
『マルチメディア通信と分散処理ワークショップ」 平成13年10月

Group Protocol for Inter-Object Communications

Youhei Timura， Katsuya Tanaka， and Makoto Takizawa
Tokyo Denki U niversity

Email {timura.katsu.taki}@takilab.k.dendai.ac.jp

Distributed applications are realized by cooperation of a group of multiple object.s. In the group

cooperation， objects send and receive messages in various ways. A message is multicast to objects in the

group. 111 addit.ion， multiple types of 111的 sagesare in paraIlel sent t.o multiple destir阻止.Ions.Then， an object..

waits for messages from all a.nd some of the SO¥lrce objects. i.e. conjunctive and disjunctive ways. In t.his

paper， we Ilewly define a novel precedent relation on request. and response messages exchanged among objects

in presence of t.he transmission and receipt ways. We present. a communication protocol for supportillg a

group of processes with the ordered delivery of messages IIl the precedent relation. By using t.he protocol， it

is easy to realize dist.ributed object-based applications like dat.abase replications.

1 Introd uction
111 a distributed application， a g1、oupof multi-

ple processes are cooperating. A process sends a
messag白 tomultiple processes and receives mes-
sages for multiple processes inもhegroup. Many pa-
pers [2，3，8，10，11] discuss how 1.0 support a group
of multiple processes with the ca!lsally / totally or-
dered delivery of messages trallsmitted at. a net.work
level. Group protocol is using the vector clock [:3，7]
implies totally O(n2

) compu1.at.ion al1d communica-
tion overheads forもhenumber 11 of processes in t.he
group. The overheads can be reduced if only mes-
sages required to be ordered by the applications are
causally and atomically delivered.

An application is realized by a collection of pro-
cesses each of which manipulates data like files
and exchanges messages with other processes， i.e.
process-basea application. On the other halld， in
object-based applications like COR.BA [9]， dat.a and
methods are encapsulat.ed in an object. al1d meth・

ods are invoked by a message-passing mechanism.
A transaction in an application sends a l'eque.st mes-
sαge with a method to an object. The method is
performed on the object. A re.sp071Sf messαgεIS
sent back to the sender of the requesιIn additioll，
the method may invoke other methods， i.e. nesled
invocαtion. Here， each of request and response mes-
sages is sent to one desもination.

A もransactiol1may simultaneously iuvoke mul-
tiple methods on objects. This is a pαrollel in-
vocation. In an example， a transactioll invokes a
book-car method on a rent-a-cαr objeC't. and book-
1'Oom on a hotel object. The t.ransact.ion can in
parallel invoke both the methods. Here， different
t.ypes of request. messages are simultaneously sent.
to multiple objects. This is .'eferred t.o as pαrallel-
cαst (paracast). At t.he network level， a pair of .'P.-
quest. messages book-car and book-7'Oom may be se-
rially transmitted. There is no precedent relat.ion
betweel1 the messages from the applicat.ion pOillt.
of view. Objects wait f01" multilコleresponses a.fter
multiple methods are in voked in paralleJ. There are
conjunctive and disjunctive ways t.o receive multiple
messages. ln the conjul1ctive reぞeipt，(.he object

wa比sfor a11 t.he messa民es.Hence， even if the ob-
ject sends a message while receiving these messages，
there i~ no causally precedent relation between the
messages. In the disjunctive receipt， the object
waits for only a message which arrives at the com-
puter earlier t.han the others and is not required to
receive all the other messages. In this paper， we dis-
cuss a new type of causally precedent (significαntly
pl'fCfdt'TlI) relation among messages in a network
syst.em， where messages are unicast.， multicast， and
paracast.! and received by single-message and multi-
message conjunctive and disjunctive receipts a.t ap-
plication level. We also discuss a protocol which
supports the significalltly precedent. delivery in t.IH>
object-based system.

111 section 2， we present. a system model. In
sect.ion 3， we discuss how messages are exchanged
among objects. In sections 4 and 5， we discuss the
szgnポcantlyprecedenl relation of messages and a
prot.ocol. In section 6， we show how many messages
are ordered.

2 Systenl Model
Objects are encapsulations of data and methods

for manipulating the data. A transaction in¥'叫{es
a met.hod on an object by sending a request to the
objecιA thread for the method is created and is
perfol"med on the object. Here， other methods ma.y
be invoked by the met.hod， i.e. llested invocaもlon.
Then， on eompletion of the method， the response is
sent back to t.he transaction.

