
are QoS values of state and output obtained by
performing op. An application requires an object
o to support some QoS, named requirement QoS
(RoS).

Suppose a class ¢ is composed of component
classes ¢y, ..., ¢m (m = 0). An application spec-
ifies whether each component class ¢; is either
mandatory or optional. There are the following
relations among a pair of states s; and s, of a
class ¢ [7,9):

e s; is state-consistent with s, (s — su) iff s

= Sy.

e s; is semantically consistent with s, (s; =
sy) iff s; — sy or ci(s:) = ci(sy) for every
mandatory component class c; of c.

e 5; is QoS-consistent with s, (s; = s,,) iff 5, —
s, or s; and s, are obtained by degrading
QoS of some state s of ¢, i.e. Q(s) U Q(sy)
= Q(s)-

e s; is semantically QoS-consistent with s,
(8¢ ~ 8y) iff s, = 8y, Or ¢(8;) ~ ¢(s,) for every
mandatory component class c¢; of c.

o s is r-consistent with s, on RoS r (s; =, s,)
iff s; =~ s, and Q(s;) N Q(sy) = 7.

e s; is semantically r-consistent with s, on RoS
r (8¢ =5 sy) Iff 8¢ =, sy Or ci(8¢) =¢ ci(Su)
for every mandatory class ¢; of c.

For example, a movie class is composed of
mandatory classes car and tree and an optional
class background. Each state s; of the movie ob-
ject is composed of car c;, tree t;, and background
b; (i =1,2). sy ~ sy if ¢; and ¢z show a same car
with different QoS and ¢; and t; indicate a same
tree with different QoS.

Let O, show an a-consistent relation where
a shows some consistent relation. For example,
OQos (or Ox) shows “x". State, Sem, QoS, R,
Sem-QoS, and Sem-R stand for sets of possible
state, semantically, QoS, R, semantically QoS,
and semantically R consistent relations on states
of a class c, respectively. Here, Ris {O,|r isa
possible QoS}, and Sem-R is { Oz, | 7 is a pos-
sible QoS value}. Let C be a family of the sets
state, Sem, QoS, R, Sem-QoS, and Sem-R of con-
sistent relations. A relation “a — b” for a pair of
sets a and b shows that b is a subset of a. That
is, sy Oy sy, if 8, Og sy for every pair of states s,
and s,. State — Sem, State — R,R — Sem-R
R — QoS, QoS — Sem-QoS, Sem-R — Sem-QoS
are primitive relations, i.e. not transitive.

Let op; and op,, be a pair of methods of a class
¢. “opy Og op,” shows that op(s) On opy(s) for
every state s of the class ¢. ¢ shows an empty
sequence of methods. op Oy ¢ iff op(s) Og s for
every state s of c. For example, display — ¢. Let
r) and ro be a pair of QoS values where r; >
r9. Here, O, — O, if r1 > 7. For example,
8t oy, Sy if 8¢ ~p, Sy-

In the traditional theories [1,4], a method op; is

compatible with another method op, on a class ¢
iff the result obtained by performing op; and op,, is
independent of the computation order. Otherwise,
op; conflicts with op,.
[Definition] For every pair of methods op; and
op, of a class ¢, op; is a-compatible with op,
(ope Oa 0py) iff (ope o opy) O (0py © op;) where
aeC. O

For example, a method op; is semantically com-
patible with a method op, {(op; ||| op.) iff (op; o
0py) = (opy © opt). The “R-compatible relation”
OR shows a set { Oy |r € R} of consistent rela-
tions on various RoS where R is a set of possible
QoS values. op; a-conflicts with op, (op; $a 0pu)
unless op; Cq op,. Let State, Sem, QoS, R, Sem-
Q@oS8, and Sem-R be sets of possible state, seman-
tically, QoS, R, semantically QoS, and semanti-
cally R-compatible relations on methods of a class
¢, respectively. <4 is symmetric and transitive.

3 Compensating Methods

3.1 Compensation

In traditional systems [1], if the system is faulty,
the state stored in the log is restored in the system
and then the system is restarted. Suppose paint
is performed on a background object. If erase is
performed, the background object can be restored.
erase is a compensating method of paint. Tradi-
tionally, a method op, is a compensating method
of another method op; on a class ¢ if op; o op,(s)
= s for every state s of the class ¢ [4]. We extend
the compensation concept to multimedia objects.

