[RNF AT 1+ 7l EHUET -2 av T FRIEIOA

Group Protocol for Inter-Object Communications

Youhei Timura, Katsuya Tanaka, and Makoto Takizawa

Tokyo Denki University
Email {timura, katsu, taki}@takilab.k.dendai.ac.jp

Distributed applications are realized by cooperation of a group of multiple objects. In the group

cooperation, objects send and receive messages in various ways. A message is multicast to objects in the

group. In addition, multiple types of messages are in parallel sent to multiple destinations. Then, an object-
waits for messages from all and some of the source objects. i.e. conjunctive and disjunctive ways. In this

paper, we newly define a novel precedent relation on request and response messages exchanged among objects
in presence of the transmission and receipt ways. We present a communication protocol for supporting a
group of processes with the ordered delivery of messages in the precedent relation. By using the protocol, it
is easy to realize distributed object-based applications like database replications.

1 Introduction

In a distributed application, a group of multi-
ple processes are cooperating. A process sends a
messages to multiple processes and receives mes-
sages for multiple processes in the group. Many pa-
pers [2,3,8,10, 11] discuss how to support a group
of multiple processes with the causally / totally or-
dered delivery of messages transmitted at a network
level. Group protocol is using the vector clock [3,7]
implies totally O(n?) computation and communica-
tion overheads for the number n of processes in the
group. The overheads can be reduced if only mes-
sages required to be ordered by the applications are
causally and atomically delivered.

An application is realized by a collection of pro-
cesses each of which manipulates data like files
and exchanges messages with other processes, i.e.
process-based application. On the other hand, in
object-based applications like CORBA [9], data and
methods are encapsulated in an object and meth-
ods are invoked by a message-passing mechanism.
A transaction in an application sends a request mes-
sage with a method to an object. The method is
performed on the object. A response message is
sent back to the sender of the request. In addition,
the method may invoke other methods, i.e. nested
invocation. Here, each of request and response mes-
sages is sent to one destination.

A transaction may simultaneously invoke mul-
tiple methods on objects. This is a parallel in-
vocation. In an example, a transaction invokes a
book-car method on a rent-a-car object and book-
room on a hotel object. The transaction can in
parallel invoke both the methods. Here, different
types of request messages are simultaneously sent
to multiple objects. This is referred to as parallel-
cast (paracast). At the network level, a pair of re-
quest messages book-car and book-room may be se-
rially transmitted. There is no precedent relation
between the messages from the application point
of view. Objects wait for multiple responses after
multiple methods are invoked in parallel. There are
conjunctive and disjunctive ways to receive multiple
messages. In the conjunctive receipt, the object

waits for all the messages. Hence, even if the ob-
Ject sends a message while receiving these messages,
there is no causally precedent relation between the
messages. In the disjunctive receipt, the object
waits for only a message which arrives at the com-
puter earlier than the others and is not required to
receive all the other messages. In this paper, we dis-
cuss a new type of causally precedent (significantly
precedent) relation among messages in a network
system, where messages are unicast, multicast, and
paracast, and received by single-message and multi-
message conjunctive and disjunctive receipts at ap-
plication level. We also discuss a protocol which
supports the significantly precedent delivery in the
object-based system.

In section 2, we present a system model. In
section 3, we discuss how messages are exchanged
among objects. In sections 4 and 5, we discuss the
significantly precedent relation of messages and a
protocol. In section 6, we show how many messages
are ordered.

2 System Model

Objects are encapsulations of data and methods
for manipulating the data. A transaction invokes
a method on an object by sending a request to the
object. A thread for the method is created and is
performed on the object. Here, other methods may
be invoked by the method, i.e. nested invocation.
Then, on completion of the method, the response is
sent back to the transaction.