Object.s are distributed in computers intercon-
nected wit.h reliable networks. A computer does not
necessarily mean a physical cOlnputer. A database
server is an example of a computer where object匁

are ta.bles and records. Each computer p， has a
tγαn.saciion object trα11 which 5upports an init-tran
method. An application initiates a transaction by
invokil1g init・tmnon the tran object. TransactiollS
are realized by threads of the init-tran method 01¥

t.he lran object. There is anot.her specific t.yP(
of objed:， cornmunic(dion object com which汎 LP-
porωobjects in the computer Pt with communica-
t.ion methods. The com object. support.s communi-
ca.t.ion methods for sending and receiving messages.
ln order to send and receive messages， methods on

-19ー

the C0111 object are invoked. The C0111 object. for-
wards the messages to com objects which support
t.he dest.ination objects inもhenetwork. ~he com
object supporting objects cooperat.e t.o deliver mes-
sages to the objects in G. The cooperation of the
c01n objects is coordinated by the grou p protocol.

In the traditional group protocols [3]， a group
is composed of processes where messages are
causally jtotally delivered independently of what
kinds of data are carried by the messages. In this
paper， a group is composed of objects and trans-
action tran objects. Only rnethods on objects in G
are assurned to be invoked in each transacもlon.

There are ways to invoke multiple methods. In
the seriα1 invoc叫ion，aもmosもonemethod is invoked
at a time. On the other hand， multiple methods
can be simulもaneouslyinvoked in the parallel iuvo・

cation. Here， request messages are sent.もomultiple
objects. The transaction waits for responses from
the objects. There are conjunctive and disjunctive
ways to receive the respOl1ses. In the conjunctive
receipt， the transaction blocks until boもhof the re-
sponses are received. Inもhedisjunctive receipt， the
transaction blocks until 叫 lea品 oneresponse is re-
ceived. The transaction does not receive the other
response. In the conjunctive receipt， the requests
are required to be atomically delivered to the trans-
action. On the other hand， at least one request can
be required to be delivered in the disjunctive re-
ceipt.

According to the traditional t.heol'ies [2]‘ a
method t} conf1icts with anoもhermethod t 2 on
a11 object ifもheresult obtained by perforrning the
methods tl and t2 on the object depends 011 the
computation order of t} and t2・ Otherwise，tl is
compatible with t2・Forexample， deposit and with-
draware compatible on a Bank object. By using the
locking mech創出m [2.]， a pair of conflict.ing meth-
ods t1 and t2 are serially performed. In this paper，
we槌 sumet.he conflicting relation is symmetric and
transitive.

3 Inter-Object Communication

3.1 Transmission
A communication object com in ea.ch com-

puter supports objects with following communica-
tion methods forもransrnitting message m:

[Transmission methods]
1. ucast(m， ot}; m is unicast t.o Ot.
2. lDcast(m:(ol， ...， Oh)); m is rnulticasもto011

..， 01.

3. pcast(m}:(oll， ...， 01l1); ...; mk:(okl! ...，
Ok/，.)); messages ml， ...， nlk are paracast， i.e.
each message 7ni is multicasもtoobjects Oi1 .・・1

Oil i (li ~ 1) (i = 1ぃ..， k).

3.2 Receipt

Suppose a thread t perfol'med on all object in
parallel invokes multiple methods. Theもhreadt
waits for response messages from multiple objects
after sendingもherequests to the objects. There are
multiple ways to receive messages; single-message
and multi-messαge receipt.s where an invokel' thread
wait.s fo1' only one message and multiple messages，
respectively. A com object supports objects in a

computer wit.h following t.ypes of prirnitive methods
for receiving messages:

[Receipt methods]
1. srec(ol); one message is received from an ob-

ject 01， i.e. single-message receipι
2. C口rec叫(0向1，い...叶，0内k)(伏k主lり);messages frorn all t.l

objects 01， .. .， 01. are received.
3. drec(ol， ...， Ok) (k三1);a message from one

of the objects 01， ・・・ Okis received.

". ，

，

，

。 ". "1 I}

crec drec

limll limll
(1) tr~c 111drcc

Figure 1: crec and drec

Figure 2 shows how messages are exchanged
t.hrough com objects. Here，もhereare two cornput.ers
Pu and Pt・At.hread t$ on an object 011 multic箇 ts
a message m to multiple destination. t$ invokes
lncast(m，(...， Od， ...，)) on the com object C01n$'

A thread t5 on an object od receives the message m
by invokey srec(o$)'

-争 :lnvocalton 口:method

Figure 2: Inter-object communicaもion.