[Definition] A method op, «-compensates an-
other method op; on an object (opy, >4 op:) with
respect to a consistent relation « in C iff (op; o
opy) Oq ¢. O

Let (~q0p) denote an a-compensating method
of a method op, i.e. opo (~q0p) Oy ¢.

Let State, Sem, QoS, R, Sem-QoS, and Sem-R
denote sets of possible state, semantically, QoS,
R, semantically QoS, and semantically R com-
pensating relations of methods of a class c. Let
CR be a family of these compensating relations,
CR ={po| a€C}.

Suppose a; — as for a1, a2 € CR. For exam-
ple, Sem — Sem-R. This means that op; Sem-r-
compensates op, for RoS r in R (op, =, op,) if
Opt D= Opy.

[Theorem| If a; — ag, 0p; > o, 0py if 0pi o, 0py.
o

[Example 1] Suppose a movie class is composed
of classes car, words, music, and background.
The class background is furthermore composed of
classes tree and road. A movie state s; shows a
colored video which includes all the components
as shown in Figure 1. Objects background and
car in s; are removed by performing a method
del-car-bg and then a state s is obtained. Then,
monorel is performed to obtain a monoral state
s3. Here, an application would like to undo the
work done so far by methods delete and mono-
ral. stereo is performed on s3 and then a state
s5 is obtained. add-bg is a method to add a back-
ground object where music is stereo. A state sj
is obtained by performing a method add-bg on s5.
If car is optional, s§ = s; because all the other
classes are the same as s,. Hence, a method add-
bg is a Sem-compensating method of a method
del-car-bg (add-bg >= del-bg-car). O

methods (~state0p2) © (~state0p1), ie. [op1 o
0op2 © ("’Stateop2) o (NStateOPI)] — ¢. For ex-
ample, erase is (~siatepaint) and degrade is
(~stateupgrade). ~State(paint o upgrade) —
(~Stateupgrade) o(~sare paint) — (degradeo erase).
Thus, the effect on the object o can be removed
by performing the compensating methods of op;
and opz, i.e. ~state(0p1 © 0p2) — (~stateops) ©
(~stateop1). Thus, ~geate(0p1 © ... 0 opn)
(NStateOPn) ©...0 ("‘Stateol’l)-

We discuss how an a-compensation ~q(op; o
...00py,) is ap-consistent with a sequence of com-
pensating methods (~gq, 0pp) 0. ..0 (~a,0p1)-
[Problem| Find consistent relations
ag,at, ...,y for a such that ~,(opy o ... 0
0Pr) Oag (~a,0pn) ©...0 (~a,0p1). O A

In this paper, we consider a case ag = « for
simplicity.

There are two types of methods, state one to
change the state of the object and QoS one to
change QoS of the object. For example, edd-car
is a state method and grayscale is a QoS method.
There are two types of component classes, manda-

" tory and optional ones as discussed before. Hence,

S1 S2 S3 usi
600 80) 20) ono
@9% del-car-bg ABCD [monorall ABCD
4 SI
1 2
S %)

Figure 1: Compensation.

After performing a method op on a state s
of a class c, a state s’ is obtained by perform-
ing the compensating method (~semop). s = s.
From the theorem, the method op can be as-
compensated by (~q,0p) instead of (~q,0p) if
a; — ag. For example, a method add-bg is
(~=zdel-car-bg) in Example 1. Suppose that add-
car-bg is a method by which car and background
objects are added. add-car-bg is (~jiqatedel-car-
bg). A state obtained by performing add-car-bg is
semantically consistent with one obtained by per-
forming add-bg.

[Theorem] (~,0p) Og (~gop) iff « — 3. D

3.2 Classification of methods
Suppose a method op; is performed after op,

ie. op; © ops. Here, op, o op2 is com-
pensated by a sequence of state-compensating

there are semantical and formal types of meth-
ods, the first one to change the mandatory com-
ronent object and the other one to change op-
lonal component object but not mandatory ones.
The methods are classified into types shown in
Table 1. S and @ mean state and QoS meth-
ods, respectively. R shows a QoS method by
which QoS of an object is changed so that RoS
is satisfied. M and O indicate methods by which
mandatory and optional components of an ob-
ject are changed, respectively. Let T" show a set
{S5,SM,S0,Q,QM,QO0, R, RM, RO}. Here, let
7(op) show a type of a method op, i.e. T7(op) € T.