Objects are distributed in computers intercon-
nected with reliable networks. A computer does not
necessarily mean a physical computer. A database
server is an example of a computer where objects
are tables and records. Each computer p, has a
transaction object tran which supports an init-tran
method. An application initiates a transaction by
invoking init-tran on the tran object. Transactions
are realized by threads of the init-tran method on
the tran object. There is another specific typ:.
of object, communication object com which sup-
ports objects in the computer p; with communica-
tion methods. The com object supports communi-
cation methods for sending and receiving messages.
In order to send and receive messages, methods on

the com object are invoked. The com object for-
wards the messages to com objects which support
the destination objects in the network. The com
object supporting objects cooperate to deliver mes-
sages to the objects in G. The cooperation of the
com objects is coordinated by the group protocol.

In the traditional group protocols [3], a group
is composed of processes where messages are
causally/totally delivered independently of what
kinds of data are carried by the messages. In this
paper, a group is composed of objects and trans-
action tran objects. Only methods on objects in &G
are assumed to be invoked in each transaction.

There are ways to invoke multiple methods. In
the serial invocation, at most one method is invoked
at a time. On the other hand, multiple methods
can be simultaneously invoked in the parallel invo-
cation. Here, request messages are sent to multiple
objects. The transaction waits for responses from
the objects. There are conjunctive and disjunctive
ways to receive the responses. In the conjunctive
receipt, the transaction blocks until both of the re-
sponses are received. In the disjunctive receipt, the
transaction blocks until at least one response is re-

ceived. The transaction does not receive the other
response. In the conjunctive receipt, the requests

are required to be atomically delivered to the trans-
action. On the other hand, at least one request can
be required to be delivered in the disjunctive re-
ceipt.

According to the traditional theories (2], a
method ¢; conflicts with another method ¢, on
an object if the result obtained by performing the
methods t; and t; on the object depends on the
computation order of t; and t;. Otherwise, ¢, is
compatible with t,. For example, deposit and with-
draw are compatible on a Bank object. By using the
locking mechanisin [2], a pair of conflicting meth-
ods t; and t, are serally performed. In this paper,
we assume the conflicting relation is symmetric and
transitive.

3 Inter-Object Communication

3.1 Transmission
A communication object com in each com-
puter supports objects with following communica-
tion methods for transmitting message m:
[Transmission methods]
1. ucast(m, o;); m is unicast to o.
2. mcast(m:(o;, ..., 0p)); m is multicast to o,
e vy O
3. pecast(m;:{o11, ..., O1,); ... Mi0k1, e
Oki,)); messages my, ..., my are paracast, i.e.
each message m; is multicast to objects o4 .. .,
054 (l, Z]) (’i = 1, sy k)

3.2 Receipt

Suppose a thread ¢ performed on an object in
parallel invokes multiple methods. The thread ¢
waits for response messages from multiple objects
after sending the requests to the objects. There are
multiple ways to receive messages; single-message
and multi-message receipts where an invoker thread
waits for only one message and multiple messages,
respectively. A com object supports objects in a

computer with following types of primitive methods
for receiving messages:
[Receipt methods]
1. srec(o0;); one message is received from an ob-
ject 01, 1.e. single-message receipt.

2. crec(oy, ..., 0x) (k > 1); messages from all the
objects oy, ..., 0 are received.
3. drec(oy, ..., ox) (k > 1); a message from one

of the objects oy, ..., oy is received.

0, 0, o o

, ",
crec drec
0 S
\ \
time time
{1) crec (2) drec

Figure 1: crec and drec

Figure 2 shows how messages are exchanged
through com objects. Here, there are two computers
Pu and py. A thread ¢, on an object o, multicasts
a message m to multiple destination. ¢, invokes
mcast(m,{ ..., 04, ...,)) on the com object com,.
A thread {; on an object o4 receives the message m
by invokey srec(o;).

D ‘method

Figure 2: Inter-object communication.