4 Delivery of Messages in Objects

4.1 Transmission
In t.he object-based system， request and response

messages sent. and received by objecもsare ex-
changed among com objects ill computers which
support the objects. The com object sends a mes-
sage m. sent by a thread of a method on an object in
a computer Ps to the com object in a cornputer Pt
which SllppOl'ts the destination object of m. Here，
i t. is referred t，o加“Pssends m to Pt・"If the com
object in Pt receives m from Ps I“Pt receives m from
P..・" The com object in Pt receives messages from
multipleぐomputerswhile sending messages to rnul-
t.iple comput.ers. The messages are ordered and t.hen

-20一

delivered t.o the objects by the com object in the
computer Pt.

A message ml cαusally p7でcedesanother message
m2 if the sending event. of m 1 hαppens before the
sendi略 eventof m2 [3，6]. A message m1 totαlly
p'1'~cedes another message m2 iff ml and m2 are
delivered to every common destinat.ion object in t.he
same order. 1n addition， ml totally precedes 111.2 if
m1 causally precedes m2・

A t.hread on an object sends messages to objects
by in voking ucast， mcast， and pcast on the com
object. The com object delivers messages to desti-
nation com objects in a net.work. F'or example， if
aもhreadt Ps multicasts a message m to objects Ot
and Ou in computers Pt and Pu by Incast(m， (Ot，
ou))， com in p~ sends a pair of instances ml and m2
of the message m to Pt and Pu by taking usage of
TCP， respectively. We discuss how these message
instances transmitted in the lletwork to be ordered.
Suppose a pair of message instances m1 and m2
are sent in Ps・Themessage inst.ances 1111 and m2
transmitted inもhenetwork are related according to
the following relations depending on through which
transmission method ucast， mcast， 01' pcast the
messages m} and m2 are transmitted:

1. m} and m2 are mcast instances of m (ml何

m2) iff ml and m2 are diπerent inst.ances of a
same message m which are sent by mcast.

2. ml and m2 are pcast installces of m (ml三

ml) iff ml and m2 are paracωt by pcast.
3. ml and m2 are serially sent (ml ベ~ m2) iff

ml is sent before m2 by different transmission
methods t} and t2， l'espectively， and t2 is in-
voked after t1 completes.

It is trivial that neither ml何 m2nor 1nl三 m2i町
ml ~m2・ Let us consider an example that a trans-
action T1 in a computer Ps sends a request messa.ge
rl to some object 01 and allotherもransactionT2 in
Ps sends a request message r2もoan object 02・The
requests rl and r2 can be independently delivered
since different objects 01 and 02 are manipulated by
rl and r2， respectively. We now define a precedent
relation “→" among a pair of message 7nl and m2
sent by a computer -Ps' Here，let "ml ~ m2" show
that a computer sends a message instance ml before
m2 in the network.
[Definition 1] Let ml and m2 be message instar悶 S

sellt by objects P~ ・ ml p7でcedesm2 in Ps (ml→m2)
if ml is sent before m2 in p， (mlベm2)and one of
the following conditions holds:
1. ml alld m2 are sent by a same thread， and (ml
-<< m2).

2. ml and m2 are sent. by diπ'erent conflict.ing
threads.

3. ml→m3→nl2 for some 111・3・ロ
A pair of messages rnl and m2 are independent

(ml 1m2) iff neither ml→m2， rn2→ml，1111向

m21 nor ml三 m2・Forもherequ

{m!， ...， 1Hk} of the message instances to be sent
with a message 7ni・ M(mi) is referred to槌 a
messαge group. At the network levle，もhemessage
instances are serially transmitted by using a prか
tocol like TCP. Suppose the message instances are
sent in an order of ml， .ー，nl'k・Here，let ml be t.he
jirst message ji1'st(mt} and mk be the last message
last(nlr) in the message group.