Let a, a3, and a3 be consistent relations in C
for a class c. We discuss how to compensate a se-
quence op; 00z, i.e. ~a(0p1 ©0p2) D (~az0P2) 0
(~a,0p1) holds on the basis of method types m =
(op1) and 72 = (op2). In Figure 2, each entry
M;(71, 2) shows a condition for which ~(op; o
0p2) Oa {(~a,0p2) © (~a,0p1)} holds for types 7
and 72 of methods op; and op2 (i = 1,...,5).
In the matrixes, a; = ¢ shows “(~q;0p;) is not
performed”. For example, if 7(op;) = SO and
T{op2) = S, M;(SO,S) = B, ie. ~gem(ops ©
op2) = (~StateOp2). Since objects are manipu-
lated by opi, op1(s) s for every state s, i.e.
(~a0p1) is not required to be performed.

Table 2 summarizes what types of consistent
relations, aj, ag, and o satisfy the compensa-
tion (~q,0p2) © (~q,0p1) Do (0p1 © Op2). Here,
“a = - ” means any one in C and “a” of o
means “a; = a”. For example, ~,(0op; o op2) —

M: a = “=". M;: a = “=".

A other of others @:A U] RM Rt Ry O 00 Q.| others O [
S0 RM
' | @~ | 8
X B NP L N\
Other: o @ » others @;n
Ms: a = “R-'.,,.”. AI4 a = “Er”.
A othery Q"‘ 09‘;""' SO R M RO Ry others D;h
wo @+ | @
a N N\
uther. B @:“ othe v @ "
A: a1, a; € {State, Sem}. L: aj, a3 € {State, Sem,r,Sem-r} A riNry > 1.
B: =¢ A ag € {State, Sem}. M @2 € {State, Sem,r, Sem-r}
C: aj € {State, Sem} A az = ¢. " Aa =¢ A TNQopi(s) =T
D: ay=az=¢. N: Q1€ {State, Sem,r, Sem-r}
E: ai,a; € {State,r}. " A ar=¢ A i NQopa(s) =T
F: o1 =¢ A az € {State,r} A 72N Q(op1(s)) =7 0: ay,a; € {State, Sem, QoS, R, Sem-QoS, Sem-R}.
G: a; € {State,r} A az=¢ A 11NQopa(s)) =7 as € {State, Sem,QoS, R, Sem-QoS,
H: o) = 2 ={¢ A ™ nTQ >}_' T. P- .S'em-R} A o = ¢
I. a; = as € {State, QoS,r}.
€ {State, Sem, QoS, R, Sem-QoS,
J: ex=¢ A o € {State,QoS,}. Q “S}em_{R}“ o oo Qo5 i, Sem-Qo
K: a; € {State,QoS,r} A az = ¢.
Figure 2: Conditions.
Table 1: Types of methods. Table 2: Compensation.
gpe S/Q | M/O | condition o Qg a |
S S a a -
SM | S M State State -
SO |S 6] State « -
Q Q o State -
QM | Q M Sem A (opp =¢) | -
QO |1 Q (0] a Sem A (opp =¢) | -
R [Q) =T, R A -9 |a X
RM | Q M ci(ope(s)) = r for every a R A (op2 — @) -
(r) mandatory component class State Sem-R Sem-R
¢; of c. Sem-R State Sem-R
RO [Q M ci(ope(s)) = r for every R Sem Sem-R
(r) optional component class Semn R Sem-R
c; of c.
S: state Q: QoS

M: mandatory O: optional
4 Reduced Compensating

Sequence

. 4.1 Compensating sequence
{(~stateop1) © (~stateop2)}. This means, op; oope
can be compensated by (~ssate0P1) © (~stateOp2) Suppose a background object b is manipulated by

for every requirement a. a method grayscale after add-car as presented be-
[Theorem] An a-consistent relation “~q(0p) © fore. Here, a colored object b with a red car is
op2) Og {{~a;0p2) © (~a,0p1)}” holds iff one of changed to a monochromatic state 4’. b’ can be re-
the relations shown in Table 2 holds. O covered to the previous state b by performing com-

pensating methods color o del-car. Here, color
and del-car are State-compensating methods of
grayscale and add-car, i.e. (~gqategrayscale) and
(~stazeadd-car), respectively. b’ can be also recov-
ered to b by performing del-car o color because
del-car and color are State-compatible. Thus,
add-car o grayscale can be compensated by any of
(color o del-car) and (del-car o color). We discuss
how to take a cheaper compensating sequence.