= : invocation

4 Delivery of Messages in Objects

4.1 Transmission

In the object-based system, request and response
messages sent and received by objects are ex-
changed among com objects in computers which
support the objects. The com object sends a mes-
sage m sent by a thread of a method on an object in
a computer p, to the com object in a computer p,
which supports the destination object of m. Here,
it is referred to as “p, sends m to p;.” If the com
object in p, receives m from p;, “p, receives m from
p«." The com object in p, receives messages from
multiple computers while sending messages to mul-
tiple computers. The messages are ordered and then

delivered to the objects by the com object in the
computer p;.

A message m, causally precedes another message
mq if the sending event of m, happens before the
sending event of ma [3,6]. A message m, totally
precedes another message ms iff m; and ms are
delivered to every common destination object in the
same order. In addition, mn,; totally precedes m, if
m, causally precedes mg.

A thread on an object sends messages to objects
by invoking ucast, mcast, and pcast on the com
object. The com object delivers messages to desti-
nation com objects in a network. For example, if
a thread ¢ p, multicasts a message m to objects o,
and o, in computers p; and p, by mcast(m, (o,
0y)), com in p, sends a pair of instances m; and mq
of the message m to p, and p, by taking usage of
TCP, respectively. We discuss how these message

instances transmitted in the network to be ordered.
uppose a pair of message Instances m; and mj

are sent in p,. The message instances m; and m,
transmitted in the network are related according to
the following relations depending on through which
transmission method ucast, mcast, or pcast the
messages m; and mg are transmitted:

1. m; and m, are mcast instances of m (m; =
my) iff m; and my are different instances of a
same message m which are sent by mcast.

2. m; and mq are pcast instances of m (m; =
m,) iff m; and my are paracast by pcast.

3. m; and my are serially sent (m; << ma) iff
m; is sent before mg by different transmission
methods ¢; and ts, respectively, and t; is in-
voked after {; completes.

1t is trivial that neither m; &~ ma nor m; = mo iff
m, <€ ma. Let us consider an example that a trans-
action T} in a computer p, sends a request message
r; to some object 0; and another transaction 73 in
ps sends a request message r; to an object oz. The
requests 7, and rs can be independently delivered
since different objects 0, and 05 are manipulated by
r, and ry, respectively. We now define a precedent
. relation “—” among a pair of message m; and m,
sent by a computer p,. Here, let “m; < m;” show
that a computer sends a message instance m; before
my in the network.
[Definition 1] Let m; and my be message instances
sent by objects p,.) precedes ms in p; (my — m3)
if m, is sent before m, in p, (m; < m,) and one of
the following conditions holds:
1. m; and my are sent by a same thread, and (m,
<< ma). :
2. m; and mg are sent by different conflicting
threads.
3. m; = mg = my for some mg. O
A pair of messages m; and moy are independent
(my | mp) iff neither my; — ma, mg = My, M &
ms, nor m; = my. For the request messages r; and
79 presented in the example, ») | 2 because r; and
r9 do not conflict. Each message m is assigned an
unique identifier m.id. For every pair of instances
m' and m"” of m, m'.id = m" .id.
In pcast and mcast, multiple message instances
my, ..., my are transmitted. Let M(m;) be a set

{my, ..., mi} of the message instances to be sent
with a message m;. M(m;) is referred to as a
message group. At the network levle, the message
instances are serially transmitted by using a pro-
tocol like TCP. Suppose the message instances are
sent in an order of my, ..., m,. Here, let m; be the
first message first(m;) and my be the last message
last(m;) in the message group.

Messages to be multicast or parallel-cast at the
application level may not be simultaneously sent
at the network level. Suppose that three comput-
ers py, py, and p, are exchanging message instances
my, ma, and mg at the networi level as shown in
Figure 3. According to the traditional causality the-
ory, m; causally precedes mg because m; causally
precedes g at the network level in Figure 3 (1).
However, m; and mg are causally concurrent while
m, causally precedes ms in Figure 3 (2). If m,.id
= my.id, m; and ms are mcast instances of a same
message (m; s mjy). Otherwise, m; and m, are
pcast instances (m; = my). If m; = m3z or my &
ma, my must causally precede mg in Figure 3 (2).
m; = mz and mqg = mz if my 8 my ormy = my
in Figure 3.