Messages to be multicasも01'parallel-cast at the
applicat.ion level may not be simultaneously sent
at the network level. Suppose thaももhreecomput-
ers])$， Pt I alld Pu are excha.ngillg .qlessage instances
ml， m2， and m白3at. the neもworklevel as shown ill
Figure 3. Accordingもothe traditional causality the-
ory， ml causaUy precedes m3 because ml causally
precedes m2 at the network level in Figure 3 (1).
However， ml and m3 are causally concurrent while
1111 causa.lly precedes m2 in Figure 3 (2). If mlト.i
=η1n2.id， 7nl and m2 are mcast insもancesof a same
message (ml何 m2). Otherwise， ml and m2 are
pcast instances (ml三 m2).If 1111三 m3or ml何

m2， ml must causally precede m3 in Figure 3 (2).
1nl =今 m'3and m2今 m3if ml何 m2or ml三 m2
in Figure 3.

PS P" PS P， P" P，

Iime lime

、.. ，

E

'a冒
、

(2)

Figure 3: Message ordering.

4.2 Receipt

A thl'ead t on an object 0 invokes a crec or drec
method to receive messages ml， "'， mk from mul-
tiple objects 01， "'1 Ok， respectively [Figure 4]. The
object.s o}・.. .， ok are referred to前 sourcesof crec
or drec. Let M(mi) be a collection {m}， ・・・， m'k}
of messages to be received with a message mi 叫 a
multi-message receipt， named message group. For
every message mj in M(ma)， M(mj) = M(mi). The
conjunctive receipt method crec(ol， . . .， Ok) means
t.hat messages are received from all the source ob-
jects 01， ...， Ok. Suppose a thread in a computer Pt
finishes receiving messages in M(mj) on time when
t receives a message mk after receiving all the other
messages ill NJ(mj). Here， mk is most significant for
the messages ml， ...， mk in NJ(m;) for crec.

Let 7nsg(md be a most significant message mk
in Af(mi). A method in叫anceinvoking drec blocks
unt.il at leωもonemessage is received from the source
objects. Suppose Pt receives a message ml before
all t.he other messages ml， ...: mk in M(ml)' The
message ml is the first messαge in M(mt}. In drec，
the object finishes receiving the messages m}， •

mk I only if t.he first message ml is received before
all the ot.her messages. The first message m} is

-21一

the most significant for the messages in M(mt) for
drec. Here， the 0もhermessages m2，・・・，7nk are not
so significant thatもhemessages are not required to
be received. Let msg(mi) be the most significant
message mi・

mIP t

crec

time
(1) ConJunctJve

P t

drec

time
(2) DisJunctJve

ー申 :mostslgnlOcant mes調 ge(msg

Figure 4: Multi-message receipt.

Suppose that a computer Pt receives a pair
of message instances 7nl and m2 in a netwol'k.
Let “mlベ1112"show that Pt receives ml be-
fore m2 at the network level. A message m is
referred to as single-received， conjunctive-陀 ceit1ed，
and disjunctive-received iff m is received by invok-
ing srec， crec， and drec， respectively， on the com
object. Table 1 shows conditions t.hat“1nl→m2"
holds in case ml and 7n2 are received by a comput.er.
For example， an entry (srec， crec) shows a condi-
tion“mlベmsg(m2)"for a cωe that lnl and m2
are received by srec and crec， respectively. This
means， ml is received before the most significant
message of m2 if ml→ 7n2・
[Definition 2] Let m} and m2 be 間 ssageinstances
received by objects in a comp凶 el'Pt. 7nl precedes
m2 in Pt (ml→m2) if the condition shown in Table
1 is satisfied for ml and m2・ロ

Table 1: Receipも・receiptconditions.

X: srec crec drec

ml -< m3g(m~)
ml prec ml and

srec tnl -< tn2 tnl = m3g(ml)

msg(m.) -< tn:2 nug(md -< msg(ml}
msg(tnl)・〈問:2an

crec m2 = m3g(m2)

ml -< m2 and ml -< msg(m2) fFE1=・〈 nZ2sngztasm g
drec ml = msg(ml and ml = m..g(ml) an~lm~ ~$R}:;tIn 2

Here， ml and m2 are independent (7111 I m2) iff
neither ml→f7l2 nor m2→ml・

4.3 Receipt and transmission

If a computer P.. sends a message instance 7n2
after receiving another message 111 1 at the network
level，“ml ~ m2". Table 2 shows conditions that
“ml→m2" holds for case ml is sent叩 dm2 is
received by a computer.

[Definition 3] Let ml and T112 be message instances
received and sent by acomputer Ps・m1 precedes m2
in Ps (1nl→m2) ifもhecondition shown in Table 2
are satis白ed.ロ

Table 2: Receipt and transmission condiもlons.