If a method op; is State-compatible with a
method op2 (op1 | opz2), (op1 o op2) — (op2 ©
op1). Hence, op; o opz can be also compen-
sated by (~state0p1) © (~state0p2) while compen-
sated by (~state0P2) © (~State0P1). (~State0P1) ©
(~stateop2) — (~State0P2) © (~Stateop1). Thus,
if a pair of methods are a-compatible with re-
spect to consistent relation & in C, the meth-
ods can be exchanged in a sequence. A
method op; is a-compatible with a method op;
(op1 Oq 0p2) iff (~a0p1) Cq (~aop2). By using
this a-compatibility relation, the computation or-
der of methods can be changed. Let S be a se-
quence op; 051 cop2 of methods where S is a sub-
sequence of methods and op; and op; are methods.
Let S’ be another sequence ops © S; o op;. Here,
S04 8 (S is a-consistent with S') if opy Oq 0p2,
op Oq op1, and op Oy 0op2 for every method op in
S1. This means op; and op; can be exchanged
in the sequences. Here, it is straightforward
“~g(0p108100p2) Og (~a0p1)o(~aS1)o(~a0p2)”
holds.

Let r show RoS “application is not interested in
colors”. A method add-car is r-compatible with a
method grayscale (add — car Op grayscale). Sup-
pose add-car is performed before grayscale, i.e.
add — car o grayscale. This sequence is r-
compensated by (~.grayscele) o (~,add — car).
However, it takes a shorter time to perform
(~rgrayscale) after removing a car which is added
by add-car, i.e. (~radd — car), because the num-
ber of objects whose colors to be changed are
decreased. Hence, add — car o grayscale can be
more efficiently compensated by (~yadd — car) o
(~r grayscale) with respect to RoS r. The method
del-car is an r-compensating method of add-
car, i.e. del-car = (~podd-car) = (~gtateadd-
car). Since the application is not interested in
color, (~rgrayscale) can be omitted, i.e. ¢ is
(~rgrayscale).

4.2 Optimization

Next, let us consider how to reduce the num-
ber of compensating methods to compensate a
sequence of methods. Suppose a car object ¢
is deleted after added, i.e. add-car o del-car.
Since (add-car o del-car) —¢ holds, (~siatedel-

car) o (~giqteadd-car) is not required to be per-
formed. Next, suppose a method paint; which
paints an object red is performed after painting
yellow by paints. paint; o paint; brings the same
result obtained by performing only paint;, i.e.
(painta o paint,) — paint,. In order to compen-
sate paint; o painty, only (~ypaint;) can be per-
formed. The following relations are defined for
methods op; and op, and a consistent relation a:

e op; is an a-identity method iff op, Oy @.

o op, a-absorbs op, iff (op: © op,) Oy op;.

RN

delefle JABCD| monoraj ABCD
5 us 2 usi
o0 sterso) ?slter
ABC% add

Sy stereo

ABCD

Figure 3: Compensating sequence of methods.

[Example 2] Let us consider a karaoke object
k shown in Figure 3. A state s3 of the karaoke
object k is obtained by performing a sequence of
methods del-car-bg o monoral on a state s;. A
method stereo is a State-compensating method of
monoral. Hence, ~giqse(del-car-bg o monoral) —
(stereo o add-bg). In the karaoke object k, back-
ground and car objects are optional. A state sf is
obtained by performing the method stereo on the
state s3. The state s{ is semantically consistent
with the state sy (s{ = s;). That is, an applica-
tion considers the state sj to be the same as the
state s;. Hence, the method sequence del-car-bg o
monoral can be undone by performing one method
stereo. ~=(del-car-bg o monoral) = stereo. O

Next, we discuss how to reduce a sequence
of methods. Let S be a sequence S; o S3 0 Sy
where S), S, and S3 are subsequences of meth-
ods. If S, is an a-identity sequence, ~4(S; 0 Sz ©
S3) O ~a(S1 0 S3). If S3 a-absorbs Sa, ~(S1 o
S2083) Oy ~a(S1083). If Sp is a-compatible with
S3 (S2 Ca 83), ~a(810852083) Oy ~4(S10S53083).

Let S be a sequence of methods performed on
an object o. S is partitioned into a sequence of
subsequences Sy 0...0 Sy, (m > 1). The subse-
quences satisfy the following conditions:

1. For every subsequence S; = op;; o...0 opy;,
every pair of methods op;; and op;; in S; are
a-compatible.

R

2. Every method op;; in S; a-conflicts with meth-
ods op;_1,;., in Si—1 and opit1,4, in Sit1.

A subsequence which satisfies the conditions
presented above is referred to as segment.