5 L P, P, P, P,
=y n;
m; | I
%‘
fime time
)) 2)

Figure 3: Message ordering.

4.2 Receipt

A thread t on an object o invokes a crec or drec
method to receive messages m;, ..., my from mul-
tiple objects o1, ..., ok, respectively [Figure 4]. The
objects 04, ..., o, are referred to as sources of crec
or drec. Let M(m;) be a collection {m;, ..., my}
of messages to be received with a message m; at a
multi-message receipt, named message group. For
every message m; in M(m;), M(m;) = M(m;). The
conjunctive receipt method crec(oy, ..., ox) means
that messages are received from all the source ob-
jects 01, ..., 0. Suppose a thread in a computer p,
finishes receiving messages in M(m;) on time when
t receives a message my, after receiving all the other
messages in M(m;). Here, my is most significant for
the messages m;, ..., mg in M (m;) for crec.

Let msg(m;) be a most significant message my
in M(m;). A method instance invoking drec blocks
until at least one message is received from the source
objects. Suppose p; receives a message m, before
all the other messages my, ..., mi in M(m,). The
message m, is the first message in M (m,). In drec,
the object finishes receiving the messages my, ...,
my, only if the first message m, is received before
all the other messages. The first message m; is

the most significant for the messages in M(m;) for
drec. Here, the other messages my, ..., mi are not
so significant that the messages are not required to

be received. Let msg(m;) be the most significant
message m;.

m\‘ crec l\.] drec

time time
(1) Conjunctive (2) Disjunctive

——p :most significant message (msg

Figure 4: Multi-message receipt.

Suppose that a computer p, receives a pair

of message instances m; and m» in a network.
Let “m; < my” show that p, receives m; be-
fore ma at the network level. A message m is
referred to as single-received, conjunctive-recetved,
and disjunctive-received iff m is received by invok-
ing srec, crec, and drec, respectively, on the com
object. Table 1 shows conditions that “m; — my”
holds in case m; and m, are received by a computer.
For example, an entry (srec, crec) shows a condi-
tion “m; < msg(msy)” for a case that m; and m,
are received by srec and crec, respectively. This
means, m; is received before the most significant
message of my if m; — ma.
[Definition 2] Let m; and m, be message instances
received by objects in a computer p;. m; precedes
mg in p; (my — ma) if the condition shown in Table
1 is satisfied for m; and m,. O

Table 1: Receipt-receipt conditions.

ma
srec crec drec
m)
m, prec my and
srec m; < ma m; < msg(ma) ma = msg(ma)
msg(my) < m2 an
crec |msg(m;) < ma2 |msg(m,) < msg(ma) ma(-—- msg(ma)
m,; < mga and m; < msg(ma) my < m3
drec | my = msg(m1) and m1 = msg(m1) | andimsy ’g’g,(;gtm?

Here, m; and mq are independent (m) | ma) iff
neither m; — my nor my = m,.

4.3 Receipt and transmission

If a computer p, sends a message instance m,
after receiving another message m; at the network
level, “m; < ms”. Table 2 shows conditions that
“m; — my” holds for case m, is sent and m, is
received by a computer.

[Definition 3] Let m; and m; be message instances
received and sent by a computer p,. m; precedes m»
in p; (mq — my) if the condition shown in Table 2
are satisfied. O

Table 2: Receipt and transmission conditions.

ma
ucast mcast, pcast
m,
srec mp < mjy my < first(m2)
crec |msg(m,) < m2 msg(ml) < first(m2)
m; < mg and .
drec | my = mag(m,) | ™*9(m1) < Jirst(m2)

The relation “m; < ms” shows “m, causally pre-
cedes my” which holds at the network level. The
precedent relation “~” is referred to as significantly
precedent relation among messages. In a system
where messages are sent by mcast or pcast and
received by crec or drec, messages are required to
be delivered in the significantly precedent relation
“—". That is, a message m, is required to be de-
livered before another message ma if m; — ma.