ド: UC8St mcast， pcast

srec fnl -< m~ ml -< Jir$t(m2)

crec m$g(mt} -< m2 m..g(ml) -< fir$t(m2)

ml -< m:z and
m$g(ml) -< Jir$t(m2) drec ml = m$g(ml)

一一

The relation “mlベm2"shows “ml causally pre-
cedes m2" which holds atもhenetwork level. The
precedent. relation “→" is referred toω significantly
pl町 edentrelation among messages. In a system
where messages are sent by mcast or pcast and
received by crec or drec， messages are requiredもωo
be delivered in the significant1y precedenもrelation

“→
liv討ve町redbefore a叩not凶he釘rmessage m-2 i汀fml→m2.
[Theorem 1] If every set ofmcast/pcast message
lllSもancesare atomically sent aもnetworklevel， 7nl
causally precedes m2 if ml→m2 for every pair of
messages ml and m2・ロ

If mcast and pcast are not realized to bρ
aもomic，“ml→fn2"may hold even if m} does not
causally precede m2・Forexample， ml and m3 are
parallel-cast. Here， ml →m3 but m3 does not
causa.lly precede m2・

5 Protocol
A com object supports inter-object communica-

もionfacilities in each computer. Here，“objecも"
means not. only an objecもbutalso a transaction
object in a computer. If a method is invoked on
an objed， a thread of the method is created. The
thread sends messages to other objects， e.g. invokes
methods on the object.s and receives responses. The
t.hread invokes comnlunication methods 011 the com
object. in a computer to exchange messages with
other objects. For example， if mcast is invoked， a
message is multicastもomultiple objects.

In the objecレbasedcomputation， a thread t is
created 011 an object o. Theもhreadt exchanges
messages with other objects by invoking the com-
munication methods. Each thread t hωan unique
identifier id(t) in the system.

A transaction is realized as a thread of the init-
t1'arl on t.he tmP1 object. The transaction identifier
is increment.ed by one each time aもransactionis
initiated. Hence， tid(T1)く tid(T2)if T1 is initiated
before乃 ina computer. Each thread has a variable
iseq named invocation sequence number. iseq = 0
whenもhethread is created. iseq is incremented by
one each t.ime the thread invokes ucast， mcast， or
pcast.

For ordering a pair of message instances ml and
7n2 in the significant precedent relation→， it is sig-
nifkant. to decide whether ml and m2 conflict 01'

-22一

not. Each t.hread t isωsigned a compαtibility iden-
tifie7' cid(t). There is a variable c， initially 0， for
each object o. Suppose a thread t is initia.ted. Here，
if no method is performed on the object 0， cid(t) :=
c. Next， suppose t commits. If any other method
is not being performed on the object 0， c is incre-
mented by one. If cid(td = cid(t2)， t1 and t2 a.re
compatible. Otherwise， tl and t2 conflict or one of
tl and t2 is started before the other finishes.

Suppose a message m is sent by a thread t on
an object 0・Themessage m has an identi自erm.id
which is a concatenation of id}， id2， a.nd id3 where
id1 = cid(t)， id2 = id(t)， and id~ is an invocat.ion
sequence llumber(iseq) in t， i.e. id = id1 :id2:id3・

For a pair of identifiers a (=α1 :α2:α3) and b (=
b1 :b2:b3)， α< b iffα1 < b1，α2く b2ifα1 = b}， a3く

b3 ifα1 = b1 and a2 = b2・
α= b iffal = b1， a2 = b2， and α3 = b3・ Ifa

pair of messages m 1 and m2 are senもbymcast or
pcast， ml.id = m2.id. If a thread sends ml before
m2 by differenもtransmissioninvocaもions，ml.idl
m2.idl and m1.id2 = m2.id2 but ml.id3く m2.id3・

For a pair of messages ml and m2 sent in a com-
puter Pt， ml is sent before tn2 if ml.idlく m2.id1，
or m1.id3 < m2.id3 if m1.id2 = m2.id2・Ifml.idl
= m2.id2， ml and m2 are sent by threads which are
compatible. The com object of a computer Pt main-
tains an object vector V = (Vl， .. .， Vn) where each
element Vi takes a message identifier and is used for
an object oi (i = 1，・・・，n)in the group G. Suppose
thaもathread t on Oj in Pt invokes a transmission
method， i.e. ucast， mcast， and pcast. Then， mes-
sage instances are ser叫 bythe transmission met.hod
and the messages carryもhevecもorV. Here， m.V
shows the objecもvector(V1， ...， Vn) c arried by a
message m.