We take a following strategy.

1. A sequence S of methods is partitioned into
segments Sy,...,Sn.

2. Each segment S; is reduced into a subsequence
Si.

Each subsequence S; is reduced though the fol-
lowing procedure Reduce by using the a-identity
and a-absorbing relations.

Let S be a sequence of methods performed
on an object o are to be a-compensated. Let
51 and S; be compensating sequences of S, i.e.
(So81)0a¢ and (S o S2) 04 ¢. If it takes a
shorter time to perform S; than S; and S; con-
sumes less amount of computation resource than
Sy, S) is cheaper than S;. Since it is not easy to
define the cost, Sy is defined to be cheaper than
Sy if {S)1| < |S2|. Here, |S;| denotes the number of
methods in a sequence S;. A cheaper sequence S’
is found for a sequence S by the following proce-
dure:

1. Let S be a sequence S” o op where S” is a
subsequence and op is a method.

2. S’ = Reduce(S”, op).

Reduce(S’, op).

1. If 8’ = ¢, S; := op; return (S));

2. Let §’ be $" o 0p'.

3. If op a-absorbs op', op’ is removed from §’,
i.e. 8 := S" and S; := Reduce(S”, op);
return (5);

4. If op Cq op', 81 := Reduce(S” o op, op');
S2 := Reduce(S",0p’) o op of |S1| < |S3],
return (S;) else return (Sy).

5. else S; := Reduce(S”, op’) o op, return

($1);

Let |S| be a number of methods to be per-
formed in a sequence S. |S| is defined as fol-
lows: |op| =1 and |S oop| = |S| + 1. In Figure
3, Reduce(~=(delete o monoral)) = stereo since
Istereo o add| > |stereo|.

5 Concluding Remarks

In multimedia systems, QoS of an object is ma-
nipulated in addition to the state of the object. In
this paper, we discussed how the QoS of the object
is manipulated by methods. We defined semanti-
cally, QoS, RoS, semantically QoS, and semant;i-
cally RoS conflicting relations among methods of
multimedia objects. By using the relations, we

defined compensating methods to undo the works
done by the methods. We also made clear how
types of compensating methods are related from
the QoS point of view. We discussed how to con-
struct a compensating sequence of methods which
imply better performance.

References

[1] Bernstein, P. A., Hadzilacos, V., and Good-
man, N., “Concurrency Control and Recov-
ery in Database Systems,” Addison-Wesley
Publishing Company, 1987.

[2] Koo, R. and Toueg, S.,“Checkpointing
and Rollback-Recovery for Distributed Sys-
tems,” IEEE Trans. on Software Engineer-
ing, Vol.SE-13, No.1, 1987, pp.23-31.

[3] Yokoyama, M., Tanaka, K., and Takizawa,
M.,"“QoS-Based Recovery of Multimedia Ob-
jects,” Proc. of IEEE Int’'l Conf. on Par-
allel and Distributed Systems (ICPADS-00)
Workshops, 2000, pp.43-48.

[4] Korth, H. F., Levy, E., and Silberschalz, A.,
“A Formal Approach to Recovery by Com-
pensating transactions,” Proc. of VLDB,
1990, pp.95-1086.

[5) MPEG Requirements Group, “MPEG-4 Re-
quirements,” ISO/IEC JTC1/SC29/WG11
N2321,1998.

[6] Stroustrup, B., “The C++ Programming
Language (2nd ed.),” Addison- Wesley, 1991.

[7] Nemoto, N., Tanaka, K., and Takizawa, M.,
“QoS-based Synchronization of Multimedia
Objects,” Proc. of the 11th Int’l Conf. on
Database and Ezpert Systems Applications
(DEXA’00), 2000, pp.151-160.

[8] Nemoto N., Tanaka K., and Takizawa M.,
“Quality-Based Synchronization Methods of
Multimedia Objects,” to appear in Informa-
tion Sciences an International Journal, 2001.

[9] Yokoyama, M., Nemoto, N., Tanaka, K., and
Takizawa, M., “Quality-Based Approach to
Manipulating Multimedia Objects,” Proc. of
2000 Int'l Conf. on Information Society in
the 21 Century: Emerging Technologies and
New Challenges (152000), 2000, pp.380-387.