[Theorem 1] If every set of mcast/pcast message
mstances are atomically sent at network level, m,
causally precedes m4 if m; = ms for every pair of
messages m; and my. O

If mcast and pcast are not realized to be
atomic, “m; — m,” may hold even if m; does not
causally precede ma. For example, m; and m3 are
parallel-cast. Here, m; — mgz but ms does not
causally precede ms.

5 Protocol

A com object supports inter-object communica-
tion facilities in each computer. Here, “object”
means not only an object but also a transaction
object in a computer. If a method is invoked on
an object, a thread of the method is created. The
thread sends messages to other objects, e.g. invokes
methods on the objects and receives responses. The

thread invokes communication methods on the com
object In a computer to exchange messages with

other objects. For example, if mcast is invoked, a
message 1s multicast to multiple objects.

In the object-based computation, a thread ¢ is
created on an object o. The thread t exchanges
messages with other objects by invoking the com-
munication methods. Each thread ¢ has an unique
identifier #d(¢) in the system.

A transaction is realized as a thread of the init-
tran on the tran object. The transaction identifier
is incremented by one each time a transaction is
initiated. Hence, tid(T}) < tid(T3) if T} is initiated
before T3 in a computer. Each thread has a variable
iseq named invocation sequence number. iseq = 0
when the thread is created. iseg is incremented by
one each time the thread invokes ucast, mcast, or
pcast.

For ordering a pair of message instances m; and
mg in the significant precedent relation —, it is sig-
nificant to decide whether m; and my conflict or

not. Each thread ¢ is assigned a compatibility iden-
tifier cid(t). There is a variable ¢, initially 0, for
each object 0. Suppose a thread { is initiated. Here,
if no method is performed on the object o, cid(t) :=
c. Next, suppose { commits. If any other method
is not being performed on the object o, ¢ is incre-
mented by one. If cid(t;) = cid(t.), t; and ty are
compatible. Otherwise, ¢; and 5 conflict or one of
t, and {5 is started before the other finishes.

Suppose a message m is sent by a thread ¢ on
an object 0. The message m has an identifier m.id
which is a concatenation of idy, ids, and id3 where
id; = cid(t), idy = id(t), and idy is an invocation
sequence number(iseq) in ¢, i.e. id = id,:ids:ids.

For a pair of identifiers ¢ (= ¢;:as:¢3) and b (=
bl:b2:b3), a<biffa; <b,as <byifa; =b,a3 <
ba if ay = bl and as = 62.

a=>biff ay = b1, ag = by, and a3 = b3. If a
pair of messages m; and m, are sent by mcast or
pcast, my.id = my.id. If a thread sends m; before
my by different transmission invocations, mj.id; =
mg.id; and my.idy = my.idy but m;.ids < mo.id3.

For a pair of messages m; and mg sent in a com-
puter p;, m, is sent before ms if m,.idy < my.id;,
or my.ids < mo.ids if my.idy = moy.id,. If my.ad;
= my.idy, my and my are sent by threads which are
compatible. The com object of a computer p, main-
tains an object vector V = (vy, ..., v, } where each
element v; takes a message identifier and is used for
an object o; (= 1,...,n) in the group G. Suppose
that a thread ¢ on o; in p, invokes a transmission
method, i.e. ucast, mcast, and pcast. Then, mes-
sage instances are sent by the transmission method
and the messages carry the vector V Here, m.V
shows the object vector { V1, ..., V) carried by a
message m.