Nexも， suppose a thread t on an object. Oi invokes
srec， crec， or drec to receive messages. The receipt
method terminates if the most signi自cant message
is received. On completion of the receipt method，
the object vector V is updated回り:=max(Vj，
m.¥う)for j = 1ぃ・・，nand j #-i. If crec is in-
voked， V is updatedwhen the last message is re-
ceived. If drec is invoked， V is updated when the
first message is received. The thread invokes sre~ ，
crec， or drec in order to receive the responses aι
ter invoking ucast， mcast， and pcast. In the re-
ceipt method， the messages whose id3 = m.iseq are
received as the response. On receipt of a request
message m， m is performed and t.he response m' is
sent back. The response message m' carries m'.id3
= m.id3・ crec/drec receives only messages whose
id3l i.e.iseq is

• a pair of messa.ges ml and m2 are conftict-
ing requests， and ml. V ~ m2. V， or
・m1 is a response message and m2 is a re・

quest. message.ロ

[Theorem 2] For every pair of messages ml and
1112， tnl→m2 if ml吟 m2・ロ
[Example] Suppose there are three computers p$，
Pt， and Pu [Figure 5]. In each computer， the objet
vect.or V is initially (0， 0， 0). A transaction T sends
a pair of requests ml and 7n2 to Pt and Pu by invok-
ing a cOl1ullunication method Ulcast or pcast on
t.he com object in p&. Here， m2.id(=011) = ml.id
and ml・V(=(Oll，0， 0)) = 1n2.l/. On receipt of a
requesもmessagem2，もhethread s m2 is initiated
in the computer Pt and is assigned with the object
vector of Pt.“011" means t.hat cid(T)=O， id(T)=l，
and the event number of the invocation of the com-
l11unIcation method is 1. The object. vector of s is
(011， 0， 0) when s is initiated but the object vec-
tor of Pt is still (0， 0， 0). Suppose the thread s

sends m3・Thevalue of ffi3.id is“011" and m3.V =
(011，011，0). In the ordering rule， ml precedes m3
(ml訪問3)because ml'V = (011，0，0)く m3・V=
(011. 011. 0). According to the traditional defini-
tiollS， there is 110 precedent relation among ml and
7113 (ml I 17l3)'ロ

P，
T

P(p
u

<011，011，0>

time

Figure 5: Example.

6 Evaluation
As discussed in this paper， even if a pair of mes-

sage instances are causally ordered according to thc
tradit.ional definition， some ofthe message instances
are not required to be causally delivered in this prか

t.ocol. We show how many request messages are or-
dered .in the protocol. The protocol is implemented
as U nix processes in Sun workstations. In theeval-
uation， a. computer means a workstation and these
comput.ers are interconnected with a 100 base-T
Ethernet. Each worksもatiollhas one or two objects
alld ea.ch object suppor旬 fourtypes of methods.
Transactions are inIti叫edin each computer. Each
transaction invokes some methods and the methods
are invoked il1 a nesもedmanner. In this evaluation，
every method is in voked at three levels.

It. is significanもtoconsider how many types of
met.hods con日ict.Each object supporもsfour types
of met.hods， say， t 1， t2， t3， and t4・Aconfliction
ratio C of met.hods on an object is definedもobe
I{(ti，tj) I ti consicts with tj 11/ 1{(ti，tj)}I. Figure

-23-

可。。
ーーー・・・ uCll・唱。も
・ーーーー凶描11旬、
.....ω由民 '00首

110

• • • •
-

E
a
F

・・
同

崎

a-a
，.
‘
E-aBE百
S
E

•
・

• • • • •
・

回

。。 20 輔副•. ・d回罰脂・可制@咽3・
曲 S偶

Figure 6: Evaluaもlon.

6 shows how many messages are not ordered for con-
fliction ratio C. Here， a message ratio(.iV!) means
a ration of the number of messages ordered by the
protocol to the number of messages ordered byもra-
ditional group protocols. The horizontal axis of Fig・
ure 6 shows the confliction r叫iosfrom 0%もo100%.
100% means every pair of methods conflict. 0%
means every pair o(methods are compatible. The
vertical axis indicates the message ratio(M)[%]， i.e.
how many percenもagesof message instances are not
ordered accordingもothe ordering rule in the protcト
col. For example， 60% means that 40% of message
instances transmitted at the network are ordered
and 60% are not ordered. 100% shows a traditional
PI叫 ocolwhere message instances are ordered at a
network level independently of what each message
carnes.

Messages areもransmittedby ucast， nlcast， and
pcast. In the evaluation， messages are received by
the conjunctive receipt method Cl"ec. We cOllsider
following cases:

1. Allもherequests areもransmitもedby ucast
2. Half of the requests are transmitted by ucast

and the other half are transmitted by mcast
or pcast.

3. All the requests are transmitted by mcast or
pcast.

Each line shows one ofもhecases. Figure 6 shows
the more messages are invoked by mcast or pcast，
the fewer number of messages are required to be or-
dered. For example， in case conflicting ratio is 60%，
50.0% of messages are ordered for c槌 e1， 66.3% for
case 2， and 73.2% for case 3. Thus the llumber of
messages to be ordered can be reduced by using the
protocol.

7 Concluding Remarks
In the object-based system， methods are not only

serially but also in parallel invoked alld l11ulもiplere-
sponses are received in various ways. One message
is multicastもomultiple destina.tions and diπerent
types of messages are parallel-cast to multiple desti-
nations. Multiple messages are received in conjunc-
tive and disjunctive receipt. ways. We defined new
types of causally precedent relations among mes-
sages transmitt.ed by multicast nlcast alld parallel-
cast pcast and received by conjunctive receipt crec
and disjunctive receipt drec in addition to ucast

and single-message receipt srec. ¥AJe presented the
prot.ocol fro ordering message instances transmitted
a.t t.he net.work according to the precedent. relatioll.

References
[1] American National Standards Inst.itute，

“Database Language SQL，" Document ANSI
X3.135， 1986，

(2] Bernstein， P. A.， Hadzilacos， V.， Goodman，
N.，“Concurrency Control and Recovery in
Database Systems，" Addison-Wesley， 1987.

[3司JBirn口rma
‘“‘LμJightweight叫も Causal and AもωomicGroup Mul-
もtica舗st.じ、 ACM Trans. on Cornputer Systems，
Vo1.9， No.3， 1991， pp.272・314.

[4] Defense Communicaωns Agency，“DDN Pro-
tocol Handbook，" Vol.l-3， NIC 50004-50005，
1985.

[5] Enokido， T.， Higaki， H.， and Takizawa， M.，
“Object-Based Ordered Delivery of Messages
in ObJect-Based .Systems，" Proc 0/ICPP'99，
1999， pp.380-387.

[6J Lamport， L.，“Time， Clocks， and the Ordel'ing
of Events ill a Distributed System，" CA CM，
Vo1.21， No.7， 1978， pp.558-565.

[7] Matterll， F.，“VirtL叫 Timeand Global Stat伺

of Dist.ribuもedSystems，" Pαrallel and Dis-
tribωed AIgorithms (Cosnard， M. and ， P.
eds.)， North-Hollαnd， 1989， pp.215-226.

[8] Nakamura， A. and Takizawa， M.，“Causally
Ordering Broadcast Protocol，" Proc. o/IEEE
ICDCS-14， 1994， pp.48-55.

[9] Object. Management Group Inc.，“The Com-
mOIl Object Rβquest Broker : Architecture and
Specification，" Rev.2.1， 1997.

[10] Tachikawa， T.， Higaki， H.， and Takizawa.， M.，
“Sigllificantly Ordered Delivery of Messages ill
Group Communicaもion，"Computer Communi-
cαtions Jourrzαl， Vol. 20， No.9， 1997， pp. 724-
731.

[11] Tachikawa， T.， Higaki， H.， and Takizawa， M.，
“Group Communication Prot.ocol for Realtime
Applications，" Proc. o/IEEE ICDCS・18，1998，
pp.40-47.

[12河]Timu町1
“Group Protocol for Supporting Object-based
Ordered Deli ve白ry，"Proc. o/IEEE ICDCS.2000
Workshop， 2000， pp.C-7-C・14.

[13] Yavatkar， R.，“A Protocol for Coordination
and Temporal Synchronization in M ultimedia
Collaborative Applications，" Proc. 0/ lEEE
lCDCS・'-12，1992， pp.606-613.

a宮
内
〆
剖