Next, suppose a thread ¢ on an object o; invokes
srec, crec, or drec to receive messages. The receipt
method terminates if the most significant message
is received. On completion of the receipt method,
the object, vector V is updated as v; := max(vj,

)for]_l nandj;éilfcrecisin-
voked Vis updated when the last message is re-
ceived. If drec is invoked, V is updated when the
first message is received. The thread invokes srec,
crec, or drec in order to receive the responses af-
ter mvokmg ucast, mcast, and pcast. In the re-
ceipt method, the messages 'whose id3 = m.iseq are
received as the response. On receipt of a request
message m, m is performed and the response m' is
sent back. The response message m’ carries m’.id;
= m.id3. crec/drec receives only messages whose
ids,i.e.iseq is the iseq of mcast/pcast.

On receipt of a request message m, the request m
is performed as a thread on an object o; in a com-
puter p;. If the thread commits, the object vector
V is changed as v; := max(vj,m.v;)forj=1,...,n
and j # 1 in a computer p;.

[Ordering rule] A message m; precedes another
message ma (m; = mgy) iff one of the following
conditions holds:

1. m; and ma are sent by an object o;;

o m.V; < my.V;.
2. my is sent by o; and my is sent by o; (i # j);

o a pair of messages m; and m, are conflict-
ing requests, and m;.V < m».V, or

e m is a response message and m; is a re-
quest message. O

[Theorem 2] For every pair of messages m; and
ma, m; = ma if my = m,. A

[Example] Suppose there are three computers p,,
pe, and p, [Figure 5]. In each computer, the objet
vector V is initially (0, 0, 0). A transaction T sends
a pair of requests my and ms to p; and p, by invok-
ing a communication method mcast or pcast on
the com object in p,. Here, my.id(=011) = m,.id
and m;.V(=(011, 0, 0)) = m».V. On receipt of a
request message mg, the thread s m, is initiated
in the computer p; and is assigned with the object
vector of p;. “011” means that cid(T)=0, id(T)=1,

and the event number of the invocation of the com-
munication method is 1. The object vector of s 1s

(011, 0, 0) when s is initiated but the object vec-
tor of p, is still (0, 0, 0). Suppose the thread s
sends m3. The value of mz.id is “011” and m3.V =
{011, 011, 0). In the ordering rule, m; precedes m3
(m1 = m3) because m;.V = (011, 0, 0) < m3.V =
{011, 011, 0). According to the traditional defini-
tions, there 1s no precedent relation among m; and
msz (m; | ma). O

p, P, P,
T m,
<011,0,0>

m,;

<011,00>

s
m;
<011,011,05
¥ time

Figure 5: Example.

6 Evaluation

As discussed in this paper, even if a pair of mes-
sage instances are causally ordered according to the
traditional definition, some of the message instances
are not required to be causally delivered in this pro-
tocol. We shaw how many request messages are or-
dered in the protocol. The protocol is implemented
as Unix processes in Sun workstations. In the eval-
uation, a computer means a workstation and these
computers are interconnected with a 100 base-T
Ethernet. Each workstation has one or two objects
and each object supports four types of methods.
Transactions are initiated in each computer. Each

transaction invokes some methods and the methods
are invoked 1n a nested manner. In this evaluation,

every method is invoked at three levels.

It is significant to consider how many types of
methods conflict. Each object supports four types
of methods, say, t;, t3, t3, and 4. A confliction
ratio C of methods on an object is defined to be
[{{t:,t;) | ti conflicts with t; }| / [{(ti,t;)}|. Figure

tale of CONRCENG Mt

Figure 6: Evaluation.

6 shows how many messages are not ordered for con-
fliction ratio C. Here, a message ratio(M) means
a ration of the number of messages ordered by the
protocol to the number of messages ordered by tra-
ditional group protocols. The horizontal axis of Fig-
ure 6 shows the confliction ratios from 0% to 100%.
100% means every pair of methods conflict. 0%
means every pair of methods are compatible. The
vertical axis indicates the message ratio(M)[%], i.e.
how many percentages of message instances are not
ordered according to the ordering rule in the proto-
col. For example, 60% means that 40% of message
instances transmitted at the network are ordered
and 60% are not ordered. 100% shows a traditional
protocol where message instances are ordered at a
network level independently of what each message
carries.

Messages are transmitted by ucast, mcast, and
pcast. In the evaluation, messages are received by
the conjunctive receipt method crec. We consider
following cases:

1. All the requests are transmitted by ucast

2. Half of the requests are transmitted by ucast
and the other half are transmitted by mcast
or pcast.

3. All the requests are transmitted by mcast or
pcast.

Each line shows one of the cases. Figure 6 shows
the more messages are invoked by mecast or pcast,
the fewer number of messages are required to be or-
dered. For example, in case conflicting ratio is 60%,
50.0% of messages are ordered for case 1, 66.3% for
case 2, and 73.2% for case 3. Thus the number of
messages to be ordered can be reduced by using the
protocol.

7 Concluding Remarks

In the object-based system, methods are not only
serially but also in parallel invoked and multiple re-
sponses are received in various ways. One message
is multicast to multiple destinations and different
types of messages are parallel-cast to multiple desti-
nations. Multiple messages are received in conjunc-
tive and disjunctive receipt ways. We defined new
types of causally precedent relations among mes-
sages transmitted by multicast mcast and parallel-
cast pcast and received by conjunctive receipt crec
and disjunctive receipt drec in addition to ucast

and single-message receipt srec. We presented the
protocol fro ordering message instances transmitted
at the network according to the precedent relation.

References

[1] American National Standards Institute,
“Database Language SQL,” Document ANSI
X3.135, 1986,

(2] Bernstein, P. A., Hadzilacos, V., Goodman,
N., “Concurrency Control and Recovery in
Database Systems,” Addison- Wesley, 1987.

[3] Birman, K., Schiper, A., and Stephenson, P.,
“Lightweight Causal and Atomic Group Mul-
ticast,” ACM Trans. on Computer Systems,
Vol.9, No.3, 1991, pp.272-314.

[4] Defense Communications Agency, “DDN Pro-
t%%%l Handbook,” Vol.1-3, NIC 50004-50005,
1985.

[6] Enokido, T., Higaki, H., and Takizawa, M.,
“Object-Based Ordered Delivery of Messages
in Object-Based -Systems,” Proc of ICPP’99,
1999, pp.380-387.

(6] Lamport, L., “Time, Clocks, and the Ordering
of Events in a Distributed System,” CACM,
Vol.21, No.7, 1978, pp.558-565.

[7] Mattern, F., “Virtual Time and Global States
of Distributed Systems,” Parallel and Dis-
tributed Algorithms (Cosnard, M. and , P.
eds.), North-Holland, 1989, pp.215-226.

(8] Nakamura, A. and ‘Takizawa, M., “Causally
Ordering Broadcast Protocol,” Proc. of IEEE
ICDCS-14, 1994, pp.48-55.

[9] Object Management Group Inc., “The Com-
mon Object Request Broker : Architecture and
Specification,” Rev.2.1, 1997.

[10] Tachikawa, T., Higaki, H., and Takizawa, M.,
“Significantly Ordered Delivery of Messages in
Group Communication,” Computer Communi-
;gtlions Journal, Vol. 20, No.9, 1997, pp. 724-

(11] Tachikawa, T., Higaki, H., and Takizawa, M.,
“Group Communication Protocol for Realtime
Applications,” Proc. of IEEE ICDCS-18, 1998,
pp.40-47.

[12] Timura, Y., Tanaka, K., and Takizawa, M.,
“Group Protocol for Supporting Object-based
Ordered Delivery,” Proc. of IEEE ICDCS-2000
Workshop, 2000, pp.C-7-C-14.

[13] Yavatkar, R., “A Protocol for Coordination
and Temporal Synchronization in Multimedia
Collaborative Applications,” Proc. of IEEE
ICDCS-12, 1992, pp.606-613.

